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a b s t r a c t 

We propose a framework for joint analysis of speech prosody and arm motion towards automatic syn- 

thesis and realistic animation of beat gestures from speech prosody and rhythm. In the analysis stage, 

we first segment motion capture data and speech audio into gesture phrases and prosodic units via tem- 

poral clustering, and assign a class label to each resulting gesture phrase and prosodic unit. We then 

train a discrete hidden semi-Markov model (HSMM) over the segmented data, where gesture labels are 

hidden states with duration statistics and frame-level prosody labels are observations. The HSMM struc- 

ture allows us to effectively map sequences of shorter duration prosodic units to longer duration ges- 

ture phrases. In the analysis stage, we also construct a gesture pool consisting of gesture phrases seg- 

mented from the available dataset, where each gesture phrase is associated with a class label and speech 

rhythm representation. In the synthesis stage, we use a modified Viterbi algorithm with a duration model, 

that decodes the optimal gesture label sequence with duration information over the HSMM, given a se- 

quence of prosody labels. In the animation stage, the synthesized gesture label sequence with duration 

and speech rhythm information is mapped into a motion sequence by using a multiple objective unit 

selection algorithm. Our framework is tested using two multimodal datasets in speaker-dependent and 

independent settings. The resulting motion sequence when accompanied with the speech input yields 

natural-looking and plausible animations. We use objective evaluations to set parameters of the proposed 

prosody-driven gesture animation system, and subjective evaluations to assess quality of the resulting 

animations. The conducted subjective evaluations show that the difference between the proposed HSMM 

based synthesis and the motion capture synthesis is not statistically significant. Furthermore, the pro- 

posed HSMM based synthesis is evaluated significantly better than a baseline synthesis which animates 

random gestures based on only joint angle continuity. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Gesticulation is an essential component of human commu-

ication. Speech and gestures form a composite communicative

ignal that boosts the naturalness and affectiveness of the

ommunication. Although virtual environment designs in the

uman-computer interaction (HCI) field are increasingly adopting

nd emphasizing the human-centered aspect, a natural, affec-

ive and believable gesticulation is often missing in the virtual

haracter animations. In this context, automatic synthesis of ges-

iculation in synchrony with speech, which incorporates nonverbal

ommunication components into virtual character animation, can

elp improving the plausibility of animations and can find a wide

ange of applications in human-centered HCI, video gaming and
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lm industries. In this paper, we develop a multimodal system for

peech-driven synthesis and animation of arm gestures using a

tatistical framework for joint analysis of speech and gesticulation.

Gesture and speech co-exist in time with a tight synchrony;

hey are planned and shaped by the cognitive state and produced

ogether. In one of the pioneering studies on gesture and speech

elationship, Kendon (1980) proposed a widely accepted hierarchi-

al model for gesture in terms of phases, phrases and units. In this

odel, the core gestural element is defined as gesture phase. Ges-

ure phases can be active or passive. An active gesture phase can

e a stroke (a short and dynamic peak movement) with a retrac-

ion or a preparation (in which arm goes to the start position of

he stroke phase). Passive gesture phases are movements like hold

nd rest, in which arm stays motionless. Combinations of phases

onstitute gesture phrases, and then combinations of phrases form

esture units. In this hierarchical model, semantic expressive-

ess increases with the level of hierarchy. In other words, ges-

ure units are semantically more expressive than gesture phrases,

http://dx.doi.org/10.1016/j.specom.2016.10.004
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and gesture phrases include more semantic content than gesture

phases. 

Synchrony between gestural and phonological structures has

previously been studied by various researchers ( Wagner et al.,

2014 ). Kendon (1980) pointed out the synchrony between strokes

and stressed syllables. Later McNeill (1992) proposed the widely

accepted phonological synchrony rule: the stroke of the gesture

precedes or ends at, but does not follow, the phonological peak

syllable of speech. Valbonesi et al. (2002) investigated the nature

of temporal relationship between speech and gestures. In a recent

study, Loehr (2012) presented a detailed investigation of temporal

and structural synchrony between intonation and gesture. His find-

ings verify the alignment of pitch accents with gestural strokes as

well as the synchrony between gesture phrases and intermediate

intonation phrases. 

There are four widely referred types of gestures, which were

proposed by McNeill (1992) : iconics, metaphorics, deictics and

beats. Iconic gestures illustrate images of objects or actions,

metaphoric gestures represent abstract ideas, deictic gestures rela-

tively locate entities in physical space, and beat gestures are simple

repetitive movements to emphasize speech. In a later study, based

on the Tuite’s proposal ( Tuite, 1993 ) that in every gesture there

is a rhythmical beat-like pulse to carry significance beyond its

immediate setting, McNeill (2006) suggested taking metaphoric-

ity, iconicity, deixis, and emphasis as dimensions of gesture rather

than types of gesture. 

Although there seems to exist strong correlation between ges-

tures and speech, there are several challenges and difficulties in-

volved in modeling this relationship. The first challenge is due to

the diversity of gestures related to speech semantic content. Iconic,

metaphoric and deictic gestures belong to this category which are

mainly related to semantic content. In this work, we exclude mod-

eling these gestures and rather focus on modeling beat gestures

in relation to speech prosody and rhythm. There are yet two main

challenges in achieving this goal. The first is due to the difficulty

in mapping local prosody information to relatively longer duration

semantic gestures, e.g., gesture phrases. The second challenge is

actually a temporal alignment problem: prosodic cues and corre-

sponding gestures do not always co-occur at exactly the same time

instant, and there may indeed be a lagged correlation in between.

In this paper, to address the above challenges, we model the rela-

tionship between longer duration gesture phrases and shorter du-

ration prosodic units using hidden semi-Markov models (HSMM),

and attain an effective modeling and control of gesture durations

for analysis and synthesis. In order to synthesize beat gesture se-

quences with optimal gesture durations, we employ Viterbi de-

coding over an HSMM structure with prosody observations. In the

animation stage, synthesized gesture sequence with duration and

speech rhythm information is mapped into body motion sequences

by using a multiple objective unit selection algorithm. 

1.1. Related work 

Speech-driven gesture animation methods in the literature can

be categorized by the type of input that they accept, such as tex-

tual or spoken. Text-driven methods target to generate and ani-

mate body gestures from a tagged text input ( Cassell et al., 1994;

20 01; Kopp and Wachsmuth, 20 04; Marsella et al., 2013; Neff

et al., 2008; Noma et al., 20 0 0; Pelachaud, 2005; Reithinger et al.,

20 06; Stone et al., 20 04 ). In this category, the Embodied Conversa-

tional Agents (ECAs) of Cassell et al. (1994) is a pioneering rule-

based dialog system which can animate conversations between

human-like agents with appropriate and synchronized speech, in-

tonation, facial expressions, and hand gestures. In this system, the

mapping from text to gestures is contained in a set of rules de-

rived from nonverbal conversational behavior research, and ges-
ures also collected in a pre-defined gesture dictionary. The Be-

avior Expression Animation Toolkit (BEAT) ( Cassell et al., 2001 )

an be thought of as a more complex version of the gesture gen-

ration system proposed in Cassell et al. (1994) , which uses lin-

uistic and contextual information contained in the speech text

o control movements of the hands, arms and face, and intona-

ion of the voice. Another example to text-driven methods is the

irtual Human Presenter of Noma et al. (20 0 0) , which generates

estures using keyword triggered rules. More recent works such

s VirtualHuman ( Reithinger et al., 2006 ) and multimodal expres-

ive ECAs ( Pelachaud, 2005 ) aim to develop interactive virtual char-

cters with personality profiles and full-body gesture animation

y taking into account characters’ affective states. Marsella et al.

2013) consider agitation level and word stress of sentence audio

o drive their rule-based character animation system that generates

estures including facial expressions, hand motion, head move-

ents, eye saccades, blinks and gazes. In contrast to the rule-

ased methods mentioned above, two related methods Stone et al.

2004) and Neff et al. (2008) follow a data-driven approach to gen-

rate gesticulation of a particular speaker from speech text. Stone

t al. (2004) use motion graphs to rearrange pre-recorded audio

nd motion segments, whereas Neff et al. (2008) develop a prob-

bilistic framework to learn an abstract statistical model for the

esticulation of a speaker from annotated audiovisual data. 

While text-driven gesture animation methods mostly focus on

odeling metaphoric, deictic and iconic gestures, audio-driven

ethods are generally more suited to modeling beat gestures

ased on prosodic and intonational cues existing in speech sig-

al. Yet there exist relatively very few works in the literature for

eat gesture animation including arm movements driven by speech

udio such as Fernandez-Baena et al. (2013) ; Levine et al. (2010) .

evine et al. (2010) introduce gesture controllers, availing a mod-

lar methodology to drive beat-like gestures with live speech via

ustomized gesture repertoires. Gesture controllers infer hidden

tates from speech using a conditional random field that analyzes

coustic features in the input and select the optimal gesture kine-

atics based on the inferred states. From a hierarchical perspec-

ive, the work of Levine et al. (2010) is mainly concentrated on the

esture phase level, whereas in a more recent study, Fernandez-

aena et al. (2013) present a framework that links speech prosody

o beat gestures at phrase level based on manually annotated body

otion and speech signals. They basically employ motion graphs

o generate appropriate gestures with varying emphasis for a given

peech input by modeling aggressive and neutral performances. 

Early works on audio-driven virtual character animation have

ostly been concentrated on lip synchronization on which there

xists currently a vast and quite mature literature ( Bregler et al.,

997; Chen and Rao, 1998 ). Lip synchronization is basically for-

ulated as a mapping from phonemes to visemes for which the

tate of the art methods commonly employ hidden Markov mod-

ls ( Li and Shum, 2006; Xue et al., 2006 ). Since facial motion

s usually dominated by lip movements during speech, animation

f facial expressions have so far received relatively less attention.

hough there have been several attempts that address this chal-

enging problem ( Albrecht et al., 2002; Chuang and Bregler, 2005;

ong et al., 2002 ). In particular, Chuang and Bregler (2005) de-

cribe a method for creating expressive facial animation based on

 statistical model learned from video for factoring the expression

nd lip speech. They also integrate head motion synthesis to their

ace animation scheme by first building a database of examples

hich relate audio pitch to motion and then matching new au-

io streams against segments in this database. The head motion

ynthesis problem, which is very crucial for generation of believ-

ble face animations, has been addressed in the recent literature.

usso and Narayanan (2007) present an approach to synthesize

motional head motion sequences driven by prosodic features, that
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uilds hidden Markov models for emotion categories to model the

emporal dynamics of emotional head motion sequences. Sargin

t al. (2008) propose a two-stage framework for joint analysis of

ead gesture and speech prosody patterns of a speaker towards au-

omatic realistic synthesis of head gestures from speech prosody.

n a more recent paper Mariooryad and Busso (2012) focuses on

uilding a speech-driven facial animation framework to generate

atural head and eyebrow motions using dynamic Bayesian net-

orks (DBNs). 

In this work, we employ hidden semi-Markov models (HSMM)

or multimodal analysis of gestures and prosody. The HSMM was

rst introduced by Ferguson (1980) as explicit duration hidden

arkov models. The main intuition behind the HSMM idea is to

xtend hidden Markov models to processes where states have du-

ations and thus emit a number of observations instead of a sin-

le one. This assumes that the underlying process is Markovian in

ertain jumps. Moreover, the state duration is allowed to follow a

robabilistic distribution. 

In a natural speaking style, beat gestures are articulated in

ynchrony with prosody and rhythm to emphasize the underlying

peech ( Loehr, 2012; McNeill, 1992; Valbonesi et al., 2002 ). In this

ork, we construct a multimodal analysis framework to model the

elationship between beat gestures, speech prosody and rhythm.

tudies in diverse research areas suggest that human audio-visual

ommunication is significantly rhythmic in nature, for example, in

he way how spoken syllables and words are grouped together in

ime as in speech rhythm ( Bolt, 1980; Ladd, 1996; Liberman, 1975 )

r how they are accompanied by body movements as in beat ges-

ures ( Bos et al., 1994; Tuite, 1993 ). 

In practice it is difficult to interpret the notion of rhythm for

peech. A large variety of measures have been proposed to charac-

erize speech rhythm, which are mainly based on the durational

haracteristics of consonantal and vocalic intervals; for example,

he percentage over which speech is vocalic ( Ramus et al., 1999 ),

he average durational difference between consecutive consonantal

r vocalic intervals in an utterance, which is defined as the Pair-

ise Variability Index ( Grabe and Low, 2002 ). Speech rhythm stud-

es using these measures usually focus on the taxonomy of lan-

uages as stress-timed and syllable-timed languages ( Gibbon and

ut, 2001; Grabe and Low, 2002; Loukina et al., 2011; Ramus et al.,

999 ). 

In addition to the time-domain representations that we have

iscussed above, there exist also frequency domain representations

f speech rhythm. Dynamic information extracted both at local

nd global level from frequency domain representation of speech

hythm has been used for assessment of emotion ( Ringeval et al.,

012 ). In this study, we compile a dictionary of speech rhythm rep-

esentations per gesture category to define a relational model be-

ween rhythmic similarities of speech and gesture modalities. We

se the low-frequency Fourier analysis of speech rhythm as intro-

uced by Tilsen and Johnson (2008) to investigate the relationship

etween speech rhythmicity and vowel, consonant deletions on the

uckeye corpus. 

.2. Contributions 

Our primary contribution in this paper is the HSMM based ges-

ure model that we use to capture the relationship between ges-

ures and speech prosody. In this model, gestures are hidden states

ith duration distributions, hence each gesture instance spans a

andom number of observations (prosodic units). The benefit of

his model is two-fold. First, it allows us to effectively map shorter

uration prosodic units to longer duration gestures, hence we can

ynthesize semantically high-level gestures, i.e., gesture phrases.

econd, since we observe a number of prosodic units to decide

n gesture type and timing, we can handle to some extent the
emporal misalignment problem for correlating prosodic cues to

estures. 

Another contribution of the paper is the unit selection based

esture animation system. Given speech prosody, our HSMM

ased gesture model generates a sequence of gesture labels (each

ndicating the type of a gesture phrase) as synthesis output. Our

nimation system then maps this gesture sequence with duration

nformation to a body motion (joint angle) sequence by minimiz-

ng a multiple objective cost function. This cost function penalizes

ismatches in speech rhythm as well as discontinuities in gesture

ransitions and deviations from optimal gesture durations. 

We can compare our contributions to the two closely related

orks of Levine et al. (2010) and Fernandez-Baena et al. (2013) .

esture controllers of Levine et al. (2010) model the relationship

etween speech prosody and kinematic parameters of the motion

apture data stream using a conditional random field. Based on the

inematic parameters inferred from this conditional random field

iven speech, the best gesture segments (gesture phases) are se-

ected from a gesture repertoire via dynamic programming. In this

ense gesture controllers model the correlation between speech

nd gesture at a lower level of semantics compared to our sys-

em, that is, primarily at the level of kinematic parameters, and

hen at the level of gesture phases. In our case, the use of HSMM

llows us to analyze and model gestures at a higher level of se-

antics, i.e., directly at the level of gesture phrases. We also note

hat gesture controllers cannot model gesture transition probabili-

ies due to their low-level inference modeling. As a result, our sys-

em yields more personalized and hence more consistent and ex-

ressive synthesis results. Fernandez-Baena et al. (2013) also use

esture phrases in their synthesis system. However, unlike our fully

utomatic synthesis approach, their system requires manually an-

otated prosody input. They use gesture motion graphs (GMG)

ermitting connections between consecutive and similar gestures,

here gestures with smooth transitions are considered to be sim-

lar. The gestures are synthesized on this graph by selecting each

ime the gesture clip which is the most suited for a given pitch

ccent. Hence, in contrast to our approach, they do not use any

tatistical inference model and disregard the actual gesture transi-

ion probabilities. Moreover, the synchrony window, which models

emporal alignment of gestures and speech, does not take into ac-

ount the durational statistics of gestures. Fernandez-Baena et al.

2013) report that their animation system may produce poor re-

ults in a limited dataset due to excessive warping. 

Furthermore we should note that we have presented prelimi-

ary results of our prosody-driven gesture synthesis system based

n HSMM in an earlier paper ( Bozkurt et al., 2013 ). In this current

aper, we include an extensive description of the unit-selection

ased animation generation system within the HSMM framework,

xtend our original framework by introducing the speech rhythm

nformation as a third modality to overcome any rhythmic mis-

atches in animations, evaluate our framework on two datasets

or speaker-dependent and independent settings, and present ob-

ective evaluation methods to fine-tune gesture synthesis and ani-

ation parameters prior to subjective evaluations. 

.3. Overview 

The general block diagram of our speech-driven gesture syn-

hesis and animation system is given in Fig. 1 . The system consists

f three main tasks: analysis, synthesis, and animation. Within

he analysis task we have two stages: (i) feature extraction and

lustering of gesture phrases and prosodic units, and (ii) their mul-

imodal analysis. Section 2 presents the first stage of the analysis

ask, where we perform feature extraction and unimodal clustering

n speech and body motion data. The audio stream is processed to

xtract prosodic features of the speech, whereas the body motion
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Fig. 1. The block diagram of the general framework for the speech-driven gesture synthesis and animation system. 
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data is expressed in terms of 3D joint angles. The gesture and

audio feature streams are then segmented via temporal clustering

into recurrent patterns, i.e, into gesture phrases and prosodic units,

respectively. In Section 2 , in addition to prosodic features, we also

describe extraction of speech rhythm features for the duration of

each gesture phrase, which are to be used later in the animation

generation stage. Section 3 describes the second stage of the

analysis task, where we use hidden semi-Markov models (HSMM)

to model the dependencies between speech prosody and gestures

in a multimodal framework. Sections 4 and 5 mainly address

the synthesis and animation tasks, respectively. In Section 4 , we

describe how an optimal sequence of gestures with durations is

synthesized for a given speech input by using the Viterbi algorithm

over HSMM. In Section 5 , the synthesized gesture sequences with

duration information are mapped into body motion sequences by

using a multiple objective unit selection algorithm to generate

animations. In Section 6 , we present the results of the speaker-

dependent and independent experiments conducted for objective

and subjective evaluations of the proposed system, and finally in

Section 7 , we provide our concluding remarks. 

2. Feature extraction and unimodal clustering 

We employ semi-supervised and unsupervised temporal clus-

tering schemes to determine boundaries and categories of ges-

ture phrases for speaker-dependent and independent scenarios, re-

spectively. We use an unsupervised scheme to cluster speech into

prosodic units. We also extract speech rhythm feature along with

each gesture phrase. 

2.1. Prosody clustering 

Characteristics of the prosody at the acoustic level, includ-

ing intonation, rhythm, and intensity patterns, carry important

temporal and structural synchrony with gesture phrases ( Loehr,

2012 ). Prosody has a marked effect on suprasegmental features

such as pitch, energy, and timing in the vicinity of an prosodic

event ( Ananthakrishnan and Narayanan, 2008 ). As we target to ex-

tract prosodic units through unsupervised clustering we choose to

use pitch and energy related acoustic features to model speech

prosody. Note that we define a prosodic unit as a speech segment

with a recurrent prosodic pattern. We choose to include speech

intensity, pitch, and confidence-to-pitch into the prosody feature

vector. Prosody features are extracted over 50 ms analysis windows
ith 25 ms frame shifts. Speech intensity is defined as the loga-

ithm of the average signal energy in the analysis window, 

 k = log 

( 

1 

W 

W ∑ 

i =1 

s k [ i ] 
2 

) 

, (1)

here s k is the speech signal in the k th window, and W is the

indow size. 

Pitch is extracted using the YIN fundamental frequency esti-

ator, which is a robust pitch frequency estimator based on the

ell-known auto-correlation method ( de Cheveigne and Kawahara,

002 ). Pitch feature, νk , is defined as the logarithm of the funda-

ental frequency at the k th frame. The YIN estimator defines a

ifference function based on the auto-correlation function, 

 k (τ ) = 

W ∑ 

i =1 

(s k [ i ] − s k [ i + τ ]) 2 . (2)

e define the confidence-to-pitch feature based on the normalized

ifference function as, 

 k = 1 − e k (τ
∗) 

1 
τ ∗

∑ τ ∗
i =1 e k (i ) 

, (3)

here τ ∗ is the pitch lag corresponding to the fundamental fre-

uency. 

Since the prosody feature values are speaker and utterance

ependent, we apply a mean and variance normalization to the

rosody features. We compute the mean and variance of prosody

eatures for each speech utterance, and perform mean and variance

ormalization to get the normalized prosody features Ī k , ν̄k , and

¯ k . Then the normalized intensity, pitch, and confidence-to-pitch

eatures along with the first temporal derivative of these three pa-

ameters are used to define the prosody feature vector at frame k ,

f p 
k 

= [ ̄I k , ν̄k , c̄ k , �Ī k , �ν̄k , �c̄ k ] , (4)

here � defines the first order derivative for the corresponding

eatures. 

We employ unsupervised temporal clustering using the paral-

el HMM architecture in Sargin et al. (2008) to extract prosody

lusters. The prosody feature stream F p = { f p 
1 
, f 

p 
2 
, . . . , f 

p 
T 
} is used

o train a parallel branch HMM structure, �p , which clusters

he prosody feature stream and captures recurrent prosodic units

hrough unsupervised learning. The HMM structure �p is com-

osed of M p parallel left-to-right HMMs, { λp 
1 
, λp 

2 
, . . . , λp 

M p 
} , where
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Fig. 2. The black circles correspond to the joints used for gesture representation as 

left forearm, left arm, right arm, and right forearm, respectively. 
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is composed of N p states. The HMM-based unsuper-

ised clustering process segments the prosody feature stream into

rosodic units. We denote the l th prosodic unit in the stream by ε p 
l 

nd the associated class label of the l th unit by � 
p 

l 
, which is one

f the M p available prosody classes { p 1 , p 2 , . . . , p M p 
} . A frame level

abel sequence is then defined for the prosodic unit sequence, 

k = � 
p 

l 
for k = k l , k l + 1 , . . . , k l+1 − 1 , (5)

here ξ k is the prosody label of the k th speech frame and [ k l , k l+1 )

pans the l th prosodic unit. These frame level prosody labels will

ventually serve as the observations of the HSMM structure that

e will describe in Section 3 . 

.2. Gesture clustering 

We model gestures, specifically beat type arm gestures, at ges-

ure phrase level to correlate with and emphasize speech prosody.

or analysis of gestures, we employ joint angles from four body

arts: left arm, left forearm, right arm, and right forearm as shown

n Fig. 2 . We define the joint angle vector for the i th joint at frame

 as θ i 
k 

= [ φik 
x , φ

ik 
y , φ

ik 
z ] , where φik 

x , φ
ik 
y , φ

ik 
z are the Euler angles re-

pectively in the x, y, z directions, representing the orientation of

he i th joint at frame k . Then, we define the gesture feature vector

t frame k , f 
Ji 

k 
, to include the joint angles from the i th body part

nd their first order derivatives, 

f Ji 
k 

= [ θ i 
k , �θ i 

k ] , for i = 1 , 2 , 3 , 4 , (6)
here �θ i 
k 

denotes the first order derivative of the joint angle

ector θ i 
k 
. The resulting gesture feature for the four joints at time

rame k is defined as, 

f g 
k 

= [ f J1 
k 

, . . . , f J4 
k 

] . (7)

.2.1. Semi-supervised gesture clustering 

Temporal clustering of the gesture feature sequence is nec-

ssary for analysis of recurring beat gesture phrases. In the

peaker-dependent case, we implement a semi-supervised cluster-

ng method using the parallel branch HMM structure, �g , over

he gesture feature stream F g = { f g 
1 
, f 

g 
2 
, . . . , f 

g 
T 
} , with duration of

 frames. The HMM structure �g initially is set to have two paral-

el branch HMMs, { λg 
1 
, λg 

2 
} , where each λg 

m 

is composed of N g = 10

tates corresponding to the minimum gesture phrase duration of

0 frames ( 1 3 s assuming 30 video frames/sec). The number of

ranches is iteratively increased to M g in a semi-supervised man-

er using the following procedure: 

(i) Initially set �g to have two branches to model the rest po-

sition of arms and all the other remaining arm movements.

Manually label examples of the rest event (as many as nec-

essary to train an HMM structure) from gesture stream by

inspecting the video. 

(ii) Perform the Baum–Welch training of the �g . 

(iii) Perform Viterbi decoding to get temporal clusters. 

(iv) Visually inspect and correct clusters as needed. Repeat steps

(ii) and (iii) until convergence. 

(v) If a new gesture phrase, which is recurrent in the data and

not covered by the �g , exists, go to step (vi), otherwise stop.

(vi) Manually label several examples of the new gesture phrase.

Add a branch to the �g for the new gesture phrase with

initial training. Go to step (ii). 

The proposed semi-supervised clustering process segments the

esture feature stream into gesture phrases, ε g 
l 
, with label � 

g 

l 
as

ne of the M g available gesture classes { g 1 , g 2 , . . . , g M g 
} . All ges-

ure phrases ε g i from gesture class g i are grouped together to

uild a gesture pool G i = { ε g i 1 , . . . , ε g i j , . . . , ε g i N G i } , where ε g i j is the

 th gesture phrase in the pool, and N 

G 
i 

is the number of gesture

hrases in the gesture pool G i . For each gesture phrase in the ges-

ure pool, we also extract a speech rhythm feature as defined in

he Section 2.3 . 

.2.2. Unsupervised gesture clustering 

Unsupervised gesture clustering is applied for the speaker-

ndependent setting, where a large scale multimodal dataset has

een used for this purpose. Unlike the clustering results of the

emi-supervised approach in Section 2.2.1 , the resulting gesture

atterns of unsupervised clustering are not explicitly compatible

ith the gesture phrase definition presented in Kendon (1980) .

owever, there is reported evidence that these patterns are mean-

ngful for explaining the nature of gestures ( Yang et al., 2014; Yang

nd Narayanan, 2016 ). For simplicity, we will use the same nota-

ion with the gesture phrases in Section 2.2.1 , as ε g i for the gesture

atterns resulting from gesture class g i . 

Similarly to the prosody clustering process in Section 2.1 ,

e apply the unsupervised clustering method based on parallel-

MMs ( Sargin et al., 2008 ) to the gesture feature sequence F g =
 f 

g 
1 
, f 

g 
2 
, . . . , f 

g 
T 
} , with duration of T frames. We segment and clus-

er gesture sequences into gesture patterns with duration infor-

ation. The HMM structure �g is set to have M g = 40 parallel

ranch HMMs, { λg 
1 
, . . . , λg 

M g 
} , where each λg 

m 

is composed of N g =
0 states corresponding to the minimum gesture pattern duration

f 10 frames ( 1 3 s assuming 30 video frames/sec) considering the

orks by Yang et al. (2014) and Bozkurt et al. (2015) . We also cre-

te a gesture pool G i for each gesture class g i and extract a speech

hythm feature for each gesture pattern in the pool. 
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Fig. 3. In the hidden semi-Markov model, prosodic units are labeled as � p 
i 
, frame- 

level prosody labels ( ξ t ) correspond to observations and gesture phrases ( ε g 
k 
) corre- 

spond to states ( g m ). 
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2.3. Speech rhythm feature extraction 

A multimodal system that combines speech and gesture modal-

ities requires an explicit understanding of how these modalities

co-occur and how they are jointly perceived. Generally, there is

an underlying periodic pattern of pulses in speech (sometimes re-

inforced by coupled periodic motions of hands), and prominent

events in the speech are approximately aligned in time with these

pulses ( Port, 2003 ). In other words, the rhythmic production of

speech, marked by pitch accents and stressed syllables, influences

the temporal pattern of coinciding gestures ( Iverson and Thelen,

1999 ). Therefore, the rhythmic harmony of speech and accompa-

nying gestures is important when synthesizing natural-looking vir-

tual character animations. 

Speech is a rhythmic and temporally structured source where

the acoustic signal is transmitted as syllables in which most of

the energy fluctuations occur in the range between 3 to 20 Hz

( Greenberg, 1999; Greenberg and Arai, 2004 ). When we refer to

the term rhythm, we do not mean that these energy terms are

perfectly periodic, but rather that there are regulations on syllable

duration and energy patterns within and across prosodic phrases,

which are important for intelligibility and naturalness of the spo-

ken speech ( Ladd, 1996; Liberman, 1975 ). For example, from a pho-

netic point of view, we cannot fully define speech as sequences

of phonemes, syllables or words. When we listen to speech, we

hear that segments or syllables are shortened or lengthened in ac-

cordance with an underlying pattern. However, characterization of

speech rhythm is not an easy task itself and most of the methods

rely on measurements of segmental durations to describe the tem-

poral patterns of speech ( Gibbon and Gut, 2001; Grabe and Low,

2002; Loukina et al., 2011; Ramus et al., 1999 ). 

On the other hand, frequency domain representation of the

speech rhythm, which characterizes how the energy of speech is

distributed in the frequency domain, can be as useful in our frame-

work. In this study we analyze speech rhythm using Fourier anal-

ysis of the amplitude envelope of bandpass filtered speech rather

than computing rhythm with time domain measurements of in-

terval durations. The frequency domain approach pays much less

attention to where intervals begin and end, and more attention

to the acoustic contents of those intervals by analyzing the power

spectrum of the amplitude envelope of speech ( Tilsen and Johnson,

2008 ). 

We use the speech rhythm features as defined in Tilsen and

Johnson (2008) in our multimodal framework. The input speech

signal s ij , which corresponds to ε g i j (the j th gesture phrase in the

gesture pool G i ), is filtered with a passband of 70 0–130 0 Hz to cap-

ture mostly vocalic energy and filter out glottal energy and obstru-

ent noise. Then, envelope of the band-pass filtered signal is low-

pass filtered and down-sampled. The normalized spectral energy

distribution of this down-sampled signal over d = 8 bands is de-

fined as the speech rhythm feature vector, 

r(i, j) = 

1 ∑ 

n e n 
[ e 1 , e 2 , . . . , e d ] , 

for i = 1 , 2 , . . . , M g ; j = 1 , 2 , . . . , N 

G 
i , 

(8)

where e n is the spectral energy for the n th band and r ( i, j ) is the

speech rhythm feature vector corresponding to j th gesture phrase

of i th gesture class, ε g i j . Further details of the speech rhythm fea-

ture extraction can be found in Tilsen and Johnson (2008) . 

The collection of speech rhythm feature vectors, r ( i, j ), are com-

piled as a dictionary of speech rhythm representations per gesture

class and expressed as R i = { r(i, 1) , . . . , r(i, N 

G 
i 
) } . In other words,

the speech rhythm dictionary R i is linked with the gesture pool G i 

defined in Section 2.2 , where each gesture phrase has a coinciding

speech rhythm representation. In the animation generation step, R 
i 
s used to reduce rhythmic mismatches between the input speech

nd the gesture phrases selected from the gesture pool G i . 

Although rhythm could be seen as a timing aspect of speech

rosody along with intonation and stress, it represents phrase-level

iming characteristics. Hence rather than including it in the short-

erm prosody feature representation, we rather use it as a similar-

ty factor while creating gesture animations as will be described in

ection 5 . 

. Multimodal analysis of gestures and prosody 

In this section we construct a multimodal analysis frame-

ork to model the relationship between beat gestures and speech

rosody at the gesture phrase level. In general, prosodic units are

uch shorter than gesture phrases in duration, and the stroke of a

esture phrase precedes or ends at, but does not follow, the phono-

ogical peak syllable of speech as McNeill (1992) stated. A gesture

hrase sequence, when accompanied by a sequence of prosodic

nits, forms a Markov random process. One useful mathematical

odel for multimodal analysis of gesture phrases and prosodic

nits can be constructed by taking gesture phrases as the states

f a Markov chain and prosodic units as the observations of this

arkov process. Hence, state transitions correspond to articulation

f consecutive gesture phrases, and gesture phrases can be located

n time according to the McNeill’s phonological rule by observing

rosodic units. 

Synthesizing a gesture phrase sequence using the conventional

arkov chain model given prosodic unit observations would how-

ver have a shortfall in modeling gesture phrase durations in time.

 useful mathematical model to overcome this shortfall is to in-

roduce a statistical state duration model so that one can better

ontrol gesture phrase durations in the synthesis process. Combi-

ation of these two useful mathematical models, i.e., Markov chain

nd state duration, yields the hidden semi-Markov model (HSMM)

ramework ( Yu, 2010 ) that we use for multimodal analysis of ges-

ure phrases and prosodic units. HSMM is an extension of HMM,

hich allows the underlying process to be a semi-Markov chain

ith states having variable durations. This is to say that the un-

erlying process is Markovian at certain jump instants ( Barbu and

imnios, 2008 ). Fig. 3 shows how such an HSMM structure func-

ions, where gesture phrase labels and frame-level prosody labels

re depicted as states and observations, respectively. Gesture tran-

itions define state transitions, whereas prosodic unit distributions

er gesture class define the observation emission distributions. The

tate duration distributions are estimated over the gesture phrase

uration information. Note that the observations of the HSMM

tructure are frame-level prosody labels defined in (5) . This is es-

ential since in this way, hidden state durations, hence gesture du-

ations, can be represented in terms of fixed length speech frames.

An HSMM representing frame-level prosody labels as obser-

ations with M g fully connected states is represented by �gp =
(A , B , D , �) . The states of �gp represent gesture classes, and the

odel parameters A , B , D , � respectively stand for state transition
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robability, observation emission distribution, state duration distri-

ution, and initial state distribution matrices. 

The M g × M g state transition matrix A is defined by entries

 ij , each representing the state transition probability from gesture

lass g i to g j , 

 : { a i j = P (� g 
l 

= g j | � g l−1 
= g i ) } i, j = 1 , . . . , M g , (9)

here � 
g 

l 
represents the gesture label of the l th gesture phrase in

he sequence. The observation emission distribution B is modeled

y discrete probability mass functions for each gesture g i , 

 : { b i (p j ) = P (p j | � g l 
= g i ) } i = 1 , . . . , M g , j = 1 , . . . , M p , (10)

here b i ( p j ) is the probability of observing prosodic unit p j at ges-

ure class g i . The state duration distribution D is formed in terms

f state dependent duration probability mass functions, 

 : { d i (n ) } i = 1 , . . . , M g , n = 1 , . . . , 
D max 

δ
, (11)

here d i ( n ) is the probability of a gesture phrase from gesture

lass g i lasting n δ sec, D max is the maximum duration among all

esture phrases, and δ is the histogram bin size for the underlying

robability mass function. In our experiments, we take the max-

mum duration as D max = 10 s, and the histogram bin size as the

peech frame duration δ = 25 ms. The initial state probability vec-

or � is defined by entries π i , each representing the probability of

tarting with gesture class g i as the first gesture phrase, 

: { πi = P (� g 
1 

= g i ) } i = 1 , . . . , M g . (12)

The �gp model is extracted by estimating the statistical param-

ters of the model over a training data. Statistical parameter esti-

ations are given as: 

i = P (� g 
1 

= g i ) ̂ = 

C(1 , i, j) ∑ 

j ′ C(1 , i, j ′ ) , (13) 

 i j = P (� g 
l 

= g j | � g l−1 
= g i ) ̂ = 

∑ 

l C(l, i, j) ∑ 

l 

∑ 

j ′ C(l, i, j ′ ) , (14) 

 i (p j ) = P (p j | � g l 
= g i ) ̂ = 

O (i, j) ∑ 

j ′ O (i, j ′ ) , (15) 

 i (n ) ̂ = 

H(i, nδ ≤ t < (n + 1) δ) ∑ 

n ′ H(i, n 

′ δ ≤ t < (n 

′ + 1) δ) 
, (16) 

here C ( l, i, j ) is the number of times g i appears as the label of the

 th gesture phrase and g j as the label of (l + 1) st gesture phrase,

 ( i, j ) is the frame count of prosodic unit p j at gesture class g i ,

nd H(i, nδ ≤ t < (n + 1) δ) is the number of occurrences of gesture

lass g i with duration t in [ nδ, (n + 1) δ) interval. 

. Gesture synthesis 

Gesture synthesis is defined as decoding an optimal state se-

uence, ˆ � g , over the HSMM �gp given a sequence of frame level

rosodic unit labels, { ξ1 , ξ2 , . . . , ξT } (see (5) ). Note that the de-

oded optimal state sequence delivers a synthesized label sequence

or gesture phrases, ˆ � g , and a sequence of associated durations,

, where the HSMM framework secures to have realistic gesture

hrase durations. In HMM framework, where the underlying pro-

ess is Markov, given an observation sequence, the Viterbi algo-

ithm is employed to decode the most likely state sequence. In

SMM framework however, states have variable durations and a

equence of observations are emitted at a single state. This requires

s to define a forward likelihood function, which incorporates state

uration model, 
 t ( j) = max 
τ

max 
i 

{ 

ψ t−τ (i ) + log (a i j d j (τ ) 
t ∏ 

k = t−τ+1 

b j (ξk )) 

} 

, (17) 

here ψ t ( j ) is the accumulated logarithmic likelihood at time

rame t in state g j after observing prosody labels { ξ1 , ξ2 , . . . , ξt } .
ased on the forward likelihood function ψ t ( j ), we define the fol-

owing modified Viterbi decoding algorithm to extract the optimal

tate sequence: 

i. Initialize 

ψ 1 (i ) = log (πi b i (ξ1 )) i = 1 , 2 , . . . , M g 

ii. Recursion: Repeat for t = 2 , 3 , . . . , T 

T ′ = min (D max , t) /δ
Repeat for j = 1 , 2 , . . . , M g 

� i j 
tτ = ψ t−τ (i ) + log (a i j d j (τ ) 

∏ t 
k = t−τ+1 b j (ξk )) 

for i = 1 , . . . , M g , τ = 1 , . . . , T ′ 
ψ t ( j) = max τ∈ [1 ,T ′ ] max i ∈ [1 ,M g ] { � i j 

tτ } 
ϕ t ( j) = arg max i ∈ [1 ,M g ] max τ∈ [1 ,T ′ ] { � i j 

tτ } 
νt ( j) = arg max τ∈ [1 ,T ′ ] max i ∈ [1 ,M g ] { � i j 

tτ } 
ii. Backtrace the optimal gesture phrase sequence 

ˆ � 
g 
L 

= arg max j ψ T ( j) 

κL = νT ( ̂  � 
g 
L 
) 

l = L − 1 ; t = T 

While t > 0 
ˆ � 
g 

l 
= ϕ t ( ̂  � 

g 

l+1 
) 

κl = νt−κl+1 
( ̂  � 

g 

l 
) 

t = t − κl+1 ; l = l − 1 

The extracted optimal state sequence defines the optimal ges-

ure label sequence ˆ � g = { ̂  � 
g 
1 
, . . . , ̂  � 

g 
L 
} and the associated gesture

hrase durations κ = { κ1 , . . . , κL } . 
. Gesture animation 

Animation of the synthesized gesture label sequence consists

f three main tasks: Extraction of gesture phrase sequence with

nit selection, smoothing gesture-to-gesture transitions, and finally

raphical animation of the gesture phrase sequence. 

The first task is to generate a synthesized sequence of gesture

hrases, ˆ ε g , given the synthesized gesture phrase label sequence
ˆ 
 

g along with the corresponding duration sequence κ and the

nput speech rhythm information. This task is performed using

nit selection over a pool of gesture phrases which are extracted

uring the gesture analysis in Section 2.2 . The next task is to

mooth joint angle discontinuities over a temporal window at

esture phrase boundaries, that is, at the boundary of each two

onsecutive synthesized gesture phrases ˆ ε g 
l 

and ˆ ε g 
l+1 

, to extract

 smoothed gesture sequence ˜ ε g . The smoothed gesture phrase

equence ˜ ε g is finally used to animate beat gestures of a virtual

haracter in synchrony with the input speech. 

We employ a unit selection algorithm to generate the synthe-

ized sequence of gesture phrases, ˆ ε g , based on the gesture pool

 i = { ε g i 1 , ε g i 2 , . . . , ε g i N G i } , which is constructed in Section 2.2 for

ach gesture phrase class g i . The unit selection process is demon-

trated in Fig. 4 as the formation of an optimal gesture phrase se-

uence from the templates available in the gesture pools. 

We minimize a mixture of penalty scores for duration mis-

atch, joint angle continuity mismatch and speech rhythm

ismatch during the unit selection process. Speech rhythm sim-

larity of gestures is used to avoid rhythmic mismatches between

he input speech and the synthesized gesture motions during

nimations. We use the rhythm dictionary R i for gesture class g i ,

onstructed as described in Section 2.3 . The duration, joint angle

ontinuity and speech rhythm mismatch penalties of a gesture
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Fig. 4. Unit selection based gesture animation generation: an optimal sequence of 

gesture phrases is formed from the gesture phrase templates available in the ges- 

ture pool for each gesture class. 
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Table 1 

Gesture phrases identified via semi-supervised clustering. 

Gesture Description 

g 1 Symmetric: both arms move symmetrically 

g 2 Rest: no motion 

g 3 Left: only left arm moves 

g 4 Asymmetric: both arms move asymmetrically 

g 5 Contact: hands touch to each other 

g 6 Open: stretching arms backwards 

g 7 Right: only right arm moves 

Table 2 

Gesture phrase distributions per recording. 

Rec. id Gesture phrase counts Total count Dur.(s) 

g 1 g 2 g 3 g 4 g 5 g 6 g 7 

(i) 52 64 9 22 1 0 19 167 239 

(ii) 20 40 1 8 0 17 6 92 167 

(iii) 22 49 1 23 10 21 40 166 265 

(iv) 53 60 15 20 4 18 20 190 347 

(v) 2 45 1 0 0 0 0 48 155 

Total 149 258 27 73 15 56 85 663 1173 
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p  
phrase template ε g i j for a synthesized gesture phrase with label ˆ � 
g 

l 
are respectively defined as, 

D ω (ε 
g i j | ̂  � 

g 

l 
= g i ) = || ω e ( ̂  ε 

g 

l−1 
) − ω b (ε 

g i j ) || , (18)

D κ (ε g i j | ̂  � 
g 

l 
= g i ) = || κl − κ(ε g i j ) || , and (19)

D r (ε 
g i j | ̂  � 

g 

l 
= g i ) = || r l − r(i, j) || , (20)

where κ l is the duration of the synthesized gesture phrase with

label ˆ � 
g 

l 
, κ(ε g i j ) is the duration of the gesture phrase template

ε g i j in gesture pool G i , ω e ( ̂  ε 
g 

l−1 
) is the ending joint angle vector of

the previously synthesized gesture phrase ˆ ε g 
l−1 

, and ω b (ε 
g i j ) is the

beginning joint angle vector of the gesture phrase template ε g i j , r l 
is the input speech rhythm feature for the l th phrase ˆ ε g 

l 
and r ( i, j )

is the speech rhythm feature of the gesture phrase template ε g i j .
The joint penalty score is defined as a mixture of three penalty

scores for duration, joint angle and rhythm: 

D (ε g i j | ̂  � 
g 

l 
= g i ) = βαD ω (ε 

g i j | ̂  � 
g 

l 
= g i ) + β(1 − α) D κ (ε g i j | ̂  � 

g 

l 
= g i )] 

+ (1 − β) D r (ε 
g i j | ̂  � 

g 

l 
= g i ) , (21)

where D ω , D κ and D r are min-max normalized penalty functions,

and α and β are the mixture weights which we set experimentally

over a validation set, as will be explained in Section 6.4 . 

The optimal path minimizing the above penalty score can be

extracted by using the following Viterbi algorithm: 

i. Initialization 

V 1 ( j) = D (ε g i j | ̂  � 
g 
1 

= g i ) , for j = 1 , 2 , . . . , N 

G 
i 

ii. Recursion: Repeat for l = 2 , 3 , . . . , L, 

Let g i ′ = 

ˆ � 
g 

l−1 
, for j = 1 , 2 , . . . , N 

G 
i 

V l ( j) = min 

j ′ =1 , ... ,N G 
i ′ 
{ V l−1 (n ) + D (ε g i j 

′ | ̂  � 
g 

l 
= g i ) } , 

Q l ( j) = arg min 

j ′ =1 , ... ,N G 
i ′ 
{ V l−1 (n ) + D (ε g i j 

′ | ̂  � 
g 

l 
= g i ) } , 

ii. Backtrace the optimal path 

q L = arg min j { V L ( j) } , 
q l = Q l+1 (q l+1 ) for l = L − 1 , L − 2 , . . . , 1 , 

iv. Construct the synthesized sequence of gesture phrases 

ˆ ε g 
l 

= ε 
ˆ � 
g 
l 
q l for l = 1 , 2 , . . . , L . 

The selected gesture phrases are resampled so as to fit the syn-

thesized duration if necessary. Next, we smooth joint angle dis-

continuities at gesture boundaries over a temporal window. This is

achieved by applying an exponential smoothing function on each

pair of consecutive synthesized gesture phrases ˆ ε g 
l 

and ˆ ε g 
l+1 

. Then,

the smoothed gesture motion sequence ˜ ε g is used to animate a

virtual character based on the four skeleton joints mentioned in

Section 2.2 . The other joints of the body (e.g. spine, lower-body

joints) are assumed to have no motion. For graphical animation,

we use the MotionBuilder 3D Character Animation Software 1 
1 Autodesk MotionBuilder: 3D Character Animation for Virtual Production, 

http://www.autodesk.com 

s  

d  

d  

t  
. Experimental results 

We use two datasets for synthesizing and animating prosody-

riven arm gestures in speaker-dependent and independent set-

ings. In the following subsections these two datasets are in-

roduced. Then prior to subjective and objective evaluations, we

ne-tune the parameters of our speech-driven gesture synthesis

cheme based on objective metrics. These parameters are the num-

er of prosody clusters and the penalty score weight parameters

sed in the unit selection algorithm for animation generation. Fi-

ally we present subjective and objective evaluations of the pro-

osed framework. 

.1. Dataset for speaker-dependent setting 

The multimodal MVGL-MUB dataset that we use to train our

peaker-dependent speech-driven animation system consists of five

ecordings of a male native speaker with a total duration of ap-

roximately 20 minutes, all in Turkish ( Bozkurt et al., 2013 ). We

ollect multiview video of the speaker using four synchronized

ameras. The speaker wears a black suit with 15 color markers and

 microphone placed close to mouth and synchronized with the

ameras. We estimate the 3D positions of the body joints based on

he markers’ 2D positions tracked on each camera’s image plane

sing color information ( Ofli et al., 2008 ). The resulting set of 3D

oints for joints’ positions is then converted to a set of Euler an-

les extracted for each joint in its local frame using inverse kine-

atics. The motion capture data is recorded at 30 frames per sec-

nd, and the audio signal is captured in PCM 44.1 kHz 16-bit stereo

ecording format. Five recording sessions are organized, where the

peaker talks in standing pose under five different scenarios: i)

elling a recollection of a past memory, ii) telling a fairy tale, iii)

alking about a short documentary after watching it, iv) discussing

n a spontaneous topic with a second participant, and v) com-

enting on series of photographs. During the recording sessions,

he speaker does not receive any instructions on how to gesture or

xpress himself. 

Since gestures are in general person specific, the gesture

hrases are determined by using the semi-supervised training

cheme described in Section 2.2 . We have identified the number of

istinct gesture phrases as M g = 7 for the given participant. A brief

escription of these gesture classes is provided in Table 1 , whereas

heir distribution per recording is summarized in Table 2 . In our

http://www.autodesk.com


E. Bozkurt et al. / Speech Communication 85 (2016) 29–42 37 

e  

t  

t  

t  

t  

t  

n  

t

 

i  

s  

m  

l  

g  

c  

t  

g

6

 

t  

t  

n  

d  

v  

w  

i

 

f  

M  

p  

d  

t  

B  

r  

W  

o  

a

6

 

t  

b  

c  

g  

c  

s  

t  

i  

v  

s  

t  

t  

c

 

b  

n  

r  

s  

p  

h

Table 3 

The symmetric KL divergence of the original and synthesized gesture duration dis- 

tributions for various prosody clustering settings in the speaker-dependent system. 

N p M p 

10 12 14 16 18 

2 2 .1013 1 .2358 1 .3212 1 .1848 1 .2793 

3 2 .1251 1 .1501 1 .3333 1 .0498 1 .3544 

4 1 .1052 1 .0698 1 .6390 1 .5562 1 .8460 

5 1 .5551 1 .9665 1 .5705 1 .7472 1 .4214 

Table 4 

The symmetric KL divergence of the original and synthesized gesture duration 

distributions for various prosody clustering settings in the speaker-independent 

system. 

N p M p 

10 16 24 32 

2 7 .8353 7 .8267 7 .9192 7 .7408 

3 7 .8959 7 .5270 7 .7871 7 .9978 

4 7 .7411 7 .8443 7 .7154 7 .9411 

5 7 .7343 7 .8207 7 .8125 7 .9100 
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xperiments, we have spared the fourth recording as the valida-

ion set, and performed a leave-one-out training procedure such

hat one recording out of four is used for testing and the remaining

hree are used for training in four turns. The models resulting from

raining are used for synthesizing and animating gestures over the

est recordings. Then, we perform subjective evaluations to assess

aturalness and audio-visual synchrony of the animation results of

he test recordings. 

The proposed HSMM based synthesis is subjectively evaluated

n pairwise comparisons with baseline and motion-capture synthe-

is results. Our baseline gesture synthesis method creates an ani-

ation from a sequence of random gestures via gesture phrase se-

ection based solely on joint angle continuity, hence discarding any

esture duration and transition statistics as well as prosody-gesture

orrelations. The motion-capture synthesis on the other hand uses

he captured true motion in the animations; that is the speaker’s

estures are directly copied to the animation. 

.2. Dataset for speaker-independent setting 

In the speaker-independent animation system, we use the mul-

imodal USC CreativeIT dataset that contains a variety of dyadic

heatrical improvisations for studying expressive behaviors and

atural human interaction ( Metallinou et al., 2010, 2016 ). In this

ataset the interactive performances are designed either as impro-

isations of scenes from theatrical plays or as theatrical exercises

here actors repeat sentences in a manner that conveys specific

ntent such as, accepting or rejecting behavior towards the other. 

The dataset contains vocal and body-language behavior in-

ormation of the actors obtained through close-up microphones,

otion Capture (MoCap) and HD cameras. The MoCap data is

rovided as 3D coordinates of 45 marker positions in (x, y, z)

irections at 60 fps and speech recordings at 48 kHz for each of

he 16 distinct actors (9 of whom are female). We use the Motion-

uilder software 2 for converting 3D joint positions to Euler angle

otations of the arm and forearm in the (x,y,z) directions at 30 fps.

e perform speaker-independent evaluations in a leave-one-pair-

ut manner using data from one actor-pair as the test set in turn,

nd the remaining data from the other pairs as the training data. 

.3. Number of prosody clusters 

One of our primary goals in this work is to synthesize ges-

ure sequences with realistic gesture durations. Hence, one possi-

le objective evaluation of our HSMM based gesture synthesis is to

onsider the similarity between the original and the synthesized

esture duration statistics. To this effect, we perform the prosody

lustering process under different parameter settings, and for each

etting we synthesize a different gesture sequence. We then es-

imate the duration distribution of each synthesized sequence as

n (11) . Next, we compute the symmetric Kullbeck–Leibler (KL) di-

ergence between the original duration distribution d i ( k ) and the

ynthesized distribution 

ˆ d i (k ) over the validation set to measure

he duration similarity of the synthesized gesture sequence with

he original one, where smaller KL divergence values indicate more

onsistent duration distributions. 

We perform unsupervised prosody clustering using parallel-

ranch HMM structures, as described in Section 2.1 , with branch

umbers ranging from 10 to 18 and state numbers per branch

anging from 2 to 5 for the speaker-dependent setting. An over-

egmented prosody stream with larger number of branches would

roduce redundant and similar clusters while under-segmentation
2 Autodesk MotionBuilder: 3D Character Animation for Virtual Production, 

ttp://www.autodesk.com 

6

 

t  
ith less branches would have to merge distinct clusters. The

ange of values for setting number of states on the other hand is

elected considering the minimum duration of temporal prosody

lusters. Table 3 presents the symmetric KL divergence scores on

he validation set for various parameter settings. We observe that

ith small number of branches, M p < 14, the KL divergence has its

inimum at N p = 4 number of states per branch. As the number

f branches gets larger, M p ≥ 14, the optimal KL divergence value

s attained for smaller number of states per branch. We use the

 p = 16 and N p = 3 as the optimal setting with a KL divergence

alue of 1.0498 for subjective evaluation of our gesture synthesis

ystem, which is presented in Section 6.5 . 

Moreover, we perform unsupervised prosody clustering on the

reativeIT dataset for the speaker-independent evaluations. We

ary the number of states per branch ranging from 2 to 5 and

he number of branches ranging from 10 to 32. Table 4 presents

he symmetric KL divergence scores of the original and synthesized

esture duration distributions for the speaker-independent setting

n a leave-one-actor pair-out manner. As in Table 3 , using M p = 16

rosody clusters with 3 states per branch gives the optimal KL-

ivergence value as 7.5270. This value is higher than the value ob-

ained in the speaker-dependent setting, which is expected since

he speaker-independent system has higher variability. 

In addition, for the optimal symmetric KL-divergence settings,

e compare histograms of gesture phrase and pattern durations

ith prosodic unit durations (measured in number of frames with

0 fps) in Fig. 5 , for speaker-dependent (top) and independent

bottom) settings, respectively. In the figures, the discrepancy in

uration distributions for the two modalities is clear. The observa-

ion that gesture phrases and patterns have longer durations com-

ared to prosodic units is inline with our choice of using HSMMs

or joint modeling of the two modalities. 

On the other hand, the KL-divergence value for the baseline

ynthesis method is calculated as 1.8376 and 7.8365 for speaker-

ependent and independent settings, respectively. A higher KL-

ivergence in this case is expected since, unlike the HSMM-based

ynthesis, statistical duration information is simply ignored with

he baseline synthesis as well as any gesture transition statistics

nd prosody-gesture correlations. 

.4. Penalty score weight parameters 

The proposed gesture animation system employs unit-selection

o minimize a mixture of three different penalty scores while

http://www.autodesk.com
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Fig. 5. Duration histograms of prosodic units (blue) and gesture phrases or patterns 

(red). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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mapping synthesized gesture sequences into motion sequences.

These scores are the duration difference penalty, the joint an-

gle continuity and the speech rhythm similarity as defined in

Section 5 . Hence prior to the gesture motion smoothing step in

Section 5 , the penalty score weights α and β in (21) are to be set

experimentally. We consider two scoring functions to set α and

β values. The first function is based on a windowed cross-lagged

correlation (WCLC) score ( Boker et al., 2002 ). The second function

evaluates smoothness of the animation through a jerkiness score

as defined by Hogan and Sternad (2009) . 

Correlation is a commonly used tool to evaluate synchrony

in interacting time-series coordination ( Delaherche et al., 2012 ).

Canonical correlation analysis (CCA) is a statistical analysis tech-

nique for measuring the linear relationship between two multi-

dimensional variables. CCA seeks a pair of basis vectors, u x and

u y , one for each multi-dimensional variable, x and y , such that the

correlations between the projections of these variables onto basis

vectors are mutually maximized. We define a CCA based correla-

tion coefficient, 

ρcca (x , y) = cor r (u 

T 
x x , u 

T 
y y) (22)

where u x and u y are the canonical basis vectors maximizing cor-

relation of the first pair of canonical variables and () T is matrix

transpose. 

We use CCA to correlate kinetic energy of the synthesized ges-

ture sequences ( E 

s ) to kinetic energy of the original gesture se-

quences ( E 

o ) and to the speech prosody ( F p ). We define the kinetic

energy per joint as the square of joint angles’ angular velocity, 

e i k = 

[ ∑ 2 
j=1 [ θ

i 
k + j − θi 

k − j 
] j 

2 

∑ 2 
j=1 j 

2 

] 2 

(23)

where θi 
k 

is the joint angle vector in radians for the i th joint

at frame k . The resulting kinetic energy sequence is defined as

E = { e 1 , e 2 , . . . , e T } , where e k = [ e 1 
k 
, . . . e 4 

k 
] is the four dimensional

kinetic energy vector at frame k . 
The correlation coefficient between kinetic energy of the syn-

hesized ( E 

s ) and original ( E 

o ) gesture sequences is defined at

rame k with time lag τ as, 

k,τ (E 

s , E 

o ) = 

{
ρcca (E 

s 
k 
, E 

o 
k + τ ) , if −τmax < τ ≤ 0 

ρcca (E 

s 
k −τ

, E 

o 
k 
) , if τmax > τ > 0 , 

(24)

here E k = { e k , e k +1 , . . . , e k −1+ W 

} is the kinetic energy vectors over

 time window of size W starting at time frame k and τmax is

he maximum time lag. By selecting the windows with lag value

ranging from −τmax to + τmax , we guarantee a mirror symmetry

uch that the resulting set of correlations will contain the same

alues when the two series are swapped as for ρk, τ ( E 

o , E 

s ). Then

he maximum correlation coefficient between E 

s and E 

o is calcu-

ated as, 

∗(E 

s , E 

o ) = E 
{ 

max 
τ

ρk,τ (E 

s , E 

o ) 
} 

, (25)

here E is the expectation over time windows of the highest cor-

elation coefficients over the time lags. Note that a similar corre-

ation coefficient can be extracted between kinetic energy of the

ynthesized gesture sequences ( E 

s ) and the speech prosody ( F p ) as
∗( E 

s , F p ). 

Then the WCLC-based score function given the penalty score

eights α and β of unit-selection is defined as, 

 WCLC (α, β) = 

ρ∗(E 

s , E 

o | α, β) + ρ∗(E 

s , F p | α, β) 

2 

, (26)

here the maximum correlation coefficients can also be computed

or the given penalty score weights α and β in interval [0, 1].

e target to set α and β values to maximize the WCLC-based

core, which will help us to measure and preserve correlations of

he synthesized arm motion behaviors to the original motion and

peech prosody behaviors in our animations. In our experiments,

e use an analysis window size W of 6 s and a maximum lag value

max of 1 s. The WCLC-based score function is extracted on the

alidation set for each training set in turn and then the average is

sed for the speaker-dependent setting, whereas for the speaker-

ndependent setting leave-one-actor pair-out method is employed. 

Our experience from subjective tests shows that humans’ sen-

itivity to errors in gesture animation is highly correlated with its

moothness. Hence, noticeable artifacts introduced by motion edit-

ng, such as sudden jumps of the joints, should be avoided for a

atural looking animation. We adopt the jerkiness measure, which

s defined as the derivative of joints’ acceleration in Hogan and

ternad (2009) , to measure the smoothness of a gesture motion

equence. For the i th joint at frame k , given the joint angle vector
i 
k 
, the jerkiness is calculated as 

 

i 
k = 

θi 
k +1 

− 3 θi 
k 
+ 3 θi 

k −1 
− θi 

k −2 

�3 

for k = 1 , . . . , K; i = 1 , . . . , 4 , 

(27)

here K is the total number of frames, and � = t k − t k −1 is the

rame duration of the animation. The overall jerkiness of the syn-

hesized animation is then computed as: 

 = 

√ 

K ∑ 

k =1 

∑ 4 
i =1 (J i 

k 
) 

2 

4 

K 

3 

v 2 a 

(28)

here v a is the average angular velocity and calculated over the

hole sequence and all arm joint angles. We measure the over-

ll jerkiness value J on the validation set for each training set in

urn and then take the average ( ̄J ) for the speaker-dependent set-

ing whereas, for the speaker-independent case we employ leave-

ne-actor pair-out method. 

In order to set optimal values for the α and β parameters, we

valuate the WCLC-based correlation score function S and the
WCLC 
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Fig. 6. The WCLC-based score function S WCLC ( α, β) and the average jerkiness J̄ plot- 

ted as a function of α and β values. 
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Table 5 

Results of the subjective A/B pair comparison test for speaker-dependent setting. 

A/B pair Average p -value < 

preference 

Motion-capture/Baseline −0 .613 0 .0 0 01 

Rhythm emphasized in HSMM-based ( α = 0 . 2 , β = 0 . 5 ) 

Motion-capture/HSMM-based −0 .017 0 .9186 

Baseline/HSMM-based 0 .343 0 .0152 

Rhythm less influential in HSMM-based ( α = 0 . 2 , β = 0 . 9 ) 

Motion-capture/HSMM-based −0 .574 0 .0016 

Baseline/HSMM-based 0 .242 0 .1210 
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3 Sample clips for the prosody-driven synthesis of beat gestures are at http:// 

mvgl.ku.edu.tr/prosodybeatrhythm 
verage jerkiness value J̄ as a function of the α and β param-

ters. Fig. 6 plots these two evaluation metrics in both speaker-

ependent and independent settings. The WCLC-based evaluations

arget higher correlations values, which are plotted in lighter col-

rs. On the other hand, lower average jerkiness values, which

re plotted in darker colors, are better for the animation quality.

n both speaker-dependent and independent settings, the right-

ottom quadrant optimizes both evaluation metrics. That is, higher

uality animations based on the correlation score S WCLC and the

verage jerkiness J̄ are expected to be created with the lower val-

es of α and higher values of β in both settings. For the speaker-

ependent setting, we set two possible parameter settings at (0.2,

.5) and (0.2, 0.9) values of the ( α, β). Note that these two points

ave lower jerkiness and higher correlation score values. Further-

ore, the first setting with a lower β value is expected to create

hythm emphasized animations, whereas rhythm is less influential

ith the second setting. Similarly, a single parameter point ( α, β)

s set for the speaker-independent setting at (0.3, 0.9). 

.5. Subjective evaluations 

Gestures can accompany speech in various different ways. Ob-

ective evaluations are incapable of qualifying such variabilities,

hereas subjective tests can evaluate realism and naturalness of

he animation by reflecting human perception. We conduct sub-

ective tests using the animations of speaker-dependent setting,

here each participant is shown side-by-side animation pairs and

sked to perform A/B comparisons so as to evaluate the natural-

ess of gesture animations on a scale of ( −2 , −1 , 0 , 1 , 2 ). The val-

es in this scale represent A much better, A better, no preference, B

etter and B much better, respectively. Animation clips in the test

re designed to be long enough to allow participants to be able to

valuate transitions between gestures. Each comparison consists of

 pair of animation clips of 40 to 80 second duration generated for

 given utterance by using two of the following three methods: the

SMM-based synthesis, the baseline synthesis, and the motion-

apture synthesis. In the subjective evaluations, the HSMM-based

ynthesis method employs the unit selection penalty score weight

arameters ( α, β) with values (0.2, 0.5) and (0.2, 0.9), which are

ne-tuned via objective evaluations over the validation set as de-
cribed in Sections 6.3 and 6.4 . The first setup, in which β = 0.5,

mphasizes rhythm penalty score more when compared to the lat-

er one. In this way, the influence of using rhythm is better evalu-

ted in the subjective tests. 

In the subjective tests, each of the 26 participants (16 of whom

re female) is shown 22 pairs of animation clips in random or-

er from a pool of 66 animation clips. The clip pool consists of

2 samples for each of the five pairs presented in Table 5 . Each

est includes 4 samples for each pairwise comparison, plus a pair

f identical clips, which is used to ensure the participants’ en-

agement in the test. The left-right display order of the anima-

ion pairs in clips and sequence order of clips are set randomly.

ll participants are native Turkish speakers of ages in the range

2–40. Table 5 presents the average preference scores and their

tatistical significance in the subjective evaluations. The preference

core for each pair of the five cases is calculated as the average

f participants’ evaluation scores. A negative average preference

core implies that the method on the left side is preferred over

he one on the right side and vice versa. A paired two-tailed t -

est is used to evaluate the significance of test takers’ preferences.

e observe in Table 5 that while motion-capture synthesis is sig-

ificantly favored over the baseline, it is not significantly discrim-

nated from the proposed HSMM-based synthesis when rhythm

s emphasized ( β = 0.5) in the animation generation step. Addi-

ionally, the HSMM-based synthesis results, emphasizing rhythm,

re assessed to be significantly more realistic and natural than the

aseline synthesis results with a p-value less than 0.0152. On the

ther hand, HSMM-based synthesis results are assessed to be less

atural when rhythm is less influential ( β = 0.9) in the animation

eneration step. Samples of animation clips from the subjective A/B

omparison tests are available for online demonstration 

3 . 

.6. Objective evaluations 

In the proposed framework, we target to jointly model beat ges-

ures, which are used to emphasize speech, and speech prosody.

he HSMM-based synthesis and animation framework targets to

atch prosodic units and gestures. Gesture phrase labels and du-

ations are extracted from the HSMM model, then the unit selec-

ion based animation system sets the sequence of the synthesized

estures from a large dictionary of gestures by applying the three

enalty scores for duration, joint angle continuity and rhythm.

ather than matching the original joint angle sequence in the syn-

hesis, the model tries to match prosody, which is emphasis on

peech, and beat gestures, which emphasize motion of arms. Con-

idering that the same source, i.e., the speech prosody, is driv-

ng the motion of arms for both original and synthesized gestures,

he kinetic energy difference between the original and synthesized

estures can be defined as a pose-invariant objective metric for an-

mation of beat gestures from speech-prosody. 

http://mvgl.ku.edu.tr/prosodybeatrhythm
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Table 6 

Objective evaluations based on the RMSE between the kinetic energies of the origi- 

nal and synthesized joint angles over the speaker-dependent (TSTDEP) and speaker- 

independent (TSTIND) datasets. 

HSMM-based Baseline 

TSTDEP 0 .25 0 .27 

TSTIND 0 .67 0 .86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Objective evaluations based on the correlations between speech prosody and kinetic 

energy for original mocap ( γ po ), HSMM-based synthesized ( γ ps ), and baseline syn- 

thesized ( γ pb ) joint angles. The last three rows present percentage of correlation 

values that are greater than 0.25, 0.20, and 0.15. 

CreativeIT MVGL-MUB 

γ po γ ps γ pb γ po γ ps γ pb 

Mean 0 .24 0 .10 0 .04 0 .07 0 .08 0 .06 

std 0 .21 0 .13 0 .13 0 .14 0 .14 0 .11 

> 0 .25 (%) 51 .9 12 .4 5 .7 2 .9 4 .8 2 .5 

> 0 .20 (%) 60 .6 19 .5 8 .3 13 .6 12 .8 7 .5 

> 0 .15 (%) 67 .8 34 .4 19 .34 27 .7 18 .5 15 .2 
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This pose-invariant objective metric is defined as the root mean

square error (RMSE) between the kinetic energies of the original

and synthesized joints: 

RMSE = 

√ 

1 
4 

∑ K 
k =1 || e o k 

− e s 
k 
|| 2 

K 

, (29)

where K is the total extent of the data, and the e o 
k 

and e s 
k 

are

respectively 4D kinetic energy vectors of the original and syn-

thesized gesture sequences as defined in (23) . The dataset used

in the speaker-independent setting is dyadic, where speakers fre-

quently take turns and mostly hold floor for a short time dura-

tion. In the RMSE evaluations, we set a test dataset (TSTIND) by

segmenting audio recordings into semantically meaningful utter-

ances when the speaker holds the floor. For the speaker-dependent

setting, the audio segments in the subjective test, which we refer

them as TSTDEP, are used for the objective RMSE evaluations. The

total duration of the TSTDEP and TSTIND evaluation sets are 458

and 4 4 4 s for speaker-dependent and independent settings, respec-

tively. The RMSE scores of the HSMM-based rhythm-emphasized

synthesis and the baseline synthesis over speaker-dependent and

independent settings are presented in Table 6 . Note that RMSE

scores of the HSMM-based synthesis is lower in both settings.

While the RMSE scores are lower in the speaker-dependent case,

the scores as well as the score difference between the baseline and

HSMM-based synthesis are larger for the speaker-independent set-

ting. This is mainly due to the fact that the gesture animation pool

for the speaker-dependent set is smaller, whereas the gesture pool

in the CreativeIT dataset contains more speaker and gesture vari-

ability. 

Another objective measure that we use to assess the quality of

the resulting animations quantifies how good the proposed model

is in transferring speech prosody into beat gestures. This goodness

measure can be computed by correlating the speech prosody to

the kinetic energy of the joints. Recall that we have defined the

CCA based correlation coefficient ρk, τ ( ·, ·) at time frame k with

time lag τ in (24) , that correlates two streams of information. Us-

ing this CCA-based correlation coefficient, we define the following

three correlation metrics: 

γ po = ρk, 0 (F p , E 

o ) , (30)

γ ps = ρk, 0 (F p , E 

s ) , (31)

γ pb = ρk, 0 (F p , E 

b ) , (32)

where they define the correlation between speech prosody and

kinetic energy, respectively for the original mocap ( γ po ), for the

HSMM-based synthesized ( γ ps ), and for the baseline synthesized

( γ pb ) joint angles. 

Table 7 presents mean, standard deviation and percent of out-

liers, i.e., the percentage of correlation values that are greater than

values 0.15, 0.2, and 0.25 for the three correlation metrics. Note

that the statistics in this table are extracted over all the contents

of the CreativeIT and MVGL-MUB datasets. The mean correlation

values for the original mocap joint angles, γ po , are not high for

any of the datasets, where they are calculated as 0.24 and 0.07

for the CreativeIT and the MVGL-MUB datasets, respectively. Tak-

ing into account these reference correlation values for the original
ocap joint angles, we can state that the proposed HSMM-based

ynthesis yields higher mean correlation values than the baseline

ynthesis system. The main reason of the low mean correlation val-

es is the sparsity of temporal windows, in which speech prosody

nd kinetic energy of the joint angles are strongly correlated. Al-

hough strongly correlated instances are sparse, subjective evalua-

ions suggest that these highly correlated instances have an impor-

ant role on the perception of naturalness in animations. Hence, we

lso compute the percentage of the windows with relatively higher

orrelation values as outliers. The correlation threshold values are

et as 0.25, 0.20, and 0.15, which are values close to the mean plus

tandard deviation for the synthesized joint angles. Note that the

ercentage of the outliers for the γ po in the CreativeIT dataset are

1.9%, 60.6%, and 67.8% respectively for threshold values 0.25, 0.20,

nd 0.15. These values are relatively high ratios compared to the

ercentage of outliers in the MVGL-MUB dataset. We think that

his is probably due to the affective theatrical improvisations of the

reativeIT dataset. The proposed HSMM-based synthesis has 12.4%,

9.5%, 34.4% and 4.8%, 12.8%, 18.5% outliers respectively in the Cre-

tiveIT and MVGL-MUB datasets. Note also that, in most cases, the

utliers of the HSMM-based synthesis are almost twice more than

hose of the baseline synthesis. This is again a valuable objective

vidence for the quality improvement obtained with the proposed

SMM-based animation system. 

. Conclusion 

We have presented a statistical framework for synthesis and

nimation of beat gestures from speech prosody and rhythm. The

ain challenge in this framework is modeling the relationship be-

ween speech and gesture modalities in a meaningful way and us-

ng this model to create new speech-synchronous animations. Our

ystem employs hidden semi-Markov models (HSMMs) to explore

he multimodal relationship and to synthesize speech-driven ges-

ure sequences which are then animated using a unit selection al-

orithm. We evaluate our framework in speaker-dependent and in-

ependent settings. Building blocks of the speaker-dependent ani-

ations are the gesture phrases, which are extracted from motion

apture data using semi-supervised segmentation. Gesture phrases

re expressive enough to generate plausible motion sequences

rom an available motion capture dataset. They also remain intact

uring animation generation and significantly contribute to con-

istency and naturalness of the resulting animations. The speaker-

ndependent animation system employs unsupervised clustering to

egment the motion capture data, where the building blocks of the

peaker-independent animations are defined as gesture patterns. 

The proposed system first segments speech prosody and mo-

ion capture data by clustering them into prosodic units and ges-

ures (phrases or patterns), respectively. In the multimodal anal-

sis of gestures and prosodic units, gestures are defined as the

tates of a Markov chain and prosodic units as the observations of

his Markov process. Hence, state transitions model the articulation
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f consecutive gestures. Alignment of gestures and prosodic units

s captured by the HSMM. The proposed HSMM-based synthesis

ethod effectively associates longer duration gestures to shorter

uration prosodic units while maintaining the realistic gesture

uration and transition statistics. Hence, our multimodal HSMM-

ased framework provides an effective solution for modeling the

omplex relationship between gestures and prosodic units, both at

he temporal level and on a multimodal basis. 

We use a unit selection method to map synthesized gesture

equences with duration information into motion sequences. The

estures from all gesture clusters are gathered in a gesture pool

nd the unit selection algorithm picks a sequence of optimal ges-

ure realizations while minimizing a multiple objective cost. One

imitation of our current framework is hence the representative-

ess and quality of the available gesture pool. We assume that ges-

ure phrase samples in the gesture pool are statistically compara-

le to the ones used in the multimodal analysis step in terms of

esture category, duration distribution, and rhythm similarity. 

We use objective and subjective evaluation methods to set

he system parameters and to assess animation quality over two

atasets. Our objective evaluation results on these datasets are co-

erent for speaker-dependent and independent settings. Subjective

valuations indicate that the proposed system, when rhythm is

mphasized in the animation, is significantly better than the base-

ine synthesis, and statistically similar to the animations created

y using the original motion capture data. Furthermore, the re-

orted RMSE between the kinetic energies of the original and the

ynthesized joints shows that the proposed HSMM-based synthe-

is framework yields better results than the baseline synthesis. We

lso present the correlation between speech prosody and the ki-

etic energy of joint angles as a valuable objective evaluation met-

ic. In subjective evaluations, we observe that strongly correlated

nstances of prosody and kinetic energy have an important role

n the perception of naturalness in animations. We show by ex-

eriments that the strongly correlated instances in the proposed

SMM-based synthesis are almost twice more than those in the

aseline synthesis. 

As future work, we plan to develop additional components to

xtend our current framework, such as semantic analysis of speech,

ynthesis of head motion and lip-sync, that would help achieving

ore realistic animation results. We will also expand our work by

onsidering affective modeling on a multimodal dataset for speech-

riven expressive gesture synthesis. We plan to investigate affec-

ive relationships between speech and gesture modalities in the

omain of conversational interactions. 
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