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ABSTRACT

We present a coarse-to-fine surface reconstruction method based on mesh deformation to build water-
tight surface models of complex objects from their silhouettes and range data. The deformable mesh,
which initially represents the object visual hull, is iteratively displaced towards the triangulated range
surface using the line-of-sight information. Each iteration of the deformation algorithm involves smooth-
ing and restructuring operations to regularize the surface evolution process. We define a non-shrinking
and easy-to-compute smoothing operator that fairs the surface separately along its tangential and normal
directions. The mesh restructuring operator, which is based on edge split, collapse and flip operations,
enables the deformable mesh to adapt its shape to the object geometry without suffering from any geo-
metrical distortions. By imposing appropriate minimum and maximum edge length constraints, the
deformable mesh, hence the object surface, can be represented at increasing levels of detail. This
coarse-to-fine strategy, that allows high resolution reconstructions even with deficient and irregularly
sampled range data, not only provides robustness, but also significantly improves the computational effi-
ciency of the deformation process. We demonstrate the performance of the proposed method on several

real objects.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Shape from optical triangulation produces accurate range
points but often fails to create complete and watertight reconstruc-
tions. The most prominent problem with active range scanning
systems is that range points can only be collected from the ob-
served portions of the object surface. The sensor may not be able
to access the obstructed sections of the object (camera occlusion)
or there may be parts of the object surface that cut off the pro-
jected light and prevent other parts from getting illuminated (laser
occlusion), which eventually, cause the surface reconstruction to
be incomplete. Shape from silhouette, on the other hand, as a pas-
sive reconstruction technique, yields robust, hole-free reconstruc-
tion of the visual hull of the object. In this paper, we present a
surface reconstruction method that combines shape from silhou-
ette with optical triangulation to build watertight, yet cavity-sen-
sitive, object models.

In Fig. 1, we demonstrate our motivation on an example. Nei-
ther the shape from optical triangulation nor the shape from sil-
houette technique alone can satisfactorily recover the shape of
the Hand object displayed in Fig. 1a. These two techniques actually
provide complementary information about the surface geometry.
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The silhouette model displayed in Fig. 1b lacks concavities of the
palm, but the fingers are successfully recovered. On the other hand,
the optical triangulation model (Fig. 1c) exhibits holes due to se-
vere occlusions. The fingers not only occlude each other, but also
obstruct the palm on which the cavity information can only par-
tially be recovered.

The range data actually contains more information about the
object shape than the one represented as a triangulated surface.
The triangle mesh obtained by shape from optical triangulation is
the part of the true object surface that can be sensed by the scanner
without any obstruction. Thus the range data also contains infor-
mation about where the object surface cannot lie. Each range point
sampled on the object, that appears as a vertex on the optical tri-
angulation model, defines a line segment (or line-of-sight) that
joins the range point and its projection on the camera screen. No
part of the object surface or volume normally intervenes these line
segments. This is depicted in Fig. 1d, where we display the lines of
sight intersecting the silhouette model at the palm of the Hand.
Even on some parts of the palm where no range point was sampled,
there are lines of sight that intersect the surface. These line seg-
ments actually target at different locations on the surface, but
the way they trace the space provides additional information about
the cavities of the palm. Hence starting with the silhouette model
and carving out the portions traced by these line segments, it is
possible to recover some of the cavities that are missing on both
optical triangulation and silhouette models.
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Fig. 1. (a) Original Hand image, (b) silhouette model, (c) triangulated range surface acquired with a single-camera single-stripe rotational scanner, (d) silhouette model
painted with range data. Yellow color indicates sections of the silhouette model intersected by lines of sight whereas blue indicates sections with no intersection. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Our aim is to avoid holes by exploiting as much information as
possible from range data and silhouette images and to build aes-
thetically pleasant 3D models of objects. To achieve this goal, we
combine line-of-sight and silhouette information using a surface-
based method, as opposed to the previously reported techniques
which all integrate line-of-sight information in a volumetric fash-
ion, such as in [1-5]. The major contribution of this work is a ro-
bust and computationally efficient mesh-based deformation
scheme for surface reconstruction from sparse and deficient range
data, that integrates silhouette and line-of-sight information in a
coarse-to-fine framework. We use a deformable model, which is
based on dynamic triangle meshes [6], that enables us to control
topology, smoothness and resolution of the reconstruction.

The organization of the paper is as follows. In Section 2, we dis-
cuss the related work. In Section 3 we provide an overview of our
reconstruction system. In Section 4, we describe our deformable
model that we use later in Section 5 to combine silhouette and
optical triangulation geometries. We present our experimental re-
sults in Section 6 and finally give some concluding remarks in Sec-
tion 7.

2. Related work

In the last decade, a considerable amount of research has been
devoted to enhancement of the active range scanning systems.
Park et al. [7] explain how to integrate several laser projectors to
reduce light occlusions, and Liska and Sablatnig [8] review next
view planning techniques to optimize the surface coverage. Levoy
et al. [9] have used large-scale enhanced acquisition systems to
overcome the occlusion problem presenting very accurate and suc-
cessful results. Rusinkiewicz et al. [10] describe a real-time acqui-
sition system allowing to scan objects faster and with greater ease
than conventional model acquisition pipelines. Despite all these
enhancement efforts, and although some scanners perform better
than others in generating more complete surfaces, final surface
reconstructions for some objects always contain holes, no matter
what kind of scanning configuration is implemented or how many
scans are run. The use of multiple laser sources or cameras, and
even mirrors [11], help improve the reconstructions but some por-
tions of the object surface such as the inner walls of hollow parts
are at best unreliably reconstructed.

There exist different ways of handling holes that appear in sur-
face reconstructions. The common practice is to smoothly extrap-

olate the missing surface information either after reconstruction
via hole filling [12] or during reconstruction [13-18]. These tech-
niques work on point sets and perform very well when the holes
on the range surface are small relative to the entire object. How-
ever they do not consider line-of-sight information which is very
valuable especially in the presence of large holes due to severe
occlusions. Curless and Levoy [1] propose a reconstruction tech-
nique that extracts a hole-free surface from range data in a more
accurate way incorporating also the line-of-sight information
which is discarded in previously reported reconstruction algo-
rithms. The technique is based on volumetric space carving and
creates a maximal surface which is consistent with the lines of
sight derived from range images. However, at parts of the surface
where the range data is severely occluded or very sparse, such as
those sections that are visible by the sensor only at sharp angles,
the algorithm fails to produce reliable reconstructions. They pro-
pose to shape such difficult parts of the object by further carving
via background extraction without explicitly introducing the sil-
houette geometry. Another volumetric technique that uses line-
of-sight information for surface reconstruction is Whitaker’s work
[2] which is based on level-set approach. Since the technique em-
ploys a deformation framework, the integration of range data is
smoother as compared to the technique proposed in [1]. But the
silhouette information is not considered at all and the problem of
surface reconstruction from deficient and sparse range data re-
mains unaddressed. As a result, Whitaker presents reconstruction
results only on relatively simple shaped objects with almost com-
plete range data that is free of large holes.

Early examples of the shape from silhouette technique were
presented by Chien and Aggarwal [19] and later much improve-
ment has been established concerning efficiency and space con-
straint issues [20-23]. In general, the strength of the technique
lies in its simplicity, efficiency and robustness especially when ap-
plied to convex shapes. The drawback of this method is that it fails
to capture hidden concavities. The robust output of the shape from
silhouette technique however constitutes a solid initial foundation
for further carving. This observation has led to several attempts to
combine shape from silhouette with other techniques which alone
do not produce complete or fully reliable model reconstructions.
The common strategy for integrating silhouette information with
others is to start off with an initial estimate of the object shape
in the form of a visual hull obtained from its silhouettes and grad-
ually recover the cavities with a cavity-sensitive method. Several
researchers such as [24-27] fuse shape from silhouette and shape
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from stereo in a volumetric fashion while others such as [28-31]
adhere to surface deformation models for further enhancing the
description of the silhouette model.

So far there have been very few attempts to explicitly combine
the shape from silhouette technique with shape from optical trian-
gulation. All prior techniques such as [3-5] are based on volumet-
ric space carving, hence they are liable to topological problems and
very sensitive to sensor noise, and thus do not permit high resolu-
tion reconstructions. They consider a fixed partitioning of the space
and rely too much on the regularity of the range samples. However,
the range sample density is hardly ever uniform throughout the
object surface and the range data may indeed be deficient due to
various factors such as scanner noise, occlusions, scanner configu-
ration and surface orientation. Deficient range data, slight discrep-
ancies between silhouette and optical triangulation geometries
and missing range samples in the hidden surface cavities often re-
sult in protrusions and discontinuous surface transitions, and even
topological problems, throughout the reconstructed model. Volu-
metric space carving techniques, especially in the presence of se-
vere occlusions, cannot adequately address these challenges and
seriously suffer from imperfections of the scanning system for
which they have no cure other than post-smoothing.

Deformation-based techniques, either volumetric or surface-
based, seem to be capable of overcoming the limitations of volu-
metric space carving. One alternative is the use of volumetric le-
vel-set approach which however suffers from certain drawbacks
for surface modeling applications such as computational ineffi-
ciency, limited resolution and the lack of any direct surface repre-
sentation during deformation [2]. Although it is possible to modify
topology with level-set based deformation, it is usually difficult to
control the changes that the initial topology may undergo, espe-
cially in the case of modeling complex objects from sparse and
deficient range data. In this paper, we use a mesh-based deforma-
tion scheme that yields a computationally efficient surface recon-
struction algorithm. We initially recover the correct topology of
the object using the shape from silhouette method, hence the
topology does not need to be modified during deformation. More-
over, the mesh-based deformation framework provides continuous
levels of detail, hence allows the adjustment of the resolution in a
flexible manner and thereby avails us to build a robust coarse-to-
fine surface reconstruction algorithm.
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3. System overview

The block diagram of our overall reconstruction system is given
in Fig. 2. The basic tasks are briefly explained in the sequel.

3.1. Data acquisition

Our range scanner is a single-camera, single-stripe optical trian-
gulation system, supporting only rotational movement of the ob-
ject (see Fig. 3). Hence it does not require any alignment of
patches as compared to systems that also incorporate translational
movement, but in turn the surface coverage for a single scan is lim-
ited. In order to improve the surface coverage, we use several pro-
jectors and obtain separate scans from different angles. The
components that make up the acquisition system, the laser projec-
tors, the camera, and the turntable are calibrated with respect to a
common reference frame. We should also note that, since the ob-
ject is rotated with respect to the projector, the projected laser
planes intersect in space, yielding irregular sampling of the object
and may hence result in deficient range data at some parts of the
surface.

3.2. Silhouette extraction

Our silhouette extraction method is based on the use of a sharp
contrast maintained between a backdrop and the object [22]. The
backdrop is saturated with light while the object is left in the dark
creating a natural silhouette of the object. Simple thresholding
then suffices to obtain the correct silhouette. For a successful
extraction, the strength of the light sources and the camera set-
tings have to be fine-tuned. The background saturation method,
although problematic with very shiny surfaces, in general produces
very clean and accurate results with radiosity and color confusion
problems circumvented.

3.3. Shape from silhouette
The initial silhouette model can be obtained by any shape from

silhouette technique that produces a topologically correct shape
model which is eligible for further deformation. The shape from
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Fig. 2. Block diagram of the overall reconstruction system.
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silhouette technique that we employ is based on our two previous
works. In [32], we construct the initial mesh by deforming the
bounding sphere with a silhouette-driven snake-based deformable
model. This method is however applicable only to objects of genus
zero. Hence for building silhouette models of objects with higher
genus, we employ the technique described in [22], which is based
on iso-surface triangulation of an intermediate volumetric repre-
sentation of the visual hull.

3.4. Shape from optical triangulation

The input to our shape from optical triangulation process is a
series of laser images of the object in full rotation on the turntable.
The routine starts with processing the laser images to draw 2D
sample points from the laser stripes. A depth profile is computed
from the sample points, creating a cloud of range points. Connect-
ing nearest neighbors with triangles is a common strategy for sys-
tems that produce lattices of regular samples. The triangulation
method that we use undertakes a similar path by weaving a web
of faces across range points of adjacent stripes.

3.5. Fusion

The silhouette mesh, which represents the visual hull, is de-
formed towards the object surface under the guidance of the range
points sampled on the object surface and their lines of sight. The
fusion technique that will be described in detail in Section 5 does
not explicitly use the connectivity information of the surface
meshes generated from optical triangulation. The triangulation of
range points rather serves us to estimate a surface normal for each
range point. We will make use of these surface normals during the
fusion process. The oriented range points resulting from different
scans are integrated separately into the deformation process, thus
they are not merged into a single surface representation.

4. Deformable model

Our deformation technique is based on iterative use of an
appropriate transformation T that deforms an initial triangle mesh

M, towards the object surface S through the following surface evo-
lution equation:

M1 =T(My). (1)

The deformable model M, is required to remain as a smooth topo-
logically correct mesh representation free of geometrical distortions
during its evolution and to converge to an optimal mesh M,- that
faithfully represents the object surface S at the equilibrium state,

My = T(My). @)

We define T as the composition of three transformations: T =
T 4 o T, o T;, which we will refer to as displacement, smoothing and
restructuring operators, respectively. The displacement operator
pushes the deformable mesh towards the object surface while the
smoothing operator regularizes the effect of this displacement and
the restructuring operator modifies the mesh connectivity to elimi-
nate any geometrical distortions that may appear during surface evo-
lution. In this sense, the displacement operator corresponds to the
external force whereas the other two correspond to the internal force
of the classical snake formulation [33].

4.1. Displacement operator

The distance between the deformable mesh M, and the object
surface S can be approximated by the average distance from the
vertex set of M, to the surface S:

Nk
€M) = 3 D dvie.S) 3)
i=1

where Ny, is the number of vertices of the deformable mesh at iter-
ation k, v;, is the position vector of the ith vertex, and d(viy, S) is the
Euclidean distance of the vertex v;, to the surface S. To reduce the
distance €(My,S), the operator Tq(My) maps the deformable mesh
My to M;, by moving each vertex v;, with a displacement d(v;j):

Vi = Vie + d(Vig), (4)

where {v],} is the vertex set of the transformed mesh M which has
the same connectivity as M;. The displacement is set to be in the
direction of the surface normal N(v;;), inwards or outwards,
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N(vi.k)

Fig. 4. Illustration of the displacement operator in 2D. The displacement d(v;,) on
each vertex v; of the deformable mesh M, at iteration k is set to be in the direction
of the surface normal N(v;x) and computed based on the signed distance from the
vertex to the target surface S.

depending on positioning of the vertex with respect to the target
surface S (see also Fig. 4):

d(vig) = 6(Vir) - N(Vig). (5)

The displacement scalar §(v;) is computed based on the signed dis-
tance from the vertex v; to the target surface S, as will later be ex-
plained in detail in Section 5.2. Also note that the magnitude of the
displacement has to be bounded above for a stable surface
evolution.

The distance function defined in Eq. (3) is only a discrete
approximation of the true distance. Moreover it does not take into
account the distance from the surface S to M,. Hence the optimality
of the surface obtained at convergence heavily depends on two fac-
tors, the resolution and the location of the initial deformable mesh
M. If the initial mesh is of sufficiently high resolution and placed
so as to bound the object surface S, the surface evolution is ex-
pected to converge to an optimal surface that accurately represents
the target surface.

4.2. Smoothing operator

The smoothing operator, Ts, is necessary for a robust mesh evo-
lution that is free of topological errors and to have eventually a
visually pleasant fair surface representation. It should be easy to
compute, yet must not yield any geometrical shrinkage and bias
in the final surface estimate. To achieve this, we employ a combi-
nation of the classical Laplacian smoothing and Taubin’s surface
fairing technique [34].

The operator T,(M) maps the deformable mesh M to M’ by mov-
ing each vertex v to v’ (dropping the vertex index i and the itera-
tion index k):

V =V + Avr + Avy, (6)

where the displacements Avy and Avy correspond to smoothing
along tangential and normal directions of the surface, respectively.
We obtain the tangential component, Avr, by tangential Laplacian
smoothing [35]:

Avy = L(v) — (L(v) -N)N, (7)
where L(v) denotes the Laplacian displacement that moves the ver-
tex v to the centroid of the vertices in its one-ring neighborhood:

Ny

L(v) = Nl dovi-v, 8)
V=1

where N, is the number of the vertices v; which are adjacent to
v.The component Avy, on the other hand, is obtained by fairing
the surface along its normal direction:

Avy = (F(v) - N)N, 9)

where F(v) denotes the displacement created by the non-shrinking
surface fairing algorithm described in [34]. The displacement F(v) is
obtained at two steps. At the first step, each vertex v is moved to
v by

v =v+ 1) wi(vi-v), (10)

where {v;} are the vertices adjacent to v. Each weight w; is chosen
as proportional to the inverse of the corresponding edge length
|Ivi —v|| and then normalized so as to meet ) ,w; = 1. The factor
2,0 < 4 < 1, controls the amount of shrinkage. At the second step,
to counter the shrinking effect of the first step, the same operation
is repeated using this time a negative factor y such that pu < —/.
Hence each vertex v is moved to its final position v(®) by

Ny
v = v 4 1S wyv) - v ). (11)
i=1

The overall fairing displacement F(v) for each vertex is then com-
puted by v® —v.

The fairing procedure described above corresponds to smooth-
ing the surface in the direction of its normal using a low-pass filter
with the transfer function f(k) = (1 — 2k)(1 — uk), where k € [0, 2].
The parameters /1 and u determine the pass-band frequency, kpg, of
the low-pass filter by k pp :%‘-+/17 > 0 [34]. Once the pass-band
frequency is fixed, the parameter / is chosen as large as possible
in order to make the transfer function decay fast in the high-fre-
quency band. One way to achieve this is to set f(1) = —f(2) which
ensures a fast and stable filter for k pg < 1, as proposed in [34]. The
filter can then be designed with varying values of kpg € (0,1). In all
our reconstructions, we set kpg ~ 0.1 with 1=0.6307 and u=
—0.6732, as suggested in [34]. We have also conducted experi-
ments to verify the optimality of this choice in our case. These
experiments will be presented in Section 6.

4.3. Restructuring operator

The restructuring operator, T,, is the composition of three
operators:

T, = Tﬂip 0Teo 0 Tsplih (12)

where Ty, Teor and Tryp are defined in terms of edge split, edge
collapse and edge flip transformations which were introduced by
Hoppe et al. [36] for mesh optimization. We use these elementary
transformations in the way Kobbelt et al. [6] use them for mesh
editing. At the end of each iteration of the surface evolution, the
operator Ty first splits all edges longer than én.x at their mid-
points. Then, the operator T, successively eliminates all edges
shorter than &mi, by edge collapses. Finally, the operator T, is ap-
plied to reduce the number of irregular vertices possibly created by
the previous collapse and split operations: The common edge of any
two neighboring triangles is swapped with the one joining the un-
shared vertices of the triangles, if this operation increases the num-
ber of vertices with valence close to 6. For the split operation to be
compatible with the collapse operation, the threshold &, has to be
chosen such that e¢m,x > 2émin Since otherwise split operations
would create edges with length smaller than &ny;,. We set € i =
2é&min to have uniformly sized triangles with small aspect ratios.
Since the edge length ratio is then bounded by &max/émin = 2 and
the valence distribution preserves its uniformity by flip operations,
the deformable mesh maintains a high quality in terms of the aspect
ratio of the triangles during surface evolution.

The minimum and maximum edge length requirements as well
as the uniform valence distribution are not actually hard con-
straints for a stable and robust mesh evolution. For instance, flip
operations that follow edge splits and collapses at each iteration
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may occasionally create invalid edges that are smaller than &, or
larger than ¢n.. Fortunately such invalid edges do not persist long
and usually handled at the next iteration of the algorithm. Other
instances of violation of these requirements are, though rarely
encountered, illegal collapse and flip operations that are to be
avoided and that would otherwise create fold-overs and non-man-
ifold triangulations, as explained in [36].

Thanks to the restructuring operation applied at each iteration of
the surface evolution, the deformable mesh can adapt its shape to
the object surface, avoiding geometrical distortions such as degen-
erate triangles and irregular vertices. Note that, with the restructur-
ing operator as formulated above, the surface evolution results in an
optimal surface M,- that has the same topology as the initial mesh
M, unless explicit topology modifying operators for merging and/
or splitting, such as those in [37], are incorporated.

4.4. Coarse-to-fine deformation

The restructuring operator, T, can also serve as an effective tool
to control the resolution of the deformable mesh. By adjusting the
parameter &n;,, the deformable mesh can be represented at any
resolution, hence the surface of an object can be recovered at any
desired level of detail. The computational complexity of the surface
evolution algorithm however is drastically effected by the choice of
&min due to two reasons. First, the number of edges (or triangles) of
the deformable mesh increases quadratically as &, decreases. Sec-
ond, the parameter ¢n;; puts an upper bound to the magnitude of
the vertex displacement d(v), which we constrain with half of
the minimum edge length parameter, i.e., |6(V)| < €min/2. In this
way, a more stable surface evolution is obtained, but the number
of iterations needed for convergence becomes directly proportional
to the chosen value of &yy.

To achieve high resolution reconstructions, yet in a computa-
tionally efficient manner, we use a coarse-to-fine deformation
scheme. We start with a relatively large value of ¢, and apply
the restructuring operator to put the deformable mesh initially
into a low resolution form. We iterate the surface evolution equa-
tion (see Eq. (1)) until we obtain a coarse mesh representation of
the surface, M-, which is optimal at this resolution (see Eq. (2)).
This optimal surface M, then becomes the initial deformable mesh
for the next run of the surface evolution algorithm with a smaller
value of en,, that is, at some higher resolution. The surface evolu-
tion algorithm is successively rerun in this manner with a prede-
fined sequence of decreasing values of &, until the desired
precision is obtained.

5. Fusion

The goal of the fusion process is to combine the 3D shape infor-
mation provided by the silhouette images and the range data in the
smoothest possible manner. This goal can be achieved by using the
multiresolution deformable model described in Section 4. The most
critical part of the fusion algorithm is to determine the appropriate
displacements that will deform the initial silhouette model to-
wards its final shape as faithfully as possible to the true object sur-
face at a given resolution. This requires, prior to the deformation
process, identifying the lines of sight that intersect the initial sil-
houette model. We will refer to these line segments as carvers of
the fusion process.

5.1. Carver assignment

A carver, that is, a line segment that joins a range point and its
projection on the camera screen ideally intersects the true object
surface only at the range point itself. However since the true object

surface lies inside the visual hull, some of these carvers may (and
usually do) intersect the initial silhouette model at multiple loca-
tions. These carvers and their intersections with the model give
indication of where, how much and in which direction the surface
is to be deformed. Some triangles may have multiple intersections
with carvers while others may have none. Triangles with no carver
intersection correspond to those parts of the shape where we can
rely only on silhouette information.

We associate each triangle of the deformable mesh, whenever
available, with a carver that satisfies the following three
conditions:

e The angle between the triangle normal and the carver direction
(originating from the camera optical center and pointing to the
range point) takes a value in the interval [0, t/2].

e The carver intersects the triangle; or the line of the carver inter-
sects the triangle and the associated range point lies in the vicin-
ity of the triangle.

e The intersection of the triangle plane with the line of the carver
is the closest to the triangle centroid as compared to all other
intersections with eligible carvers.

Thus a carver, even if it does not intersect a given triangle, can
be assigned to the triangle provided that its range point is close en-
ough to that triangle (recall that carvers are line segments, not
lines). In this way, the range points that systematically fall into
the outside vicinity of the silhouette model (possibly due to imper-
fections of the acquisition system) are also taken into account.
“The vicinity of a triangle” can be defined based on the current res-
olution of the deformable mesh. We define it as the sphere neigh-
borhood of the triangle centroid with radius equal to the current
value of ¢ ;. Also note that, by definition, while at most one car-
ver can be assigned to a given triangle, a carver may be assigned to
multiple triangles. In Fig. 5, we illustrate the carver assignment
process for three distinct cases.

The carver assignment process involves identifying ray-plane
intersections which can efficiently be computed [38]. Moreover
carver assignment is initially performed on a coarse silhouette
model that is restructured (or already reconstructed) using a rela-
tively large value of &, as compared to the resolution of the range
data. The computational efficiency of the initial carver assignment
algorithm can further be improved by exploiting the fact that near-
by triangles in space have also nearby carvers with respect to the
scanning order of the range stripes.

CoP

Fig. 5. Illustration of the carver assignment process for three distinct cases. The first
carver intersects the leftmost triangle, hence it is an eligible carver for that triangle.
The lines of the second and the third carvers intersect the middle and the rightmost
triangles, respectively, but the carvers themselves do not. The second carver is not
an eligible carver since its range point is not in the vicinity of the associated triangle
whereas the third carver is an eligible one since its range point lies in the vicinity of
the triangle.
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5.2. Computation of displacement

Let {C/},1=1,2,...,L, denote the carvers assigned to the trian-
gles that share the vertex v, where L is the number of these carvers.
Each carver C;, associated with a range point r;, exerts a displace-
ment d;(v) on the vertex v:

d(v) = 6,(v)N(1y), (13)

where N(r) represents the unit vector that is normal to the optical
triangulation surface at the range point r,. Each displacement com-
ponent, §(v), is determined based on the Euclidean signed dis-
tance of the vertex v to the plane P, which is tangent to the
optical triangulation surface at the range point. Hence, the target
surface S is locally approximated with the tangent plane of the
range point as illustrated in Fig. 6. The average of these displace-
ments, when projected to the surface normal of the deformable
mesh, determines the overall displacement d(v) at the vertex v
(see also Eq. (5)):

L
dw) = (z Sd)- N(v)) N) (14)
=1

The magnitude of each displacement §;(v), hence the magnitude of
the overall displacement d(v), is bounded above by &nin/2. We note
that if a triangle has no carver, its contribution to the displacements
of its vertices is assumed to be zero.

The above formulation for computing the displacement d(v) re-
quires the normal information on the range surface, which we esti-
mate based on the optical triangulation model. Alternatives also
exist in case a triangulated range surface is not available but only
a set of range points is provided or in case normal vectors are
too much influenced by sensor noises and hence are not reliable
to be used for surface reconstruction. One such alternative would
be, for each displacement component §;(v), to use the signed dis-
tance of the range point r; to the plane of the triangle to which
the corresponding carver {C;} is assigned. The displacement d(v)
could then be computed, though less accurately, in the same way
as given in Eq. (14).

We also note that, in our formulation, the displacement d(v)
does not include any component that enforces the final recon-
struction to be consistent with the silhouettes. Incorporating sil-
houette information as a hard constraint [30,31] or as an
additional force component [28] may indeed improve reconstruc-
tions when fusing it with noisy and unreliable information such
as photo consistency (or stereo). However, the range data inferred
from optical triangulation, though sparse, is usually very accurate.
Hence, in our case, enforcement of silhouette consistency during
deformation does not bring in any significant improvement, and

r;: range point

C,: carver

Fig. 6. Signed distance of a vertex to the range surface associated with the range
point of a carver.

might even deteriorate the quality of reconstruction, for instance
in case there are slight discrepancies between silhouette and opti-
cal triangulation geometries due to imperfections of the acquisi-
tion system.

5.3. Update of carvers

As the deformable mesh evolves, its geometry changes. Thus the
carver information has to be updated at each iteration. If the carver
of a triangle no longer satisfies the properties specified in Section
5.1, a new carver is sought for that triangle. The search for a new
carver is fast and affordable, since it suffices to search only in a
small scan-order neighborhood of the invalid carver (see Fig. 7).
We define the neighborhood of a carver by the lines of sight in
its vicinity. The carver neighborhood can easily be deduced from
the range-stripe adjacency information. Recall that each range im-
age gives a laser stripe, and each pixel on a stripe gives a range
point and a line-of-sight. To support the carver update process,
we initially index the lines of sight into a two dimensional array
L. Each line-of-sight, L;;, can thus be accessed by specifying two
indices, i for the source range image and j for the row of the corre-
sponding stripe pixel (recall that stripes are vertical in our case).
Then the carver neighborhood is simply given by the set {Li.,;}
where p and r are integers ranging from —W; to W; and from
—W, to W», respectively. The choice of the size of the neighbor-
hood window, (2W; + 1) x (2W; + 1), mainly depends on the den-
sity of the range samples and the resolution of the deformable
model.

As the deformable mesh evolves, its connectivity also changes
due to restructuring operations. An instance of carver update is
thus due to a split or flip operation that creates new triangles on
the restructured mesh. The carver of a new triangle created by a
split operation is inherited from its parent and then updated
searching within its neighborhood. Likewise, the carver of a trian-
gle created by an edge flip is inherited from one of the triangles
that formerly share the flipped edge, whichever is more appropri-
ate, and then locally updated.

The carver update process should ideally be invoked for all the
triangles of the deformable mesh. However, that would be too
costly to repeat at each iteration since it is not possible to define
a carver neighborhood for the triangles currently having no carver.
Fortunately, a triangle without carver, which is not neighboring to
some triangle that already has one, is very unlikely change its state
in one single iteration. Thus, we invoke the update process only for
the triangles that already have carvers or that are neighboring to
some triangles with carvers. The carver neighborhood for each of
these non-carver triangles is obtained from the carver of the neigh-
boring triangle.

Fig. 7. A typical neighborhood of lines-of-sight around the carver of a triangle.
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5.4. Algorithm

The input to the fusion algorithm is the initial silhouette model
associated with carvers and one or more triangulated range
surfaces. The initial model is iteratively deformed by applying
the surface evolution Eq. (1). The algorithm is repeated for a set
of decreasing values &n;,. A carver is said to be neighboring to a
vertex if it belongs to one of the triangles incident to the vertex.
The vertices of the initial deformable mesh, My, are all set to be ac-
tive except for those having no neighboring carver. The coarse-to-
fine fusion algorithm is then as follows:

For a set of decreasing values of &y,
Restructure the initial mesh by T, (My);
Activate vertices with neighboring carvers;
Iterate on k

Update carvers of active triangles;
Move active vertices by Tq(My);
Smooth active vertices by T(My);
Restructure active edges by T, (My);
Deactivate vertices that no longer move;
Till convergence
Set Mgy = M,;

Note that the displacement and smoothing operators are applied
only to active vertices of the deformable mesh whereas the restruc-
turing operator is invoked only for active edges, that is, for edges
with at least one active vertex. Likewise the carver update process
is applied only to active triangles having at least one active vertex.
Thus as iterations proceed and as more and more vertices become
inactive, the time spent at each iteration significantly reduces,
yielding on overall a computationally efficient algorithm.

There are various alternatives to set the convergence criterion.
Ideally, the algorithm converges when the vertices of the deform-
able mesh no longer move, that is, when the equilibrium condition
in Eq. (2) is satisfied. In practice, the algorithm can be terminated if
the number of iterations exceeds a given threshold or when the er-
ror between the object surface and the deformable mesh falls be-
low a certain value. We terminate the algorithm when the
average of the displacements of the active vertices falls below a
predefined threshold that is proportional to &;,; more specifically,
the threshold is set to be &y;,/15 in our experiments.

The choice of the initial &y, is critical and usually an initial va-
lue which is sufficient to represent the visual hull of the object
works well in practice. As the deformation algorithm is reiterated
by some decreasing values of &y, each time at some higher resolu-
tion, the details on the surface cavities are gradually recovered.
This coarse-to-fine fusion scheme reduces the risk of leaving some
parts of the deformable mesh erroneously uncarved and yields a
robust surface reconstruction against possible deficiencies in the
range data.

6. Results

We have tested our fusion technique on four real objects. The
original images of these objects, which are the Elephant (made of
wood), the Head (made of stone), the Hand (made of plastic) and
the Cup (made of stone) are displayed in Fig. 8. The resolution of
the images acquired for both silhouettes and range data is 2000
by 1310 pixels. For reconstruction of the silhouette model of each
object, we use a sequence of 72 images that corresponds to a com-
plete turn of 360°. The number of optical scans performed for range
data acquisition and the angle step size of the turntable depend on
the shape complexity and size of the reconstructed object. For the
Hand object that poses severe occlusions, we have conducted three
separate scans, each resulting in a sequence of 180 range images
for a complete rotation of the object with an angle step size of
two degrees. The angle step size is set to be one degree for the Ele-
phant and Head objects, and two degrees for the Cup. We have per-
formed a single scan for the Head and Cup objects, and two
separate scans for the Elephant. In all our experiments, we have
used a Nikon-D1H camera for image acquisition and a Lasiris
focusable non-Gaussian single-line projector (670 nm, 5 mW
diode, 45° fan angle) for laser scanning.

6.1. Reconstruction experiments

In Fig. 9 we demonstrate the fusion algorithm on the Head
object. In the first row, we display two views from the optical
triangulation model obtained from a single scan and the silhou-
ette model associated with carvers of the range data. The second
row displays the surface models reconstructed at increasing lev-
els of detail by setting the minimum edge length parameter, &uyin,
successively to 0.029, 0.015 and 0.007. The values of & p,;, are
normalized with respect to the object size, that is, by the radius
of the smallest sphere that bounds the object volume. The last
row provides various views from the highest level of detail.
We observe that the fusion algorithm satisfactorily recovers
the parts that are missing in the optical triangulation model
such as the holes on the hair of the Head. This is thanks to
the reconstruction algorithm that makes use of not only the
range points but also their carvers and the visual hull. The
recovered surface information on the cavities that are missing
in the optical triangulation model is not necessarily exact, but
faithful to the real surface. We also observe that the fine details
of the optical triangulation model, even the periodical pattern of
vertical ridges, are accurately represented at the highest level of
the reconstruction. Note that the artifacts which are in the form
of vertical ridges are also visible in the optical triangulation
model. These artifacts, which are due to the imperfections of
the range data acquisition system, are smoothed out at lower
levels of detail. In Fig. 10, we zoom on the reconstructed Head

Fig. 8. Original images of Head, Elephant, Hand and Cup objects.
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Fig. 9. Head reconstruction. (First row) Two views from the optical triangulation
model and the silhouette model associated with range data (yellow and blue colors
indicate triangles with and without carvers, respectively). (Second row) Fused
models at increasing levels of detail. (Third row) Various views from the highest
level of detail. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

models to better observe the improvement obtained at each
resolution.

The results of the reconstruction process for the Elephant are
provided in Fig. 11. In the first row, we display the two optical tri-
angulation models obtained from two separate scans and visualize
the initial carver assignment on the silhouette model. The surface
models displayed in the second row are reconstructed by setting
Emin SUccessively to 0.024, 0.017 and 0.010. The last row provides
various views from the highest level of detail. We observe that
the obstructed inner faces of the legs, the trunk and the top sec-
tions of the model, which are missing in the optical triangulation
models, are recovered partly with the line-of-sight information
and partly with the silhouettes.

The Hand object poses severe occlusions due to the fingers,
hence we perform three separate scans to improve the surface cov-
erage. The first row of Fig. 12 displays the three optical triangula-
tion models obtained from these scans along with the silhouette

Fig. 10. Zoom on the reconstructed Head model at increasing levels of detail.

Fig. 11. Elephant reconstruction. (First row) Two separate optical triangulation
models and the silhouette model associated with range data. (Second row) Fused
models at increasing levels of detail. (Third row) Various views from the highest
level of detail.

model. We observe that the range scanner still misses some parts
of the visible surface that are actually not occluded. This is mainly
because our rotational range scanner produces laser planes that
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Fig. 12. Hand reconstruction. (First row) Three separate optical triangulation
models and the silhouette model associated with range data. (Second row) Fused
models at increasing levels of detail. The first two are at level 1 and the other two
are at level 2. (Third row) Various views from the highest level of detail.

converge towards certain locations of the object surface. We recon-
struct the surface model at two resolutions by setting &n, to 0.038
and 0.019. The second row of Fig. 12 displays the models recon-
structed at these two levels of detail side by side for comparison.
The relatively low resolution of the acquired range data in this case
prevents us to reconstruct the surface at higher resolutions. In the
last row we provide various views from the highest level of detail.
We observe that the fingers of the Hand are mostly recovered by
the silhouettes whereas the cavity information of the palm mainly
comes from the range data.

In Fig. 13, we demonstrate the reconstruction process for the
Cup object. In the first row, we display two views from the optical
triangulation model obtained from a single scan, and the silhouette
model associated with carvers of the range data. The Cup object is
of genus two, having two deep holes on its handles. As we observe
from the figure, these holes are missing from our optical triangula-
tion model. Inner parts of such deep hollow surfaces are indeed
very difficult to capture even with scanners which are more
sophisticated than ours. On the other hand, the initial silhouette
model, though it lacks most of the cavity information, satisfactorily
recovers these holes, and when combined with range data, yields
cavity-sensitive complete surface reconstructions. In the second
row of Fig. 13, we display the surface models reconstructed at
increasing levels of detail by setting &m;, successively to 0.036,

Fig. 13. Cup reconstruction. (First row) Two separate optical triangulation models
and the silhouette model associated with range data. (Second row) Fused models at
increasing levels of detail. (Third row) Various views from the highest level of detail.

0.013 and 0.007. In the last row we provide various views from
the highest level of detail.

In Fig. 14, for each object, we zoom on both the initial silhouette
and the final reconstructed models to better observe the surfaces
before and after deformation. This figure also demonstrates how
the line-of-sight and silhouette information are integrated in a
smooth and robust manner so as to obtain watertight reconstruc-
tions. When compared with the optical triangulation models
shown in the previous figures, we observe that the holes on the
hair and on the nose of the Head object, the ripples on the Cup,
the palm of the Hand and some part of the trunk of the Elephant
are recovered by the line-of-sight information to the extent that
is possible with the available range data. On the other hand, the sil-
houette information compensates some missing surface informa-
tion on the thumb and on the palm of the Hand, on the leg and
on the trunk of the Elephant, and almost fully recovers the handle
of the Cup.

We measure the improvement obtained by the fusion algorithm
with respect to the silhouette model, using the average Euclidean
distance of the range points to the reconstructed surface, €(R, M),
as defined in Eq. (3), where R denotes the set of range points and
M is the reconstructed mesh. Note that € is a directed distance met-
ric that measures the faithfulness of the reconstructed surface to
the accurate but incomplete range data. In Table 1 we provide,
for each of the four objects, the average distances of the range
dataset to the silhouette model and to the models reconstructed
by fusion at increasing levels of detail. The distance measure is cal-
culated by assuming that each object is circumscribed by a bound-
ing sphere of radius 100. For example, the Head statue is actually
bounded by a sphere of radius approximately 15 cm and hence
the average distance of the range data to the fused model at the
highest level of detail is about 0.04 mm.

In Table 2, for our method, we provide the number of triangles
in the reconstructed model, the number of surface evolution itera-
tions and the execution time needed for convergence at each level
of detail. The execution times are measured on a 2.2GHz AMD Ath-
lon 4200+ dual core processor. The given execution times do not
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Fig. 14. Zoom on the reconstructed surfaces before and after deformation. For each object, the model on the left is the initial silhouette model and the one on the right is the
final reconstruction at the highest resolution (yellow and blue colors on the initial silhouette models indicate triangles with and without carvers, respectively). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Average distances of the range datasets to the models reconstructed by shape from
silhouette (SFS) and by fusion at increasing levels of detail.

Model € — SFS € - Level 1 € - Level 2 € - Level 3
Head 1.21 0.21 0.08 0.03
Elephant 1.89 0.27 0.15 0.12
Hand 1.03 043 0.30 -
Cup 1.72 0.37 0.12 0.08

Table 2

Number of triangles, number of iterations and execution time at each level of detail of
the reconstructions.

Model Triangles (#) Iterations (#) Time (s)
Head 7.8K 302K 119.7K 6 4 3 19 54 171
Elephant 137K  29.1K 904K 9 7 5 60 72 142
Hand 29K 117K - 9 3 - 18 18 -
Cup 52K 388K 1522K 7 7 3 16 124 229

include the times spent for the initial carver assignment process.
Our current implementation requires 17, 19, 33 and 91 s for initial
assignment of carvers on the Cup, Hand, Head and Elephant ob-
jects, respectively.

We compare our reconstruction technique with the volumetric
method proposed in [5]. The method is based on volumetric space
carving. An initial volumetric model representing the visual hull is
carved voxel by voxel at a fixed resolution through the lines of
sight defined by the range data and then triangulated using the
iso-surface information so as to obtain a cavity-sensitive water-
tight surface representation. The method produces accurate sur-
face reconstructions which however suffer from severe
topological problems and disturbing visual artifacts, especially at

high resolutions. The Head, Cup, Elephant and Hand models, when
each reconstructed with this method at the highest possible reso-
lution using the same dataset, result in € values, 0.06, 0.11, 0.09
and 0.27, respectively. For the Elephant and Hand objects, the max-
imum achievable resolutions match the resolutions of the recon-
structions obtained with our technique. Hence the resulting €
values are comparable with, even slightly better than the values
that we have obtained, though the reconstructions still contain
small surface artifacts. For the Head and Cup objects, the volumet-
ric method does not permit high resolution reconstructions with
the available data and hence cannot obtain the accuracy that we
can achieve with our technique. In Fig. 15, we display three Head
models, one reconstructed with the volumetric method, and the
other two with ours at two different resolutions using &min =
0.012 and &pj, = 0.007. The resolution obtained with &y, = 0.012
matches the resolution of volumetric method, which is limited
with 128 x 128 x 128 partitioning of the bounding box. At higher
resolutions of the volumetric reconstruction, topological problems
and visually very disturbing intolerable artifacts such as large pro-
trusions begin to appear on the reconstructed surface due to irreg-
ular and incomplete range data. Some of these artifacts can even be
observed on the current resolution as displayed in Fig. 15, e.g., the
protrusion on the hair. Our deformation-based technique, on the
other hand, can produce a higher resolution mesh representation
of the same object surface (with &y, = 0.007), which is more accu-
rate, smooth, and free of topological problems and artifacts. At the
resolution obtained with &, = 0.012, which is comparable to the
resolution of the volumetric reconstruction, our method still ob-
tains a visually much more pleasant result with almost the same
accuracy (e = 0.067 against € = 0.064). As for the computational
complexity at this relatively low resolution, the fusion algorithm
takes about 143 s in our case whereas it takes about 95 s for volu-
metric reconstruction. Note also that the volumetric method re-
quires the triangulated surface information during the fusion
process while our method uses only the range points and their sur-
face normals.
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Fig. 15. The Head models reconstructed (left) with volumetric carving method, (middle) with our deformation-based technique at low resolution, and (right) with our
deformation-based technique at high resolution. Note the surface artifacts on the model reconstructed with the volumetric carving method, such as the protrusion on the

hair.

6.2. Parameter setting

There are several parameters used in our algorithm, that need to
be set prior to reconstruction. These are the parameters of the
smoothing operator, / and g, the initial value of the minimum edge
length parameter &ni,, and finally the size of the neighborhood
window, (2W; + 1) x (2W, + 1), used for carver update.

Our coarse-to-fine reconstruction algorithm starts with an ini-
tial &min which can then gradually be decreased as desired until

the final highest resolution is achieved. The lower bound of the ini-
tial &, is determined by the resolution and the quality (i.e., the
regularity and the sparseness) of the available range data whereas
the upper bound depends mainly on the shape complexity. The ini-
tial value of &y, should be small enough to adequately represent
the convex hull of the object, but also sufficiently large for the sake
of computational efficiency. To set the initial value of &y, for each
reconstruction, we have conducted experiments with its varying
values. In Figs. 16 and 17, we present the results of these experi-
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Fig. 16. Reconstruction error € vs. initial &y, for the Head object. The images displayed are reconstructions at the highest resolution available, ¢ i, = 0.007, starting with the
specified values of initial &y;,. Our operating point is (0.029,0.030) as pointed on the plot.
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Fig. 17. Reconstruction error € vs. initial &y, for the Hand object. The images displayed are reconstructions at the highest resolution available, ¢ ,,;, = 0.019, starting with the

specified values of initial &y;,. Our operating point is (0.038,0.3) as pointed on the plot.

ments for the Head and Hand objects, where we plot the recon-
struction error € as a function of the initial e;, and display some
of the reconstruction results obtained at the highest available res-
olutions, & iz = 0.007 and &g, = 0.019, respectively. We have
chosen these two objects for these experiments since they exhibit
different properties in terms of the quality of the range dataset and
the overall shape complexity. On the provided figures we observe
that the initial &y, can be chosen safely within a sufficiently large
interval, which is (0.022,0.058) and (0.027,0.044) for the Head and
Hand objects, respectively. Within these intervals, the reconstruc-
tions are all good and differences are hardly noticeable. At the low
extreme of these intervals, the protrusions start to appear on the
surface, whereas at the high extreme some shape details, e.g., the
nose on the Head and the fingers on the Hand, start to get eroded.
We also observe that the interval of the initial &y, for the Hand ob-
ject is smaller than the interval for the Head since the range data-
set is less dense and more deficient in the former case. Moreover,
the fingers of the Hand pose difficulties for reconstruction at low
resolutions. Note also that, in both cases, our choices of the initial
&min adequately address the trade-off between computational com-
plexity and reconstruction accuracy.

We set the window size parameters, W; and W, of the carver
update process, based on the chosen value of the initial &, and
the resolution of the range data. For each reconstruction, during
the initial carver assignment procedure, we find, for each triangle

of the deformable mesh, the scan-order neighborhood of the lines
of sight intersecting the triangle. The average size, N; x N,, of this
neighborhood, which is computed over all the triangles, can then
be used to set the parameters W; and W,. We set the parameters
as Wi =2N; and W, = 2N, so that the window approximately
covers all the carver lines within the neighborhood of the triangle
to be updated. This setting is used in all our reconstruction exper-
iments and yields always good results since the deformable model
proceeds slowly (its speed bounded by &nin/2) and smoothly. Note
also that when the resolution is increased by some factor during
coarse-to-fine deformation, the parameters W; and W, are de-
creased in the same proportion for computational efficiency.

For the smoothing parameters 1 and u, we have used the setting
2 =0.6307 and pu = —0.6732, as suggested in [34]. Recall from Sec-
tion 4.2 that this setting results in a pass-band frequency kps ~ 0.1
for the transfer function, f(k) = (1 — Zk)(1 — uk), of the smoothing
filter. To show the optimality of this selection in our case, in Fig. 18,
we plot the reconstruction error € as a function of the pass-band
frequency k pg, 0 < kpg < 1, for the Head and Hand objects. For each
k pg value, we compute the corresponding values of /. and u by
using kpg =1+ % and f(1) = —f(2) so as to have a fast and stable fil-
ter (see Section 4.2 and [34] for details). We observe that the opti-
mal setting in both cases is around kp=0.1 and the
reconstruction performance is not very sensitive to the choice of
kpg around this operating point. But as the value of kpg is increased
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Fig. 18. Reconstruction error € vs. smoothing parameter kpg for the Head and Hand objects. The images displayed are reconstructions at the highest resolution available, using
the specified values of kpg. Our operating point is at kpg ~ 0.1, which corresponds to 2 = 0.6307 and u = —0.6732.

too much, protrusions start to appear on the reconstructions. For
the Hand object, the algorithm does not even converge for values
kpg > 0.6. In [34], it is conjectured that the values of k pg from
0.01 to 0.1 produce good fairing results and our findings are in
accordance with this observation.

7. Conclusion

We have presented a surface reconstruction method based on
mesh deformation that fuses silhouette geometry and range data
to construct cavity-sensitive and hole-free object models. The algo-
rithm starts with an initial silhouette model, that describes the ob-
ject visual hull, and then deforms it to amend missing cavities
using the triangulated range data. As a by-product, the fusion tech-
nique produces reconstructions of the object surface at increasing
levels of detail.

The proposed technique results in aesthetically pleasant and
topologically correct mesh models which are always more accurate
as compared to silhouette-only and range-data-only reconstruc-
tions. The experiments show that it is possible to produce robust
and reliable high resolution reconstructions even in the presence
of severe occlusions and deficient range data, using a simple low-
cost single-stripe rotational scanner. This is thanks to the em-
ployed coarse-to-fine strategy, which not only gives robustness
but also significantly improves the computational efficiency. By
using a slightly more intricate scanner than the one we employed
for optical triangulation in our experiments (simply incorporating
some translational movement of the laser projector for example), it
would be possible to obtain watertight models even with better
accuracy.
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