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Abstract

This paper models the cross-selling problem of a call center as a dynamic service rate control

problem. The question of when and to whom to cross-sell is explored using this model. The

analysis shows that under the optimal dynamic policies cross-selling targets may be a function

of the operational system state. Structural properties of optimal policies are explored. Suffi-

cient conditions are established for the existence of preferred calls and classes; i.e. calls that

will always generate a cross-sell attempt. These provide guidelines in segment formation for

marketing managers, and lead to a static heuristic policy. Numerical examples, that are mo-

tivated by a real call center, identify call center characteristics that increase the significance

of considering dynamic policies rather than static cross-selling rules. The numerical analysis

further establishes the value of different types of information, and different types of automation

available for cross-selling. Increased staffing for the same call volume is shown to have a positive

and increasing return on revenue generation via cross-selling, thus suggesting the need to staff

for lower utilization levels in call centers that aim to be revenue generators. Finally, numerical
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†Koç University, College of Administrative Sciences and Economics

1



examples show that the proposed heuristic leads to near optimal performance both for a loss

system and a queueing system.

Keywords: call center; cross-selling; revenue management; customer relationship management;

dynamic control; loss system; cross-selling heuristic.

1 Introduction

Many firms in mature industries, like the financial services industry, resort to growth by deepening

customer relationships and making them more profitable. A significant part of this profitability

comes from revenues generated by the sale of additional products and services to existing customers,

in other words through tactics that improve customer life time value. Felvey (1982) states that

existing customers are better sales prospects, compared to new customers. Given the growing dislike

among consumers for telemarketing, this type of selling is increasingly being performed via cross-

selling and up-selling initiatives (Krebsbach, 2002; Walker, 2003). According to Kamakura et al.

(1991) cross-selling is emerging as one of the important customer relationship management (CRM)

tools used to strengthen relationships. CRM refers to the whole strategy of building relationships

and extracting more revenues from existing customers. The global market for CRM systems, service

and technology is estimated to be around $ 25 billion (Benjamin, 2001).

Inbound call centers are an important point of contact with the customer, where this type of

selling takes place. According to a Tower Group estimate for 2003, in banking, 25 % of transactions

are projected to take place in call centers. Given the increasing percentage of these centers that are

organized as profit centers, focus is shifting to cross-selling. According to a Wells Fargo executive

(The Economist, 2004) 80 % of the bank’s growth is coming from selling additional products to

existing customers. As the leader in cross-selling, this bank’s customers hold an average of a little

over four products per household. Given that an average American household has sixteen financial
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products, the opportunity for cross-selling growth in this industry is apparent.

A major concern for managers is identifying the right person and the right time to attempt

a sale. While it is believed that cross-selling ensures that customers acquire multiple products

of a firm, improves customer retention (Marple and Zimmerman, 1999) and reduces customer

churn (Kamakura et al., 2003), excessive selling can motivate a customer to switch (Kamakura et

al., 2003). Database marketing techniques that address this issue are being developed (Paas and

Kuijlen, 2001; Kamakura et al. 1991, 2003), and software that helps insurance agents or bankers

cross-sell more effectively is becoming more common (Insurance Advocate, 2003; American Banker,

2003) as companies embrace this tactic.

Cross-selling in a call center requires a customer service agent to transform an inbound service

call into a sales call. According to an article in the Call Center Magazine (2002), call centers can use

integrated predictive analysis and service automation software to make real-time recommendations

to banking customers. However, in a review of existing products Chambers (2002) states that

real-time automation is relatively immature and many products offer only the option of setting

preset business rules that make promotion recommendations based on previously captured and

stored data. Common practice is to segment the customer base into groups based on their sales

potential, and to target sales to high potential segments. In the absence of real-time automation,

the customer service representative will use segment based estimates to determine whether it is

appropriate to attempt a cross-sell to a particular call.

Irrespective of the type of automation in place, a cross-sell attempt in a call center implies

additional talk time from the agent. Thus cross-selling will influence the load of a call center,

as documented in Akşin and Harker (1999). The biggest challenge of a call center manager is to

manage the tension between costs and customer service. While for the long-term this corresponds
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to determining the right number of service representatives to hire, in the shorter term it is resolved

through capacity allocation. The primary role of such inbound call centers is service, and demand

for service varies during the day. It may be the case that even for calls presenting high revenue

potential, cross-selling during peak times is not desirable due to its detrimental effect on capacity

and service.

This basic description of cross-selling in a call center identifies a key challenge for managers:

When should a cross-selling attempt be made such that revenue generation is maximized while

congestion costs are kept as low as possible? Current practice identifies off-peak times during

the day for cross-selling. However it is clear that a dynamic policy will utilize valuable capacity

more effectively. It is this question of dynamic capacity allocation that motivates the research

herein. In a more general setting, Güneş and Akşin (2004) consider this tradeoff between revenue

generation and service costs, and analyze the interaction with a market segmentation decision and

server incentives. The analysis in that paper does not consider the queue state information in its

optimization of the problem. The only other paper that considers a dynamic cross-selling model in

call centers is Byers and So (2006). The authors model a call center as a single server Markovian

queue, and compare the performance of cross-selling policies that consider queue state information

as well as customer profile information. Their analysis extends part of the analysis in Güneş and

Akşin (2004) to a dynamic setting. Two recent papers Armony and Gurvich (2006) and Gurvich

et al. (2006) explore the cross-selling control problem in conjunction with staffing. We do not

explicitly model the staffing problem, however explore the interaction with staffing through a set

of numerical examples. Netessine et al. (2004) analyze the dynamic cross-selling problem of an e-

commerce retailer, focusing on the packaging of multiple products and their pricing. These aspects

of the problem are not considered herein.

We model the cross-selling problem as a dynamic service rate control problem in a multi-server
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loss system. A customer’s revenue potential is modeled as a random variable. For a call center

with real-time automation, the realization of this random variable (which is in reality an estimate

of the true revenue potential) is observed before a cross-selling decision is made. Otherwise we

consider a system where the decision is based on expected revenues. Both of these models are

described in the following section. Weber and Stidham (1987) and Stidham and Weber (1989)

consider dynamic optimal control of service rates in queueing systems. In a loss system with

random rewards the trade-off is between a slow service rate which obtains a high revenue at the

expense of, possibly, losing customers who can, potentially, generate more revenue, and a fast rate

with low revenue however low probability of losing customers. In this sense, our work relates to

dynamic admission control problems, where random rewards have been considered (Ghoneim and

Stidham, 1985; Örmeci et al., 2002; Gans and Savin, 2005). All of these papers show the existence

of optimal threshold policies. Örmeci et al. (2002) and Gans and Savin (2005) further characterize

conditions for the existence of preferred jobs, where preferred jobs are those which are always

admitted to the system whenever there is at least one available server. The fact that all calls have

to be admitted for service and the decision is to choose a service rate, as opposed to admission

control with pre-determined service rates for each class, constitutes the key difference of the model

studied herein.

In this paper, preferred calls are defined as calls which always receive a cross-sell attempt, and

whenever all calls of a class (segment) are preferred, that class is called as preferred. We derive

sufficient conditions for observing preferred calls and segments. For this purpose, we borrow the

technique introduced by Örmeci et al. (2002). Our analysis requires a more intricate use of this

technique due to two reasons. First, the model considered here involves two types of rewards,

random rewards due to cross-selling and a fixed reward for service, so we need to compare not

only the cross-sell rewards of market segment(s) but also the rewards of service calls. Second,
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we consider all policies that can arise under different assumptions about the revenue distributions

(a setting where revenues come from one distribution, and another where revenues come from

two different distributions). It is shown that unlike the prevailing practice of attempting a cross-

sell on all customers in a segment, optimal dynamic policies sometimes dictate that only some

customers in a segment, or in some cases even only some customers from each segment receive a

cross-sell attempt. Our analysis brings insights on both marketing and operations: The structural

results provide guidelines for marketing managers to define segments, such that static segment-based

policies might overlap with the optimal ones. To guide the operational policies on cross-selling, we

propose an easy-to-implement heuristic based on these structural results.

To assess the value of our results, we develop a set of numerical examples motivated by a real

call center. We first explore when dynamic cross-selling is valuable. We then explore parameter

settings where state information is preferred over revenue distribution information if only one type

of information were available, and settings where real time marketing automation is valuable. A

common feature of these settings is found to be the long additional talk times for cross-selling.

A numerical analysis of the interaction between cross-selling and staffing in call centers illustrates

that providing slack capacity has increasing returns in terms of revenue generation, suggesting that

cross-selling call centers should be designed to operate in a lower utilization regime.

The heuristic proposed for cross-selling specifies static rules independent of not only the system

state information but also the current arrival rate and the current number of available servers.

This feature is especially important in call centers, since both the arrival rate and the number of

servers vary throughout the day, and are considered to be random variables. The performance of

this heuristic is analyzed numerically both for loss systems and finite capacity queueing systems.

It is found to perform uniformly well vis-a-vis the optimal policies in all of the settings considered.
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This paper is organized as follows: Section 2 formulates the model with revenue realizations.

Section 3 presents sufficient conditions for the existence of preferred classes and preferred calls. In

Section 4, we analyze a set of numerical examples, and discuss the implications of our analysis on

various aspects of marketing and operations. The paper ends with concluding remarks.

2 A Dynamic Cross-Selling Model

In order to study the dynamic cross-selling problem, we model an inbound call center as a loss

system with c identical parallel servers. Call centers have been modeled as loss systems before,

particularly to simplify analysis in staffing or routing problems with multi-skill servers (Chevalier

and van den Schrieck 2006; Franx et al. 2006). Chevalier and van den Schrieck (2006) numeri-

cally illustrate that a loss system captures the basic performance characteristics of corresponding

queueing systems quite well. In the cross-selling context, the no-waiting assumption constitutes

an acceptable approximation since one cannot sell to a customer who has been waiting for service

for a long time. To verify our claim that treating the call center as a loss system does not distort

the results, we apply the heuristic that is developed based on the structural properties of optimal

policies in the loss systems, to finite capacity queueing systems. The performance of the proposed

heuristic in finite-buffer systems is almost the same as that in a loss system, showing that the

structures of optimal policies in finite-buffer and loss systems are very similar.

Customers arrive to the system according to a Poisson process. The inbound call center is

primarily concerned with service provision, so treats all call requests that are not blocked due to

capacity limitations. Each time a call arrives to a system with at least one available server, there

will be a decision to attempt a cross-sell or not. If the decision is not to cross-sell, then the call is

treated as a service call with a fixed revenue r, which requires an exponentially distributed service

time with rate µ. If the decision is to attempt a cross-sell, the call will generate a random revenue
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r + ρ and the service time will be distributed exponentially with rate µ1 = µ − k, where k is a

constant that reflects the impact of the selling activity on the duration of the call. We assume

that the random revenue, ρ, which is earned upon a cross-sell attempt, follows a given probability

distribution. It is assumed that revenues of successive calls are independent. The objective of

the call center is to maximize the total expected discounted revenues over an infinite time horizon

and/or maximize long-run average revenue of the center.

2.1 Customer Base and Segmentation

To enable comparison of our optimal cross-selling policies to current practice, we describe next

how customers are typically classified by managers for cross-selling purposes. When answering the

question of whom to cross-sell, typical approaches do not take the operational capacity tradeoff

into account. Instead, marketing managers select cross-selling targets using data on individual

customer characteristics. Cross-selling policies are either individual based, where targeting is done

at the individual level, or segment-based, where targeting is done at the group level. Segments are

formed by aggregating customers in homogeneous groups according to their cross-sell potentials.

For example based on demographic, past purchase, and psychographic information a probability of

purchase is estimated for each customer. This is then coupled with likely purchase volume and profit

margin or revenue information to lead to a customer profitability or revenue potential estimate.

In marketing terminology, these estimates, when applied to the entire customer base, constitute a

scoring system. In our model, the random revenue potential ρ, which can be a continuous, discrete

or mixed random variable, can be thought of as the score of each individual customer.

In some marketing settings, the decision of whom to cross-sell is made at the individual level,

based on an individual’s score ρ. If this is the case, the cross-selling policy that emerges would

identify a threshold such that whenever an individual’s ρ is above this threshold the decision will
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be to sell. All individuals scoring above the threshold would be deemed good-to-sell. We model

this case by assuming that customers’ random revenues are coming from one population with a

distribution F . We do not have any specific assumptions on the distribution F , however we assume

that the random revenues, ρ, have a maximum value of ρ̄ < ∞ as well as a minimum of ρ ≥ 0.

These assumptions are realistic, since rewards gained by selling new products are always finite,

and whenever there is a negative reward associated with a possible cross-sell, the server will always

choose not to attempt the cross-sell. The cross-selling policies we consider in our control problem

will be similarly individual-based, however the threshold will be dynamic since it depends on the

operational state of the system.

In other settings, marketing managers will prefer establishing cross-sell decisions for entire

groups of customers. Segment-based cross-selling policies will emerge where customers are grouped

into good-to-sell (s = G) and bad-to-sell (s = B) categories. Whenever a customer is identified

as type-G a cross-sell will be attempted. In typical practice, these policies are formed from a

value perspective, disregarding the ties to the operational aspect. To establish the link between

the optimal dynamic policies and segment-based policies, we next consider how the two-segment

setting can be represented in our model. Customers of segment s generate a revenue ρs, which

follows a probability distribution Fs. We do not have any specific assumptions on the distributions

Fs, except for 0 ≤ ρ
s
≤ ρs ≤ ρ̄s < ∞.

We consider two possible scenarios for the segmentation, a discrete and an overlapping one as

shown in Figure 1. The segments are characterized in terms of their upper and lower bounds on

the ρ scores.

• Scenario 1: ρ
B
≤ ρ̄B ≤ ρ

G
≤ ρ̄G

• Scenario 2: ρ
B
≤ ρ

G
< ρ̄B ≤ ρ̄G
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ρΒ ρG ρG
ρΒ ρΒ ρG ρGρΒ

Scenario 1 Scenario 2

Figure 1: Two possible segmentation scenarios

Segments are formed using statistical procedures that take data on certain customer charac-

teristics as input and group customers based on these. Scenario 1 represents a case where the

procedure clearly distinguished between two groups of customers in terms of their cross-selling po-

tential, placing them in non-overlapping segments. Scenario 2 represents the more realistic case.

The overlap can be thought of as the type one and type two errors of this statistical procedure. We

will show later that optimal dynamic cross-selling policies may or may not be the same as these

segment-based policies that aim to cross-sell to all customers of type-G.

2.2 Marketing Automation

As stated in the Introduction, we consider call centers with different estimation capabilities. One

where the revenue potential is estimated individually for each customer in real-time and another

where only historical averages for the customer base or for a particular segment are estimated.

The system we have described so far will be referred to as the model with revenue realizations

due to the underlying assumption about the possibility to estimate the revenue potential of a

customer at the time of the decision: In this case, it is assumed that a server can observe the

realization of the random revenue ρ before taking the decision to cross-sell or not. The model with

revenue realizations represents the case of a call center where marketing and technology support
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is such that as soon as a customer call arrives, the system is capable of identifying the customer

and displaying its revenue potential. This represents a setting with software that has real-time

automation capability as described in Section 1. However, it is also possible that the server takes a

decision based on historical segment analysis and then the revenue realization is observed at service

completion. As we argue below, this model, which we label as the model with expected revenues, is

a special case of the model with revenue realizations. In such a setting, managers look at historical

data, segment customers and then just use the average for the segment each time a member of

this segment is served. How much revenue is eventually realized from a particular customer will be

determined at call completion.

When the revenue potentials cannot be estimated for individual customers, all customers of a

class will bring the same expected reward. Since the aim of our model is to maximize the total

expected reward, the optimal decision will be a result of comparing the expected reward of a class

with the additional load that the system will observe due to cross-selling. Then, the model with

expected revenues becomes a special case of the model with random revenues: in the segmented

case, we set ρ
s

= ρ̄s = r̃s = E(ρs) for s = G,B, while we have ρ = ρ̄ = r̃ = E(ρ) when all customers

constitute one population.

2.3 The Discrete Time Model of the System

In this section, we present a discrete time Markov decision process (MDP) for the system with

a segmented customer base. The corresponding formulation for a single revenue distribution is

straightforward and is omitted. Customers of segment s arrive to the system according to a Poisson

process with rate λs, and the rewards by successive customers from class s are i.i.d. random variables

with probability distribution function Fs.

Our objective is to maximize total expected discounted returns over a finite time horizon with a
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discount rate β. We define x1 and x2 as the number of cross-sell calls and the number of service calls

in the system, respectively. The system changes its state at service completions and at arrivals to

a system with idle server(s). Because the decision to attempt a cross-sell depends on the customer

revenue potential, the state at arrival instants is defined as (x; s, ρs) = (x1, x2; s, ρs). At all other

times the state information is described by x = (x1, x2).

We interpret discounting as exponential failures with rate β (for the equivalence of discounting

and an exponential deadline, see e.g., Walrand, 1988). We use uniformization and normalization

to build a discrete time equivalent of the original system by assuming λG + λB + cµ + β = 1, so

that the system will be observed at exponentially distributed intervals with mean 1. There will be

an arrival with probability λG + λB, a real service completion due to a standard service call occurs

with probability x2µ and due to a cross-sell call with probability x1µ1, while a fictitious service

completion occurs with probability cµ− x2µ− x1µ1.

We next develop the optimality equations for the transformed system over a finite horizon. Let

un(x) and vn(x; s, ρs) be the maximal expected reward, starting in state x and (x; s, ρs), respectively,

until n transitions occur. Upon a call arrival, if all servers are busy, then the call has to be rejected.

Otherwise, computing vn(x; s, ρs) requires comparison of two actions: cross-selling the incoming

class-s call to move to state x+ e1 with a reward of ρs + r, and giving the standard service to enter

state x+e2 with a reward of r, where ej is the two-dimensional unit vector with the jth component

equal to 1. The optimality equations of this model are as follows. For x1 + x2 < c:

vn(x; s, ρs) = max{ρs + r + un(x + e1), r + un(x + e2)} (1)

un+1(x) = λGE[vn(x; G, ρG)] + λBE[vn(x; B, ρB)] + x2µun(x− e2) +

x1µ1un(x− e1) + (cµ− x2µ− x1µ1)un(x), (2)

where we set un(−1, x2) = un(0, x2), un(x1,−1) = un(x1, 0), and E[h(x; s, ρs)] denotes expectation
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with respect to the probability distribution Fs. We keep the state as (x; s, ρs) to prevent any

misunderstandings with regard to the expectation E[vn(x; s, ρs)] in equation (2). For x1 + x2 = c,

no calls can be accepted so that vn(x; s, ρs) = un(x). We assume that ties in equation (1) are

broken by selecting pure service.

We prove certain properties of an optimal policy under the objective of maximizing total ex-

pected β-discounted reward for a finite number of transitions, n. The state space of the model is

compact, while the action space in each state is finite. Also, we have E(ρs) < ∞, so that the optimal

value functions are bounded. These properties, used with the corresponding results of Hernandez-

Lerma and Lasserre (1999), ensure that optimal policies under the expected β-discounted reward

over an infinite horizon and/or under the long-run average criterion (when β → 0) inherit the

structural properties of optimal policies operating with finite n. We refer to the technical report

Örmeci and Akşin (2004) for the details.

3 Being Preferred: Definitions, Results, Implications

Preferred calls are those that always generate a cross-sell attempt. A class is called preferred

if all calls of that type always generate a cross-sell attempt. In this section, we aim to derive

sufficient conditions for having preferred calls and classes. While it is possible to derive several

such conditions, we only present one which is both general and provides intuition, thereby forming

the basis of our heuristic. A full set including some weaker conditions, as well as all the proofs can

be found in the Appendix.

We first specify all possible cross-selling policies in terms of being preferred in the settings with

single and two revenue distributions. For a single revenue distribution, the optimal cross-selling

policy may be completely dynamic with no preferred calls, or it may select some preferred calls or

13



it may decide to cross-sell to all calls. For the segmented case with two revenue distributions, we

have different kinds of policies for Scenarios 1 and 2, which are described below. Given our interest

in preferred calls and classes, we will not consider Policy O any further.

Policy O Cross-sell dynamically (no preferred calls)

Policy I Cross-sell attempt to chosen calls of segment G only

Policy II Cross-sell attempt to segment G only

Policy III Cross-sell attempt to segment G and chosen calls of segment B

Policy IV Cross-sell attempt to chosen calls of segment G and B

Policy V Cross-sell attempt to everyone

Our starting point to derive sufficient conditions is equation (1). We observe that it is optimal

to cross-sell in a state (x; s, ρs) if and only if un(x + e2)− un(x + e1) < ρs, since we choose “pure

service” when both actions are optimal. Now, we let Dn(21)(x) = un(x+e2)−un(x+e1). Dn(21)(x)

has a number of interpretations, and will play a key role in our derivation. First of all, Dn(21)(x)

is a threshold on the random revenues, so that it is optimal to attempt a cross-sell in state (x; s, ρs)

if and only if the reward ρs exceeds the threshold Dn(21)(x). Moreover, Dn(21)(x) is equal to

the relative benefit of starting in state x + e2 versus x + e1, with a horizon of n transitions. Note

that the overall speed of service in state x + e2 is higher than that in state x + e1. Hence, we can

interpret Dn(21)(x) as the loss in future rewards because of the increased load due to the slow

service. Now, we can define being preferred in terms of Dn(21)(x): A call with a reward of ρ is said

to be preferred if Dn(21)(x) < ρ for all x. If all calls of class s are preferred, i.e., if Dn(21)(x) < ρs

for all ρs and for all x, then class s is called preferred.
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3.1 Structural Results on Preferred Calls and Classes

The main duty of the call center we consider is to answer regular service calls to obtain a fixed

reward of r. The call center cannot fulfill this duty if all servers are busy. On the other hand, cross-

sell decisions increase the total load of the call center, which, in turn, increases the probability

of having all servers busy. Hence, in cross-sell decisions comparison of the fixed reward r with

the random reward ρ plays an important role. However, this is not the only aspect. A cross-sell

decision for the current call affects the potential cross-sell decision for a future call, which requires

a comparison of the random reward offered now with the random reward to be offered in the

future. These two comparisons together will determine the sufficient conditions for the existence

of preferred calls/classes. We specify these conditions by deriving upper bounds on the relative

benefits Dn(21)(x).

The main result of this section identifies an explicit threshold on the cross-sell revenues, which

applies to both settings having single revenue and two revenue distributions with the following

convention: In the former case, calls arrive according to a Poisson process with rate λ, and revenues

have a maximum of ρ̄, while in the latter, we set λ = λG + λB and ρ̄ = ρ̄G.

Proposition 1 All calls bringing at least a reward of ζ are preferred, where

ζ =
λ

λ + µ1 + β

µ− µ1

µ + β
(ρ̄ + r).

Essentially, Proposition 1 compares the cross-sell revenue of a current call with the potential

maximum revenue that can be obtained from a cross-sell call, ρ̄ + r, by explicitly specifying a

threshold on the cross-sell revenues, ζ. For all ρ > ζ, it is always optimal to cross-sell, regardless

of the system state. In other words, these calls are preferred. When ρ < ζ, there may be preferred

calls with ρ < ζ but we cannot detect them. For the single distribution case, these observations

characterize all possible policies for being preferred. In the two-segment setting, on the other hand,
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the implication of Proposition 1 is different for each objective function, each scenario and each

specific value of ζ. For the model with expected revenues, we have ρ̄s = ρ
s

= r̃s. Then:

(a) If ζ < r̃G, class-G is preferred,

(b) If ζ < r̃B, both class-G and class-B are preferred.

For the model with random revenue realizations, in Scenario 1:

(a) If ζ < ρ̄G, there are preferred class-G calls,

(b) If ζ < ρ
G
, class-G is preferred,

(c) If ζ < ρ̄B, class-G is preferred, and there are preferred class-B calls,

(d) If ζ < ρ
B

, both class-G and class-B are preferred.

and in Scenario 2:

(a) If ζ < ρ̄G, there are preferred class-G calls,

(b) If ζ < ρ̄B, there are preferred class-G and preferred class-B calls,

(c) If ζ < ρ
G
, class-G is preferred, and there are preferred class-B calls,

(d) If ζ < ρ
B

, both class-G and class-B are preferred.

Now, we identify systems with more preferred calls. The threshold decreases when the total

arrival rate (λ), the highest possible cross-sell revenue (ρ̄), the base service revenue (r) and the

service rate difference due to cross-selling (k = µ−µ1) decrease, in fact even when only the regular

service rate (µ) decreases or only the cross-sell service rate µ1 increases. Since the arrival rates in

call centers are usually high, the first term of the threshold ζ will be very close to 1. Therefore,

being preferred mostly depends on the service time and revenue characteristics of the calls. In

words, preferred calls exist more easily in environments where service calls and cross-sell calls are

relatively similar, the cross-sell revenues are relatively close and the base service revenue r is small.

Finally, we note that the threshold is independent of the revenue distribution and only depends on

the lower and upper bounds of each segment’s revenues.
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Identifying preferred calls is useful since these are calls to whom we would attempt to cross-sell

irrespective of the system state. Policies like Policy II and V correspond to common practices:

sell to everyone in a particular segment or to all customers. Policies I and III where only part

of a segment is cross-sold are possible even in the case when discrete segments can be formed. If

the initial segmentation is overlapping, then sufficient conditions for a policy of cross-selling to

chosen calls from both segments can be stated. This suggests that when the operational aspects

of the cross-selling problem are explicitly accounted for, revenue potential based policies used in

marketing will not necessarily overlap with the optimal cross-selling policy. Thus Policies I, III

and IV suggest that the segment definitions do not correspond to the optimal dynamic policies.

If managers want to develop static segment-based cross-selling policies that are also close to the

dynamically optimal policies, they can use these structural results to redefine their segments, by

shifting the upper and lower bounds of the revenues in the desired direction.

3.2 A Heuristic for Cross-Selling

In this section, we use the expression for the threshold ζ, to construct a heuristic which provides

static policies that exploit the structure of the problem. The purpose of introducing this heuristic is

to propose an easily implementable control policy, and to improve the information quality provided

by the structural results.

Since we would like to develop a heuristic that is independent of arrival rates, we concentrate

on the second term of the threshold ζ, which we describe as a function

α1(t) =
µ− µ1

µ + β
(t + r).

Recall that t = ρ̄ in ζ, and Proposition 1 compares a current cross-sell revenue with the maximum

possible revenue, ρ̄ + r. Our aim is to replace this benchmark with a more attainable revenue. For

this purpose, we define a new quantity E(R) = E(ρ|ρ > R), so that E(R) is the expected reward
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that we can gain from cross-selling a future customer who offers a revenue of more than R, the

current revenue. The current revenue, R, is compared with α1(E(R)), the “expected future gain”

when we choose to provide only service to the current customer, and choose to cross-sell a future

customer only if s/he offers a revenue of R′ with R′ > R. Then, the heuristic decides to cross-sell

the current customer only if R > α1(E(R)). This heuristic can be implemented in settings with

more than two customer segments, since the definition of E(R) does not depend on the segments.

Moreover, it is in general possible to solve the equation R = α1(E(R)) for R, where we refer to

its solution as R∗. Then, the heuristic cross-sells only if the random revenue of an incoming call ρ

satisfies ρ > R∗.

This heuristic has several attractive features from a managerial point of view. It does not make

use of the system state information, and does not depend on the value λ or c takes. The former is an

attractive property in settings where the system in place does not enable real time monitoring of the

system state. This is not an uncommon feature in many call centers. Furthermore, a cross-selling

policy which is static and only depends on call characteristics in terms of revenue and service time

is easier to motivate. The independence from call arrival rates and the number of servers is very

useful from a practical point of view since both of these quantities exhibit high uncertainty in call

center operations, as recently observed by e.g. Avramidis et al. (2004), Brown et al. (2005), Whitt

(2006). While the dynamic optimization can be done from a computational feasibility standpoint,

its dependence on these variable parameters make it less attractive in practice, motivating the use

of a heuristic. Finally, the value of R∗ can provide finer information to marketing managers when

defining the segments. We discuss the performance of the heuristic in the next section.
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4 Numerical Analysis

In this section we have several objectives. First, we would like to understand numerically the

difference between the model with expected revenues and the model with revenue realizations. This

comparison will provide an assessment of the value of real-time marketing automation. Second, the

numerical analysis will illustrate when dynamic cross-selling will be valuable. Subsequently, we will

explore the effectiveness of the heuristic. By comparing the heuristic, which makes explicit use of

the revenue distribution but not the state of the system, to the model with expected revenues which

uses state information but not the revenue distribution, we will analyze under what conditions the

different types of information are useful. Using a different set of examples, we will then analyze

the interaction between cross-selling and staffing. At the end, the effectiveness of the heuristic will

be assessed numerically for finite-buffer systems.

We have developed a set of test problems, all of which are solved to maximize the long-run

average revenue, i.e., we set β = 0. In these problems, we vary base service call lengths (µ), cross-

sell durations (k or µ1), basic service revenues (r), the upper and lower bounds on random revenues

(ρ
B

, ρ̄B, ρ
G
, ρ̄G), the size of the call center in terms of number of servers (c), and the load (λ/cµ)

of the call center. For the numerical analysis, we assume that both G-segment and B-segment

revenues have a uniform distribution.

Case 1 (C1) is motivated by a real retail banking call center. Using data estimated for this

center, the average length of a service call is taken as 2.7 minutes. Two organizational designs are

possible for cross-selling: either the service representative attempts a cross-sell and forwards to a

sales department if successful, or the service representative attempts a cross-sell and closes the sale

if successful. The latter is expected to take longer in terms of additional talk-time. Motivated by

these organizational design options, we form two different talk time scenarios. These are labeled
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as attempt-and-forward (f) and attempt-and-close (c) to reflect the original motivation. Increase

in talk times will be 27 % for attempt-and-forward and 220 % for attempt-and-close, again based

on estimates from this call center. Average revenue from a call with cross-selling is estimated as

75 units. We take this as the lowest value of the upper limit of G-segment revenues and consider

three values ρ̄G ∈ {75, 125, 175}. Revenues from basic service calls are taken as r = 1 to reflect

the situation that service calls generate very low revenue compared to sales in this call center.

For all our examples ρ
B

= 0, ρ̄B ∈ {0.3ρ̄G, 0.6ρ̄G, 0.9ρ̄G} and ρ
G
∈ {0.3ρ̄G, 0.6ρ̄G, 0.9ρ̄G}. These

values will result in instances with discrete and overlapping segments. We consider call centers

with c ∈ {100, 150, 200} servers. Call volumes are obtained to ensure four different loads (λ/cµ),

characterizing quality driven (0.75), quality-efficiency driven (0.9), and efficiency driven (1.05, 1.2)

centers (for precise definitions of these terms see Gans et al., 2003). The total call volume is split

in three different ways, such that λG/(λG + λB) ∈ {0.1, 0.25, 0.4}.

Case 2 (C2) is constructed taking C1 as a basis. It is assumed to represent the setting of an

insurance call center or an investment bank, where the basic service length is longer. We assume

an average service call length of 5.5 minutes, taking the instance of a major insurance call center

in the U.S. The percentage increase for attempt-and-forward and attempt-and-close are taken to be

the same as in C1. The only other difference from C1 is the assumption that basic service calls

generate more revenue, so that r = 20. The two cases result in 3888 problem instances.

The Value of Real-Time Marketing Automation: We compare the performance of the model

with expected revenues and the one with revenue realizations. Different assumptions about the

marketing automation in place at a call center led to the formulation of these two versions of the

model. A comparison of optimal revenues will quantify the value of having real-time automation,

as is assumed for the revenue realizations case. In the numerical examples, we set r̃G and r̃B to the

mean revenue of the corresponding revenue distributions. Table 1 displays the averages for each
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call volume split and overall range of the ratio of the optimal gain from the model with expected

revenues to the optimal gain in the model with revenue realization.

Scenario 1 Scenario 2

f: 0.1,0.25,0.4 c: 0.1,0.25,0.4 f: 0.1,0.25,0.4 c: 0.1,0.25,0.4

C1
avg. %

range %

99,99,99

98-100

85,93,97

81-100

99,99,99

99-100

87,88,90

86-90

C2
avg. %

range %

98,98,99

97-100

95,98,99

81-100

99,99,99

98-100

86,90,93

81-98

Table 1: Ratio of the optimal gain with expected revenues to that with revenue realizations

We observe that the difference in revenues between the two models ranges from less than one

percent to nineteen percent. The biggest value from real-time automation is observed in the C1:c

and C2:c cases. For these cases, the optimal policy under the model with expected revenues is

mostly to sell to everyone, or to good segment calls only whereas the model with random revenues

sells more selectively. Similarly, in Scenario 2, r̃G and r̃B take closer values, thus making it harder

for the model with expected revenues to be selective. On the other hand, for the cases with attempt-

and-forward type sales organizations, the optimal policy under revenue realizations sells to all G

customers and a big proportion of the B customers, thus approaching the selling-to-all policy

observed in the expected revenues model. Thus, in these cases the value of revenue realizations is

minimal. Finally, we note that the volume split between G-segment and B-segment customers has

an impact, as demonstrated by the three averages in each case. The model with expected revenues

performs better for higher proportions of G-segment calls. As the two segment’s volumes approach

each other there is less need for selective selling, which once again helps the model with expected

revenues.

The Value of Dynamic Cross-Selling: In order to understand what type of environments lead

to more dynamic policies, we compare the difference between the maximum and minimum values
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Figure 2: Highest threshold ranges observed in problems with shading

that D(21)(x) takes. Problem instances where this difference, or threshold range, is larger, are

labeled as more dynamic. The first set of comparisons are made between C1:f, C1:c, and C2:f,

C2:c. Comparisons are made such that all other parameters are the same. As expected, all test

instances demonstrate that longer talk times and longer cross-selling content lead to more dynamic

policies. Ordered from least to most dynamic, one has (C1:f, C1:c, C2:c) and (C1:f, C2:f, C2:c).

We next explore the role that call center load and size play on the dynamic nature of optimal

policies. All else being equal, we compare the threshold range for four different loads and three call

center sizes. Figure 2 shows the most dynamic instances displayed by call center type. Both for

C1:f and C2:f the most dynamic policies are observed for the quality-efficiency regime represented

by a load of 90%, and by a large-sized call center represented by 200 servers. In these examples, if

the load is set to 75 %, then within the policies with this load those for medium-sized centers with

150 servers are slightly more dynamic than those with 200 servers. It seems the extra slack created

by a low load coupled with a large number of servers makes policies less dynamic in this case. For

C1:c and C2:c the pattern shifts such that a quality regime represented by a load of 75 % and the

largest size with 200 servers lead to the most dynamic policies. The examples demonstrate how

the organizational design for cross-selling, and capacity choice impact the dynamic nature of the

underlying problem.

22



The effect of the different cross-selling revenue bounds (ρ̄B, ρ
G
, ρ̄G) on the resulting policies

are established via pairwise comparisons of the threshold range within each segmentation scheme

(Scenario 1: discrete, Scenario 2: overlapping). The pairwise comparisons are made such that

either the G-segment or the B-segment revenue bounds are the same in each pair and the effects

of changes in the other segment are explored. The impacts of narrower segment-G revenues, and

wider segment-B revenues (more overlapping segment-B revenues in the case of Scenario 2) are

analyzed. We observe that for most problem instances, narrower G-segment revenues and wider or

more overlapping B-segment revenues lead to more dynamic policies. This effect is less pronounced

in C2:c (and to some extent C1:c), which represents call center environments with long base talk

times and long cross-sell durations. The volume difference between the two segments also makes

an impact: as the G-segment volume proportion decreases from 0.4 to 0.1, the stated properties

hold for a higher percentage of instances. In other words, as the G-segment becomes more distinct,

both in revenue terms and in volume, observed policies tend to be more dynamic.

We have characterized instances that lead to more dynamic policies. To summarize, these are

call centers where talk times are long and the cross-selling portion of calls is significant; capacity

is designed such that the number of servers is large and the centers operate in quality or quality-

efficiency regimes; and there is a premium good segment.

Performance of the Heuristic: We next implement the heuristic described in Section 3.2.

Table 2 reports averages and the overall range of the ratio of the gain obtained with this heuristic

to the optimal gain. The heuristic approaches optimal performance on the average consistently

across all operating environments considered. Still we need to address its worst case behavior in

C1:c under Scenario 1. In this case, all systems with performances less than 70% have a wide range

of (ρ
G
, ρ̄G) with ρ̄B = ρ

G
, and λG/(λG + λB) = 0.1. We have a total of 36 such incidences out of

216 in C1:c under Scenario 1. When the call volume of the G-segment is low, and the segments
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are close to each other with a large range, our heuristic becomes very conservative with a high

threshold, and so does not perform as well. However, these incidences occur rarely, in 36 out of

3888 instances.

Scenario 1 Scenario 2

f: 0.1,0.25,0.4 c: 0.1,0.25,0.4 f: 0.1,0.25,0.4 c: 0.1,0.25,0.4

C1
avg. %

range %

100,100,100

98-100

85,95,98

55-100

100,100,100

99-100

97,98,98

96-100

C2
avg. %

range %

100,99,99

96-100

95,98,98

76-100

100,100,100

99-100

95,96,97

75-99

Table 2: Ratio of the gain with the heuristic to the optimal gain

Value of state versus revenue distribution information: The heuristic explicitly uses the

probability distributions of the random revenues along with the service rates, while completely

ignoring the current state of the system. On the other hand, the model with expected revenues

uses the information about the current state of the system, while it has no reference to the random

revenue distributions. Hence, comparing their performances may show the value of these two kinds

of information. The average performance of the heuristic is almost always superior, where the most

significant improvements are observed under Scenario 2 in C1:c and C2:c. In terms of the worst

case behavior, the expected revenue model generally performs better, with an exception in C1:c

under Scenario 2, and with the most notable case in C1:c under Scenario 1, since 56 out of 216

incidences are below 81% (the worst case of the expected revenue model). As a result, there is

no overall winner, and we can conclude that as long as one of the valuable information kinds, the

current state of the system or the probability distributions of the revenues, is used effectively, the

system will perform very closely to an optimal one. If a single type of information were available,

then in our examples, using the state information is more beneficial in the C1:c and C2:c cases of

Scenario 1. All other cases are better off relying on the revenue distribution information. From an
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implementation standpoint, the heuristic has an advantage over the model with expected revenues,

by not requiring information on the current arrival rate and the current number of servers.

Interaction with staffing: In our analysis so far, we have taken examples with a given number

of servers and specified utilization rates. In order to explore the interaction between cross-selling

and staffing, we consider another set of examples where we keep the same utilization rates for given

arrival rates and vary the number of servers. We consider the settings where the state information

is more valuable, i.e. those with long additional cross-selling times and discrete segments, to be

those where staffing would be most valuable. Thus we explore the interaction with staffing for

the service rates of C1:c and C2:c, for utilization rates of 75 %, 90 %, 105 %, and 120 %, and for

two sets of revenue distributions from before. One where additional revenues can be quite high

with ρ
B

= 0, ρ̄B = 157.5, ρ
G

= 157.5, ρ̄G = 175 and another with lower additional revenues with

ρ
B

= 0, ρ̄B = 22.5, ρ
G

= 22.5, ρ̄G = 75. Recall that for C1:c the revenue from service calls

is 1 whereas this value is 20 for C2:c. We concentrate on the settings where the proportion of

good segment calls is 0.1. For the C1:c setting, taking total arrival rate λ = 40, we compute the

number of servers as 144, 120, 102, 90 for the utilization rates (loads) 75 %, 90 %, 105 %, and 120 %

respectively. Similarly for the C2:c setting, taking total arrival rate λ = 21, we obtain the number

of servers as 154, 128, 110, 96 for the utilization rates 75 %, 90 %, 105 %, and 120 % respectively.

We compare total revenues obtained under no cross-selling and optimal cross-selling for all of these

cases in Figure 3. We observe that compared to no cross-selling, optimal cross-selling increases

revenues for a given staffing level. This benefit is higher for higher cross-sell revenue values, and

also for the cases where the service revenue is lower as in C1. As we increase the staffing level (or

decrease the utilization rate) the additional revenue benefit obtained from cross-selling vis-a-vis no

cross-selling increases. In other words, revenues show an increasing marginal returns feature for

percent reduction in utilization. As we go from a utilization rate of 120 % to 75 %, the revenue
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Figure 3: Revenue as a function of the four loads 75 % (1), 90 % (2), 105 % (3), 120 % (4) for C1:c

in (a) and C2:c in (b)

difference between the no cross-selling and the optimal cross-selling policies increases. The revenue

increase per server for C1:c can be calculated as 2.08 per server and 11.58 per server for the low

and high cross-sell revenue settings respectively, while for C2:c these values are 1.32 per server and

5.84 per server respectively.

The result demonstrates that there are operational synergies between service levels and sales

effort. If we were to add the customer service related benefits, which we do not capture in our

analysis, this effect would be even stronger. Thus in such settings, managers should staff according

to a quality regime in order to maximize the benefits obtained from cross-selling.

Heuristic performance under a finite buffer: As a final evaluation, we consider the perfor-

mance of the heuristic when applied to a queueing system with a finite buffer, as opposed to a loss

system. We are mainly concerned with the possible changes in optimal cross-selling policies.

We consider a call center with 50 servers and a buffer capacity of 15. All other parameters are

the same as before. We consider the cases with the G-segment volume proportions of 0.1 and 0.4. In

order to observe the effect of abandonment, we solve all problems with and without abandonment.

In systems with abandonment, we take the abandonment rate as 3µ. Finally, we allow two different

26



cross-selling strategies, one which is not affected by the waiting time of customers, so that it cross-

sells to all customers if it is profitable (which we call can-wait-cross-sell), and the other which

attempts to cross-sell only to customers who do not wait (which we call no-wait-cross-sell). This

gives us a set of 3456 examples. In all the problems, the performance of the heuristic is compared

to the optimal policy for the problem with queueing.

Under the can-wait-cross-sell strategy, ignoring the queue has a negligibly small effect on the

performance of the heuristic vis-a-vis the optimal gain. For brevity we do not report these results,

but note that the averages as well as ranges observed for the different settings being considered

are almost identical to those in Table 2, with differences of less than one percent. The overall

average of the heuristic to the optimal gain is 97.5 % in systems with no abandonment, while it

is 97.3 % in those with abandonment. Under no-wait-cross-sell, the performance of the heuristic

improves, yielding an average of 98.8 % in both with and without abandonment. This is due to the

limited benefit that can be obtained from optimal cross-selling when the number of customers to

be attempted is restricted. The suggested heuristic is very robust since it is performing well with

finite buffers in a number of different settings. We can conclude that the structure of an optimal

policy in a finite-waiting-room system is similar to that in a loss system, since the heuristic is based

on the structural properties of optimal policies in loss systems.

5 Concluding Remarks

This paper formulates and analyzes the first dynamic model of cross-selling in a call center with

multiple servers and random revenues. The existence of preferred calls and classes in this type of

service rate control problem is demonstrated. The resulting sufficient conditions enable structural

comparisons of optimal dynamic policies and prevailing marketing practice. The sufficient condi-

tions are also useful as a building block for a heuristic, which is shown to generate sophisticated
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static policies that result in near optimal performance both for loss and queueing systems. These

static policies are furthermore very easy to understand and implement, making them more valuable

in practice. Testing the sensitivity of these results to modeling assumptions like exponential service

times is left for future research.

Two versions of the model are analyzed: the model with random realizations and with expected

revenues. These represent the two extremes in terms of marketing automation available for cross-

selling in call centers, namely real-time automation and historical data analysis. As such, our

value comparisons between the optimal dynamic policies under these two versions of the model

also characterize the value of real-time automation vis-a-vis historical data analysis. It is shown

that in certain operating environments, the difference can be as high as nineteen percent. However,

the settings with an attempt-and-forward type sales organization are shown to lead to a small

difference, thus underlining the importance of understanding the operating environment of a call

center before investing in expensive CRM products. Considering the fact that customer reactions

to badly targeted cross-sell attempts are not included in our modeling framework, this difference

should be viewed as a lower bound on the real value.

Using the case of a real retail banking call center, an extensive set of numerical examples are

developed. These are used to characterize environments where consideration of the dynamic nature

of the problem is more important. It is shown that large call centers that operate under a quality-

efficiency or quality regime, with call and cross-selling durations that are relatively long, having

smaller differences between base service and cross-sell revenues, and where there is a premium

good segment of customers who are difficult to segment from the remaining calls, will benefit more

from dynamic optimization of their cross-selling policies. Additional analysis that explores the

link between cross-selling and staffing demonstrates that there are increasing marginal returns to

revenues as a function of utilization. This provides support for a recommendation to improve
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service concurrently with sales efforts in call centers, if revenue generation is to be maximized. As

a caveat, it should be mentioned that the value of dynamic optimization demonstrated through

our numerical examples should be viewed as an upper bound on the real value today, since exact

estimation of revenue realizations at the beginning of a call represents an idealized view of the

current state-of-the-art.

Finally, it is possible to show the optimality of threshold-type policies for this cross-selling

problem, when concavity of the value functions un in x1 are assumed. This result can be found in

the technical report Örmeci and Akşin (2004). Concavity of value functions even in simpler systems

cannot be shown, see Örmeci et al. (2002), although no example of such systems is reported that

violated concavity. In the 3888 example test suite that we consider herein, we have similarly not

observed a single value function which is not concave.
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