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Abstract
We present a 3-D correspondence method to match the geometric extremities of two shapes which are partially isometric. We
consider the most general setting of the isometric partial shape correspondence problem, in which shapes to be matched may
have multiple common parts at arbitrary scales as well as parts that are not similar. Our rank-and-vote-and-combine algorithm
identifies and ranks potentially correct matches by exploring the space of all possible partial maps between coarsely sampled
extremities. The qualified top-ranked matchings are then subjected to a more detailed analysis at a denser resolution and assigned
with confidence values that accumulate into a vote matrix. A minimum weight perfect matching algorithm is finally iterated to
combine the accumulated votes into an optimal (partial) mapping between shape extremities, which can further be extended to
a denser map. We test the performance of our method on several data sets and benchmarks in comparison with state of the art.

Keywords: 3-D shape matching, digital geometry processing

ACM CCS: I.3.5 [Computer Graphics]: 3-D Shape Correspondence—partial shape correspondence, isometric distortion, ex-
tremity matching, partial isometry.

1. Introduction

Finding correspondences between shapes is a fundamental problem
in computer vision and graphics with numerous applications, such
as deformation transfer, statistical shape analysis, shape retrieval
and registration [BBK08][vKZHCO11]. The shape correspondence
problem can be divided into two categories as complete and partial
correspondence, where the latter deals with shapes that are common
or similar only partially. Partial shape correspondence can also be
thought of as a more general and hence harder variant of the former,
since the partial matching set, which is a priori unknown, needs to
be determined from the global set of surface points or mesh vertices
that define a shape as a whole. In this paper, we address the partial
correspondence problem, and consider it in its most general setting
where shapes to be matched may have multiple common parts at
arbitrary scales as well as parts that are not similar at all.

Isometry is an important clue in resolving shape correspondences
since similar shape parts usually have similar metric structures. Al-
though partial matching can be achieved by enforcing geodesic
metric consistencies or by searching for partial mappings with min-
imum isometric distortion, the arbitrary scale of similar parts, which
may change from one shape to the other, usually poses an important
challenge that first needs to be resolved.

We propose a rank-and-vote-and-combine (RAVAC) algorithm
to find correspondences between partially isometric shapes. We pri-
marily target the partial correspondence problem, though the pro-
posed scheme can be used to generate complete correspondences
as well. Our algorithm collects partial isometry cues from the given
shapes by considering all possible partial mappings (relations) be-
tween shape extremities and accumulates the collected information
into a vote matrix which is then used to find an overall optimal
partial correspondence via perfect graph matching. The main idea
in RAVAC is to measure a correspondence pair’s deviation from
isometry based on only part of the shape. A small deviation from
isometry gives a high confidence for that correspondence, and a
large deviation gives a low confidence. Since the part segmentation
is not available in advance, the algorithm computes an average de-
viation (distortion) value over many candidate segmentations. Each
candidate segmentation is generated using a triplet of extremities
from the source and target shapes. The ‘good’ triplets needed to
generate part segmentations are obtained by ranking all possible
pairs of correspondences between extremities in advance and pick-
ing the triplets only from the pairs with low distortion estimates.
To estimate distortions for ranking, we employ a heuristic based
on pairs of k-tuples of extremities from the source and target with
similar intrinsics.
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The paper is organized as follows. In Section 2 we discuss the re-
lated work and elaborate on our contributions. Through Sections 3–7
we describe the main components of our correspondence scheme,
which are sampling, ranking, voting, combining and dense match-
ing, respectively. The computational complexity of the overall shape
correspondence algorithm is relatively low, as analysed in Section 8
We test the performance of our method on several data sets and
benchmarks in comparison to two state of the art methods, as pre-
sented in Section 9 where we also discuss the limitations of our
approach. We provide concluding remarks and possible directions
for future research in Section 10.

We note that the source code and the executables for the
method that we present in this paper are publicly available in
http://home.ku.edu.tr/∼yyemez/partialcorresp.

2. Related Work

There are different ways of dealing with the scale problem in the lit-
erature, whether targeting partial or complete shape correspondence.
Some methods simply assume that shapes come in compatible scales
[GMGP05, BBK06, HAWG08, TBW*09, vKZH13] which is rather
a strong assumption, whereas others normalize the original geome-
try with respect to some global intrinsic property, such as maximum
geodesic distance [SY11, SY12a, ZSCO*08], maximum centricity
[ACOT*10] or total surface area [OMMG10, PBB11]. Relying on
global properties for normalization may lead to satisfactory results
in the case of perfect isometry but may perform poorly when the
shapes to be matched are nearly isometric. For partial matching, on
the other hand, the success depends highly on the degree of scale
difference between similar parts of the shapes.

As a solution, some shape matching techniques rely on
scale-invariant local shape descriptors [FS06, ZBVH09, BK10,
ZWW*10]. Local shape information is valuable for shape corre-
spondence in the case of non-isometric deformations, but otherwise
it is considered as less reliable than global shape information, such
as isometry. The methods which rely only on local geometric infor-
mation may not perform well when the shapes to be matched exhibit
large variations in their local geometry, or may easily confuse sur-
face parts when there are many points that are locally similar. Hence,
some feature-based correspondence algorithms include also a prun-
ing procedure that takes into account isometric clues by enforcing
geodesic consistency [TBW*09, ZSCO*08, HAWG08, ACOT*10].
Another important issue with the use of local shape descriptors,
especially in the case of partial matching, is that different (uncom-
mon) surface parts may interfere to computation of the descriptor at
a given point. A very recent work [vKZH13] addresses this problem
by introducing a local shape descriptor, namely, the bilateral map,
whose region of interest is defined by two feature points.

An alternative to geodesic metric for the measurement of isomet-
ric distortions is the diffusion metric which is less accurate but gener-
ally considered as more robust to topological noise [OMMG10]. Lo-
cal scale differences are, however, difficult to handle using diffusion-
based metrics. The commute-time metric, for example, addresses
the scale problem only globally [WBBP11], and hence cannot be
used for the partial matching problem. Likewise, the heat kernel

signature, as used in [PBB11, DLL*10] to address the part match-
ing problem, requires setting of a timescale parameter that itself
depends on the global shape scale. A particular setting of the partial
correspondence problem is part matching where one of the shapes
to be matched is an isometric part of the other up to a scale [PBB11,
DLL*10, SY12b, KJS07]. In this setting, the correspondenceless
approach in [PBB11] optimizes the region-wise similarity over the
integration domains relying on diffusion-based local shape descrip-
tors, whereas [SY12b] introduces a novel scale-invariant isometric
distortion measure to address the scale normalization problem.

A common approach in the case of complete shape correspon-
dence is to embed input shapes into spectral domain where the scal-
ing problem is implicitly handled [JZ06, MHK*08, SY12a, CH03].
These methods, however, treat the scale problem globally, hence
cannot be applied to partial correspondence. A better alternative for
partial matching is based on the Möbius transformation which is
used for conformal embedding of the given shapes into a canoni-
cal coordinate frame on the complex plane where deviations from
isometry are approximated based on mutually closest points [LF09].
This shape correspondence method is basically a voting technique
[Möbius Voting (MV)], which aims to find a reliable but sparse
matching between two partially isometric shapes. The algorithm it-
eratively samples a random triplet from each of the shape surfaces.
The triplet pair then defines two Möbius transformations that embed
the given shapes (after mid-edge flattening) into a canonical coor-
dinate frame on the complex plane. Mutually closest points on this
plane are considered as candidates for correspondence and voted
based on the distances in between. The final output of the algo-
rithm is a set of correspondences each associated with a confidence
value. The MV method is capable of producing a small number
of reliable correspondences, but usually fails to achieve a reliable
dense matching. Although good triplets of surface points can bring
the accommodating parts of the given shapes to the same pose and
scale successfully, the same transformation applied to other parts
that do not necessarily expect the same transformation may easily
distract the global voting process. The experiments conducted in
[LF09] actually show that the method becomes unstable when the
input shapes exhibit less than approximately 40% similarity.

Following [LF09], several methods that use Möbius transform for
shape matching have then been proposed, though not in the context
of partial correspondence [ZWW*10, KLCF10, KLF11, LAAD11].
In particular, the Blended Intrinsic Maps (BIMs) method of [KLF11]
can be considered as an extension of MV, specifically designed to
address the complete dense correspondence problem. Instead of
a voting approach, the BIM method uses blending: It generates
many complete maps between shapes via Möbius transform based
on triplets of extremal points, weights these maps at every surface
point by distortion and then blends them into a final map by com-
puting an approximate geodesic centroid for every mapped point.
BIM works very well in the case of complete shape matching, but
does not support partial matching since it is essentially based on
generation of complete candidate maps. Such complete maps do
not actually exist when the shapes to be matched have dissimilar
parts that constrain the distortion estimate. Theoretically, one could
envisage using BIM to find partial correspondences since it blends
the generated complete maps by weighting. This would however
yield robustness problems similarly as MV (in fact, more severely
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than MV), as we will demonstrate by experiments in this paper. In
contrast to these two methods, our method explicitly explores the
space of partial maps defined over shape extremities. These par-
tial maps are populated via region of interest sampling and used
to accumulate partial isometric clues (distortions) into a vote ma-
trix. Hence, we use voting to match shape extremities and blending
to extend the obtained sparse correspondence to a dense one. We
note that, for the case of complete dense correspondence, the BIM
method has been outperformed by several recent works based on
functional representation of correspondences [OBCS*12, PBB*13,
ROA*13], which however lack partial shape matching support.

Another state-of-the-art correspondence method is the
deformation-driven technique of [ZSCO*08], which can handle
non-isometric shape variations (up to a certain degree) as well as
partial isometries. In this method, an optimal correspondence is
sought between shape extremities via priority-based combinatorial
tree traversal by pruning the search space according to some criteria
based on local shape similarity and geodesic consistency. For each
candidate correspondence set, the source shape is deformed to the
target based on these small number of landmarks (anchor points),
and the correspondence with the smallest distortion gives the best
matching. The major drawback of this scheme is the extensive com-
putational load due to the process of repeated deformations. Another
shortcoming is the need for error threshold parameters employed in
tree pruning, which are usually data dependent. Hence, it is often
very difficult to set these parameters correctly and the combinatorial
tree traversal may easily miss some of the correct feature pairings.
Moreover, the geodesic information which is used to prune the com-
binatorial search tree is normalized based on some global instrinsics,
which is problematic for matching arbitrarily scaled shape parts as
discussed before.

2.1. Contributions and advantages

In our previous work [SY12b], we have addressed the part matching
problem (not the partial correspondence problem in the most general
setting) and described a method that also relies on shape extremities.
However, the framework described in that work is completely dif-
ferent than our current solution and actually very simplistic, aiming
to introduce a novel scale-invariant isometric distortion measure. Its
focus is on promoting this novel distortion measure, not a partial
matching algorithm. The method simply assumes that the top M-
shape extremities of one shape are all included in the other shape as
well and runs a combinatorial search over all possible permutations
to match these extremities with M extremities of the other, mini-
mizing the proposed novel distortion measure. The method that we
present in this paper does not use this distortion metric and does
not either employ such a simplistic combinatorial search, rather it
accumulates partial isometric clues by traversing all possible partial
maps, employing more sophisticated algorithms for ranking, voting
and combining.

There are few methods in the literature, that are capable of ad-
dressing the partial correspondence problem in the most general
setting where shapes may have multiple common parts at arbitrary
scales as well as parts that are not similar [LF09, FS06, TBW*09,
ACOT*10, ZSCO*08]. All these methods mainly rely on scale-
invariant local shape descriptors except for the MV method [LF09].

Figure 1: Samples (green spheres) on two different shape pairs. A
safe map generator G(k)

m is expected to choose k samples from each
common shape part (red regions).

Note also that the methods in [TBW*09, ACOT*10, ZSCO*08] en-
force geodesic consistency in addition to local shape similarity, and
hence resort to global intrinsic properties for shape normalization.
When compared to MV, our method has several advantages. First,
we handle the scale problem inherent to partial correspondence
directly in the three-dimensional (3-D) Euclidean space wherein
isometry is originally defined, hence as free of embedding errors.
Secondly, our method can produce reliable dense correspondences
between partially isometric shapes. Thirdly, we impose no restric-
tion on shape topology. Finally, our method generates more reliable
and accurate correspondences, especially at shape extremities, and
can handle shape pairs with less similarity overlap.

In view of the above discussion, the main contribution of this work
is a computationally efficient and robust method that can accumulate
partial isometric clues into a vote matrix and thereby computes
partial shape correspondences which can be dense or sparse. We note
that the focus of this work is on partial correspondence, though the
proposed algorithm can also generate complete correspondences.

3. Sampling

We pick shape extremities of the given shapes by using local ex-
trema of the integral geodesic distance function [HSKK01]. Let
μ(v) denote the integral geodesic distance at vertex v. Prior to com-
putation of μ, we apply Laplacian smoothing to each shape model
to prevent samples at noisy bumps. We then initialize the sample
sets with local maxima and minima of μ. The local maxima are
expected to be on the tips of a given shape, whereas local minima
correspond to surface points which lie near the centre of the shape
[ZSCO*08]. The initial sample sets are then exposed to two steps
of pruning, first of which clusters geodesically close samples into
the most extreme ones where the closeness threshold is determined
based on the maximum geodesic distance gmax on the surface. In
our experiments, we have used the value obtained by dividing gmax

with a factor h ∈ [10, 20] depending on the data set. The parameter
h basically determines the scale of sampling, which we set manu-
ally by experimenting. The second step of pruning removes a local
maximum (minimum) v from the sample set if μ(v) is less (greater)
than the average μ to cancel out redundant extremities that are not
on tips (central region). The vertices resulting from this sparse sam-
pling process constitute the sets S (source) and T (target) to be
matched (Figure 1).
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4. Ranking

In the ranking phase, we rank all possible pairs of correspondences
between extremities based on their deviations from isometry. We
estimate the deviation for each pair, hence the isometric distortion,
using a heuristic based on pairs of k-tuples with similar average
normalized geodesic distances on the source and target. We describe
the ranking process in detail in the sequel (see also the pseudo-code
of the overall correspondence algorithm given at the end of this
section).

4.1. Distortion estimate

Given a mapping § : S → T , i.e. a set of correspondence pairs, we
measure the isometric distortion Diso as follows:

Diso(§) = 1

|§|
∑

(si ,tj )∈§

diso(si , tj , §′), (1)

where diso(si , tj , §′) is the contribution of the individual correspon-
dence (si , tj ) to the overall isometric distortion:

diso(si , tj , §′) = 1

|§′|
∑

(sl ,tm)∈§′
|g(si, sl) − g(tj , tm)|, (2)

where g(., .) is the geodesic distance between two vertices on a
given surface. The traversal list §′, which is by default § − {(si, tj )},
includes the correspondence pairs to be traversed in order to compute
the distortion of a given individual correspondence pair (si , tj ). Note
that variants of the isometric distortion function defined by (1) can
also be found in [BBK06] as well as in most of our previous work
[SY11, SY12a, SY13].

An important issue in computation of the isometric distortion
is how to normalize the scale of the geodesic distance function
g involved in Equation (2) since, in the case of partial matching,
there are no agreed maximum geodesic distances on the source and
target due to possible local scale differences. The key observation
here is that the individual isometric distortion of a queried match
(si , tj ) can safely be evaluated via Equation (2) in the absence of
globally normalized geodesics by using a traversal list consisting of
matches from the shape part where the pair si and tj itself resides in.
The geodesic distances for this query can be normalized by using
the maximum geodesic distance within this shape part. However,
since the corresponding shape parts are not known in advance, we
estimate the individual isometric distortion by traversing over all
possible one-to-one mappings of cardinalities 2–5. Note that these
mappings do not include the query (si , tj ) and the cardinality of a
mapping is defined as the number of pairs in it. We do not check
beyond 5 due to efficiency reasons as well as the fact that 5 extremi-
ties (plus si or tj ) are usually sufficient to represent any given shape
part, e.g. large-scale limbs in humans and animals. The estimate,
d̃iso(si , tj ), of the individual isometric distortion of the correspon-
dence (si , tj ) is then computed by

d̃iso(si , tj ) = 1

4

∑
k∈[2,5]

min
l

{
diso

(
si , tj , §(k)

l

) }
, (3)

where {§(k)
l | l = 1, 2, . . . , Lk} is the set of all maps of size k, not

including (si , tj ), and Lk = (|S|−1
k

)(|T |−1
k

)
(k!). We denote this set by

S (k). While computing the distortion via Equation (3), the geodesic
distance function g is normalized for each shape with the maximum
geodesic distance between the k samples of the given mapping.
Taking the minimum in (3) guarantees that if (si , tj ) is a good match
and traverses a list of matches from the same shape part it resides in,
then this is appreciated by selecting the lowest distortion. We then
average over sets of maps with different cardinalities since maps of
small size, e.g. with k = 2 or 3, are likely to fall in the same part as
(si , tj ) but may exhibit symmetric flip problems, whereas mappings
with large cardinalities, e.g. k = 4 or 5, are unlikely to be confused
by flips but have the risk of including irrelevant samples from a
distinct part.

4.2. Safe map generators

In Equation (3), each (si , tj ) traverses all possible one-to-one map-
pings to compute the minimum distortion over S (k). To reduce com-
putation, we prune S (k) so as to keep only the potentially safe maps,
i.e. the maps between k source samples and k-target samples which
are expected to be from similar shape parts (see Figure 1).

To this end, for each k, we define a set of safe map generators,
G(k), which contains all pairs of k-tuples, one tuple from the source
sample set and the other from the target, such that any map between
these tuples is potentially safe. We denote each of these pairs of
sample tuples by G(k)

m ∈ G(k) for m ∈ [1, |G(k)|]. A pair of k-tuples is
identified as a safe map generator if it satisfies the geodesic consis-
tency condition that the average of pairwise normalized geodesics
between source samples is close to that of between target samples.
We normalize the geodesics with the maximum geodesic distance
between the samples of the given tuple. Note that although all k!
mappings generated from a given G(k)

m are referred to as potentially
safe, only a small portion of them are actually correct mappings
between two similar parts. Hence, while evaluating a query match
(si , tj ) via Equation (3), taking the minimum helps eliminating the
contribution of the irrelevant partial maps.

We create the generator sets G(k) incrementally for k = 3, 4, 5 (no
pruning is applicable for k = 2). For k = 3, each triplet of source
samples is tested with each triplet of target samples to meet the
geodesic consistency condition. Among

(|S|
3

)(|T |
3

)
pairwise triplet

combinations, typically 20–30% make into G(3) in our experiments,
where the closeness threshold is manually set as 0.15 by experi-
menting. For k = 4, 5, we incrementally build G(k) from G(k−1). In
each case, a pair of source and target samples appended to an ex-
isting generator G(k)

m triggers a new geodesic consistency test and
typically 2–4% of all possible pairwise combinations are selected.
Some safe map generators from G(3) are demonstrated in Figure 2.

By replacing S (k) in Equation (3) with the potentially safe one-
to-one maps based on G(k), we not only reduce the search space sig-
nificantly but also increase the accuracy by excluding unexpected
distortion values. These unexpected high distortions are due to eval-
uation of (si , tj ) via (unsafe) maps that accommodates samples from
irrelevant shape parts. Once the individual distortions are computed
via Equation (3), for each source sample si , we rank the pairs (si , tj )
based on their individual distortions: We sort all possible |T | dif-
ferent matches with respect to d̃iso(si , tj ) in ascending order and
qualify only the ones with a distortion value that appears before
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Figure 2: Three different triplet pairs (safe map generators) from
G(3) are indicated with large green spheres on three different views of
the same shape pair. Blue spheres represent the remaining samples.

the first significant jump in the corresponding distortion plot. We
assume that a significant jump occurs where the difference between
two consecutive values becomes larger than the sum of the first two
distortion differences, i.e. the sum of the difference between the
first and the second values, and the difference between the second
and the third values in the sorted list. A similar jump thresholding
heuristic is employed also in other shape correspondence works,
such as in [ZSCO*08] for determining the optimal feature size and
in [SY13] for tracking symmetric flips. With the qualified matches,
the voting module is then ready to start, as described next (see also
the pseudo-code in Figure 3).

Input: Extremity sample sets S and T
Output: One-to-one mapping §∗ : S → T
————– Ranking ————–
G(k) for k = 3,4,5: safe map generators, i.e., all pairs of k-tuples of
extremities from the source and target with similar intrinsics;
For each si ∈ S
Estimate d̃iso(si, t j) ∀t j ∈ T based on {G(k)} via (3);
Qualify the match (si, tk) for voting if diso(si, tk) appears
before the first significant jump in the sorted distortion plot of si;
————– Voting —————
Γ: Vote matrix with all entries γi j initialized to 0;
For m = 1 to |G(3)|
If G(3)

m = ((si1 , si2 , si3 ), (t j1 , t j2 , t j3 )) ∈ G(3) generates
§(3)

l = {(si1 , t j1 ), (si2 , t j2 ), (si3 , t j3 )} where all pairs are qualified
Bring meshes to the same scale by multiplying target with
κ = (

g(si1 ,si2 )
g(t j1 ,t j2 ) +

g(si1 ,si3 )
g(t j1 ,t j3 ) +

g(si2 ,si3 )
g(t j2 ,t j3 ) )/3;

Set Sl = {si1 , si2 , si3} and Tl = {t j1 , t j2 , t j3};
Compute regions of interest, Sl and Tl , on source and target;
Spread ∼100 dense samples, Ŝl and T̂l , on regions of interest;
Find the dense map §̂l : Ŝl → T̂l ;
Vote up confidence of extremity match (si, t j) ∈ §(3)

l via
γi j = γi j + exp(−diso(si, t j, §̂l));

————– Combining ————
Set the cost matrix C∗ = ∞;
c∗i j = 1− γi j for high-confidence matches (si, t j);
Repeat
§∗ = minimum-weight perfect matching on C∗
Let (sa, tb) be the least-confident match in §∗;
c∗ab = ∞;
Until there is no jump in confidences of the matches in §∗

Figure 3: The overall RAVAC algorithm.

5. Voting

With the ranking of possible matches in hand, one possibility to
solve the correspondence problem is to select the least distorted
match for each source sample. This straightforward solution would
give a (possibly many-to-one) mapping that would, however, suf-
fer from symmetric flips and mismatches due to low number of
extremities being matched. We, therefore, consult to a voting pro-
cedure which is more robust, that relies on the ranking obtained in
the previous section. The basic idea is as follows. We accumulate
confidence votes for all possible pairs of correspondences between
extremities into a vote matrix. These confidence votes are collected
based on the isometric distortions of the pairs. The distortions are
computed over many part segmentations generated using triplets
of extremities on the source and target. Hence, the voting process
considers only the generator set G(3) (the others are discarded sim-
ply due to computational reasons). Among 3! potentially safe maps
generated from each G(3)

m ∈ G(3), only those containing the matches
qualified in the ranking phase are taken into account. Each such
safe map §(3)

l defines two regions of interest, hence, two part seg-
mentations, on the given two shapes (as will be explained next),
which are resampled and matched at a denser level (see Figure 4).
The resulting isometric distortion is then used to vote for the three
matches contained in this potentially safe map. This is repeated for
all qualified safe maps and the resulting votes are accumulated into
a vote matrix where each entry represents the confidence of a poten-
tial match between two shape extremities. In the sequel, we describe
the voting algorithm in detail.

5.1. Finding regions of interest

Let §(3)
l be a potentially safe map generated from G(3)

m =
((si1 , si2 , si3 ), (tj1 , tj2 , tj3 )) such that §(3)

l = {(si1 , tj1 ), (si2 , tj2 ),
(si3 , tj3 )}. The voting algorithm first brings the shapes to the same

scale by scaling the target mesh with a factor κ = (
g(si1 ,si2 )

g(tj1 ,tj2 ) +
g(si1 ,si3 )

g(tj1 ,tj3 ) + g(si2 ,si3 )

g(tj2 ,tj3 ) )/3 based on the geodesic distance ratios between

the ordered sample points, and then finds the regions of interest
that these shape extremities determine (see Figure 4a). Let the ex-
tremity sample sets {si1 , si2 , si3} and {tj1 , tj2 , tj3} be denoted by Sl

and Tl , respectively. The region of interest on the source shape in-
cludes the source mesh vertices that are close to Sl and distant to
S − Sl . To implement this, we mark a vertex v as a region vertex
if g(s, v) < gl,max ∀s ∈ Sl , where gl,max is the maximum geodesic
between extremity samples in Sl (see Figure 4a, left). To meet the
second requirement, for each maximal extremity s ′ ∈ S − Sl , we
unmark the region vertices that are at most g(s, s ′)/2 apart from s ′,
where s ∈ Sl is the closest extremity to s ′ (see Figure 4a, right). The
region of interest on the target shape defined by the extremity set Tl

is computed likewise.

5.2. Dense region sampling

Next, we distribute evenly spaced dense samples in the regions of
interest (see Figure 4b). We resample and populate the region of
interest on the source shape by first selecting the corresponding
extremities as the first three dense samples. Given the region area
A, we use the ad hoc formula to compute the radius r = 0.17

√
A/π

that ensures evenly sampling of about 100 dense samples [SY11].
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Figure 4: An example of the voting process for a generating pair of sample triplets from G(3). (a) Two steps that decide regions of interest
(painted red), (b) evenly spaced dense samples (yellow spheres) and (c) one-to-one map between them (lines) to be used for computation of
confidence votes.

The sampling procedure is as follows. When an arbitrary region
vertex is selected as a dense sample, all the region vertices lying
within its patch of radius r are marked. The next dense sample is
then selected arbitrarily from the unmarked region vertices. When
this is repeated until no unmarked region vertex is left, we obtain a
partitioning of the region into dense samples that are at least r apart
from each other [HSKK01]. A similar evenly spaced sampling on the
regions of interest of the scaled target mesh using the same r makes
the dense samples as consistent as possible on the two surfaces.
This joint sampling process yields consistent samples, especially
if source and target regions correspond to similar shape parts. We
denote the dense sample sets on regions due to Sl and Tl by Ŝl and
T̂l , respectively.

5.3. Dense region matching

We match Ŝl and T̂l by using a fast minimum-weight perfect match-
ing algorithm [Kol09], and denote the resulting dense map by §̂l .
To feed the algorithm, we build a cost matrix C where each entry
cpq is the isometric distortion of matching a source sample ŝp ∈ Ŝl

to a target sample t̂q ∈ T̂l . We compute each cpq based on the three
correspondences available in the qualified safe map §(3)

l by setting
cpq = diso(ŝp, t̂q , §(3)

l ) via (2), which is expected to map Ŝl to T̂l with
low distortion if §(3)

l is correct. Since the cardinalities of the disjoint
sets must match for a perfect matching, if |Ŝl | 	= |T̂l |, we introduce
virtual vertices with connector edges of ∞ weights. We also enforce
the three correspondences available in the map §(3)

l to be preserved
in the resulting dense map by setting the corresponding entries of
the cost matrix to −∞. Hence, we guarantee that §(3)

l ⊂ §̂l .

5.4. Vote matrix

The dense region matching process described previously is repeated
for each qualified safe map §(3)

l generated from G(3)
m , and each such

matching process produces a confidence vote γl(si , tj ) for each pair
(si , tj ) ∈ §(3)

l . This confidence vote is computed based on the indi-
vidual isometric distortion that the dense matching yields:

γl(si , tj ) = exp(−diso(si , tj , §̂l)), (4)

which produces a value in [0, 1].

The confidence votes resulting from all dense mappings are then
accumulated into the vote matrix �, where each entry γij eventually

represents the confidence of matching a source extremity si ∈ S to a
target extremity tj ∈ T . More specifically, each entry γij is given by
the average of all confidence votes that the pair (si , tj ) gets. We note
that, to improve robustness, we discard a qualified safe map from the
voting process if the target region of interest is significantly larger
or smaller than the source region after scale normalization since
this definitely implies a bad configuration, e.g. three source samples
from finger tips of a hand versus a target triplet consisting of two
hands and a head on a pair of human shapes. In our experiments,
we have discarded the cases where the target region is twice larger
or smaller than the source. We have manually selected this setting
so as to keep good configurations while eliminating those which are
definitely bad.

6. Combining

We use the vote matrix � to find an optimal mapping, §∗ : S → T ,
from the set of source extremities to the set of target extremities.
We first convert the vote matrix into a cost matrix and then apply
the minimum-weight perfect matching algorithm in [Kol09], that
gives us an optimal one-to-one mapping which respects confidence
values globally. The cost matrix C∗ is formed by replacing the high
confidence entries in � with c∗

ij = 1 − γij and others with ∞. Note
that virtual vertices are introduced if |S| 	= |T |, as in Section 5.3
High-confidence entries are determined automatically using a pro-
cedure that is similar to the jump detection algorithm described in
Section 4.2 Given a sample si , we sort all confidences in row �i

to infer the average difference ζi between the consecutive sorted
confidences. We then mark the entries appearing before the first
significant jump, which we set to 1.5ζi , as high confidence entries.
Taking into account only high confidence entries improves the ro-
bustness of the matching algorithm. We note that the choice 1.5ζi

is set manually by experimenting, which is a quite stable setting for
thresholding confidence values.

The above perfect matching algorithm produces a one-to-one
mapping that associates every source extremity with one target ex-
tremity sample. This is a desirable solution in the case of complete
shape correspondence as well as for the problem of part matching.
However, when the shapes are partially isometric both with parts
that are not similar, some of the matches in the resulting map will
clearly be outliers which distract the optimization process itself.
Also, when the structural dissimilarity between the shapes is large,
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there is the danger of occupying a nice spot on the target shape with
an irrelevant match which originates from a source sample whose
counterpart does not actually exist on the target. To address this prob-
lem, we iterate the perfect matching algorithm each time removing
one of the outliers. Since an outlier match is expected to have small
confidence, at each iteration, we remove the least-confident match
by setting the corresponding entry in C∗ to ∞ and solving the new
C∗ again and repeating these removals until convergence, i.e. until
there is no jump in the confidences of the matches in the result-
ing one-to-one map, i.e. all differences between consecutive sorted
confidences are less than 3ζ , where ζ is the average of all these
differences (we choose the setting 3ζ manually by experimenting).
Hence, the final map that our algorithm produces is always one-to-
one, but does not necessarily associate every extremity sample on
the source (or target) shape with an extremity on the other.

7. Extension to Dense Map

The optimal coarse correspondence §∗ that our RAVAC algorithm
produces between sparse shape extremities can be extended to a
dense map. For each mapping with cardinality three, which is a
subset of §∗, we densely resample and match the corresponding
regions of interest. This process is repeated for all §(3)

l ⊂ §∗, and
then the resulting dense matchings are blended into one dense map,
that we denote by §̂∗.

The process of resampling and matching the regions is the same
as described in Section 5 except that this time the resampling al-
gorithm takes into account the other overlapping regions of interest
while populating its samples. The regions of interest are enforced
to include the same samples in the parts where they overlap. Hence,
while resampling a region (Section 5.2), the dense sample set is
initialized to include all the dense samples that have been so far
included by some other regions of interest. This enables to accu-
mulate a set of candidate matches on the target, F (ŝi), for a given
dense source sample ŝi as regions of interest are matched. Let t̂j be
the coordinate vector for the target dense sample t̂j . The blended
coordinate

bi = 1

|F (ŝi)|
∑

t̂j ∈F (ŝi )

t̂j , (5)

then approximates the geodesic centroid of the candidate matches
for ŝi and provides (ŝi , t̂k) as the blended dense match, where t̂k is the
target vertex closest to bi in L2 sense. The main computational load
of this dense extension comes from the minimum-weight perfect
matching phase, which is negligible when the number of dense
samples is less than 500.

8. Computational Complexity

Sampling N initial extremities on the input mesh with V vertices
takes O(V log V ) time. The ranking module demands O(N 4) opera-
tions as each of N samples is tested with all O(N 3) triplets to traverse
a map of constant size. The voting procedure, for each qualified
triplet (O(N 3)), generates a potentially safe map, defines regions of
interest around the map (O(V )) and distributes ∼100 dense sam-
ples on them (O(V log V )), which are then matched for confidence
computations. The voting complexity is hence O(N 3V log V ). The

final combining phase performs minimum-weight perfect matching
of O(N 2 log N ) work about at most 10 times until convergence. The
dense map extension comes without any additional complexity as
the blended coordinates computed in O(N 3V log V ) time provide
the closest mesh vertices in O(NV ) time. The overall worst case
complexity is, therefore, O(N 3V log V ) assuming N 
 V .

Compared to O(V 2 log V + N 4 log N ) complexity of the MV
method, our method is considered to be fast since it uses a much
smaller N , e.g. 10 versus 250. The BIM method, on the other hand,
has the same algorithmic complexity as our method, yet not ad-
dressing the partial matching problem.

9. Experimental Results

We test the performance of our method on several shape bench-
marks for partial, complete, sparse and dense correspondence prob-
lems in the presence of isometric (or nearly isometric) deforma-
tions and scale differences. We mainly compare our method with
the MV method of [LF09] since our focus is on the partial corre-
spondence problem. We also conduct experiments for comparison
with the BIMs method of [KLF11] in the case of complete dense
correspondence.

The first data set that we use is a subset of the Non-rigid World
benchmark [BBK06], which consists of uniformly sampled meshes
representing articulated motions of 17 horses, 6 centaurs, 6 sea-
horse, 21 gorillas, 4 males and 4 females, each with ∼3.4K vertices
and arbitrary connectivity. We have also created 4 partial horse
models by manually cropping the original complete models. The
second data set is a part of the SHREC’11 benchmark [BBB*11].
A high-resolution mesh of a null reference male model in T-pose
(SHREC-null), its 5 different poses that have undergone isometric
deformations (SHREC-iso), one isometric pose in 5 different scales
(SHREC-sca) and 5 cropped models (SHREC-part) are represented
with ∼50K uniformly spaced and arbitrarily connected vertices.
The third data set is the SCAPE benchmark [ASK*05], which is
reconstructed from a real scene, representing the real motion of a
human actor in 71 meshes each with ∼12.5K vertices. Finally, we
use high-resolution TOSCA shape benchmark [BBK08] with full
ground-truth correspondence information for our dense matching
experiments in comparison to BIM and MV.

Beside visual evaluations, we assess the performance using the
distortion measure Dgrd, which quantifies the deviation of a given
correspondence § from the ground-truth correspondence:

Dgrd(§) = 1

|§|
∑

(si ,tj )∈§

g(f (si), tj ), (6)

where f (si) stands for the ground-truth correspondence of si on
the target shape, and g(., .) is the geodesic distance function. The
maximum geodesic distance on the target model is normalized to
1.0 to simplify the interpretation of this measure. We note that
dense ground-truth correspondences are available with SCAPE and
TOSCA data sets, whereas for SHREC’11 and Non-rigid World
benchmarks we obtain the coarse ground-truth correspondences be-
tween shape extremities by hand.

C© 2014 The Authors
Computer Graphics Forum C© 2014 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 5: Confidence vote assignment to the matches between the
extremity samples (coloured bold lines) for two different safe maps.
Confidence votes are computed by traversing a pair (si , tj ) over the
dense matching displayed with thin black lines.

Figure 6: Complete shape matching between the extremities of two
horse models from Non-rigid World (left). Part matching between a
horse and a cropped model (right).

9.1. Sparse extremity matching

We consider three possible sparse matching scenarios: complete
matching, partial matching and part matching. Figures 6–10 display
various examples from our sparse correspondence results. In these
figures, we give the most confident 6 extremity matches in red,
green, blue, black, cyan and magenta colours, respectively, and
for the subsequent matches, if exist, we use dashed black lines
with spherical endpoints scaled with a radius proportional to the
confidence of the correspondence pair. Unmatched samples, if exist,
are represented by small red spheres.

In Table 1, we provide the quantitative performance results ob-
tained on various benchmarks, in comparison to the MV method.
For selection of the shape pairs in each test suit given in this table,
we employ a randomized protocol which is similar to the one used
in [KLF11]. For the complete matching tests between the Non-rigid
World horse models, each complete model is mapped to a random
complete model, whereas the part matching performance is evalu-
ated by finding maps between each cropped model and 4 random
complete models, hence a total of 33 pairs (see also Figure 6).
The remaining tests conducted on the Non-rigid World benchmark
seek partial correspondences in the presence of uncommon parts,
that complicates the problem further. In these experiments, we pick
6 centaurs and match each of them with 4 random models from
horse, male and female classes, hence a total of 72 pairs. Similarly,
each seahorse is matched to 4 random horse models for another 24
pairs (see also Figure 7). The SHREC’11 complete matching tests
are performed by mapping each isometry class model to a random
model from the same class. As far as the partial correspondence is

Figure 7: Examples of partial matching on shape pairs from four
shape classes of Non-rigid World (Horse, Centaur, Seahorse and
Human).

Figure 8: Example matchings on SHREC’11 between two complete
shapes from isometry class (left). Partial model mapped to scaling
model (middle) and to isometry model (right). Note the arbitrary
number of samples on fingers.

concerned, each model in the partial class is matched with 3 ran-
dom models from the isometry and scaling classes, hence a total of
35 pairs (see also Figure 8). Finally, the quantitative performance
values for SCAPE data set are computed over 10 randomly selected
shape pairs.

For comparison tests, we have run the publicly available code
of MV with its default settings of 100 samples and 1M votes. In
Table 1, we evaluate the performance of MV based on the samples
that are closest to the extremity samples used by our algorithm.
We also compare the correspondence formed by the top (most con-
fident) 5 MV matches with our 5 corresponding matches. For the
former case concerning extremity matches, our method significantly
outperforms MV, whereas for the latter 5 matches that tend to be
on non-extremities, such as shape centres, we are almost on a par
with (only slightly worse than) it. We note that our initial sparse
correspondence between extremity samples needs to be extended to
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Figure 9: Möbius Voting (left) versus our method (right) on differ-
ent shape classes: Horse–Horse, Horse–Horse part and Centaur–
Horse, for complete, part and partial matching.

Figure 10: Two examples of complete shape matching between
male (SHREC’11) and gorilla (Non-rigid World) meshes that exhibit
local similarities but large deviations from global isometry.

a denser one, as described in Section 7 in order to find our closest
counterparts to the top 5 MV matches. The missing entries in the ta-
ble for the rows including SHREC-part meshes with holes are due to
sphere topology restriction of MV. The entry for Centaur↔Human
pair is also missing since the similarity between the shapes is re-
quired to be more than 40% in the case of MV [LF09]. Note also
that gorilla and seahorse meshes crash the public MV code due to
its sphere topology requirement.

We observe in Table 1 that the performance of MV on SCAPE
models, which contain much more non-delaunay triangles than
SHREC meshes, is inferior to its performance on SHREC although
the object types and isometric deformations applied are quite similar

Table 1: Quantitative evaluation of our method in comparison with Möbius
Voting (MV) [LF09].

5-matches
Extremities (MV-top 5,

(MV, our method) our counterparts)

Data set (Dgrd, Dgrd) (Dgrd, Dgrd)
Horse↔Horse (0.189, 0.028) (0.014, 0.066)
Horse↔Horse-part (0.281, 0.045) (0.039, 0.089)
Centaur↔Horse (0.348, 0.046) (0.025, 0.133)
Seahorse↔Horse (n/a, 0.071) (n/a, n/a)
Centaur↔Human (n/a, 0.078) (n/a, n/a)
SHREC-iso↔SHREC-iso (0.053, 0.003) (0.002, 0.044)
SHREC-part↔SHREC-iso (n/a, 0.049) (n/a, n/a)
SHREC-part↔SHREC-sca (n/a, 0.051) (n/a, n/a)
Gorilla↔SHREC-null (n/a, 0.065) (n/a, n/a)
SCAPE↔SCAPE (0.182, 0.004) (0.007, 0.045)

for these two data sets. This decrease in performance is not observed
in the case of our method which is insensitive to peculiarities of a
given particular triangulation.

Several visual examples for comparison with MV are demon-
strated in Figure 9. The top 5 MV matches are highlighted by large
spheres, whereas their extremity matches that are closest to ours are
indicated by large spheres with connecting lines. All other small
spheres of matching colours represent the remaining correspon-
dences. A similar visualization is performed for our results as well
except that only 5 of our dense matches, which correspond to the top
5 MV matches, are shown. We observe that whenever the dissimi-
larity between shapes increases, MV shows instabilities especially
at the extremity matches as the mutual closest point matches in their
embedding domain starts to confuse on these regions of small area.
Our results, on the other hand, rely on the dense matchings obtained
in the neighbourhoods of the extremities, which are hence less likely
to get negatively affected by irrelevant data.

As we observe in Figure 7, our algorithm mostly rules out the
samples representing the uncommon parts without causing any con-
fusions on the matches concerning samples of interest from the
common parts. However, we note that some of the correct matches,
such as those between the heads of Seahorse↔Horse, may erro-
neously be removed by the iterative perfect matching process in the
combining phase (Section 6) due to the consistent setting of the
jump threshold value over all data sets, that is, 3ζ .

We also experiment on a low-resolution gorilla and a high-
resolution male from two different benchmarks to demonstrate the
endurance of our algorithm not only to the difference and size of the
triangulations but also to complete matching of shapes that exhibit
local similarities but large deviations from global isometry (Fig-
ure 10). With 21 pairs obtained by matching the null shape to all
gorillas, we obtain successful results (see Table 1). Since we iso-
late each potentially compatible triplet pair from all other samples
during the voting process, the male hands can be matched to the
elongated gorilla hands successfully.
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Figure 11: Dense complete maps computed on a SCAPE pair by
Möbius Voting (MV, left) and our method (right). Some MV matches
that correspond to our extremity matches are marked with circles.
Yellow lines show the worst matches.

Table 2: Quantitative evaluation of our method in comparison with Möbius
Voting method of [LF09].

Extremities Dense map (∼250)
(MV, our method) (MV, our method)

Data set (Dgrd, Dgrd) (Dgrd, Dgrd)
Horse↔Horse (TOSCA) (0.111, 0.024) (0.060, 0.031)
SCAPE↔SCAPE (0.223, 0.017) (0.203, 0.043)

9.2. Dense matching

We evaluate our dense matching extension described in Section 7 in
comparison to MV and BIM. For these tests, we use 8 horse pairs
from TOSCA and 12 pairs from SCAPE, all randomly selected.
In this case, we can thoroughly evaluate Dgrd over all matches,
rather than on just 5 matches, thanks to the ground-truth dense
correspondence information available.

Figure 11 visualizes an example from our dense map of size ∼250,
obtained on SCAPE data set along with the corresponding MV map
of the same size. The figure demonstrates our much smoother cor-
respondence flow as compared to MV, where the yellow bold lines
represent the worst individual matches, exemplifying the poor per-
formance of MV around shape extremities. The quantitative eval-
uation also favours our method as given in Table 2. We also note
that the worst distortions for the dense correspondences obtained on
the 12 SCAPE pairs are 0.952 and 0.257 in our favour, and that the
performance difference is higher on SCAPE meshes which contain
more non-delaunay triangles than TOSCA horse models. Although
our method does not, in general, yield very large errors as in MV,
it is possible to have locally incorrect matches due to inconsistent
sampling, such as nose to ear matching demonstrated in Figure 12
(top).

As for comparison with BIM, we have used the publicly available
BIM code which produces a full dense map between input meshes.
Hence, for a fair comparison we interpolate our dense correspon-
dence to a full map between all vertices using the same procedure
described in [KLF11] (see Figure 12). In Table 3, we provide the
extremity and full dense matching performances of BIM in com-
parison to ours. For extremity matching comparison, we follow the
same strategy that we have used for MV comparisons given in Sec-

Figure 12: Blended Intrinsic Maps (left) versus our method (right)
for complete correspondence on two different shape classes, (top
row) TOSCA-Horse and (bottom row) SCAPE. The colour of each
source vertex is transferred to the corresponding target vertex where
unmatched vertices are painted in grey. Our dense map used in
interpolation is shown as spheres of matching colours.

Table 3: Quantitative evaluation of our method in comparison with Blended
Intrinsic Maps (BIMs) [KLF11].

Extremities Full dense map
(BIM, our method) (BIM, our method)

Data set (Dgrd, Dgrd) (Dgrd, Dgrd)
Horse↔Horse (TOSCA) (0.007, 0.024) (0.019, 0.037)
SCAPE↔SCAPE (0.012, 0.017) (0.042, 0.051)

tion 9.1 We observe that BIM is slightly better than our method
in extremity matching, mainly because we enforce three extremity
correspondences in the generating partial maps to be preserved in
the resulting dense maps to be blended. The BIM method, on the
other hand, blends unrestricted match candidates for a given extreme
sample, that renders it more flexible as exemplified via nose matches
in Figure 12 (top). Full dense maps of BIM are again slightly better
than our interpolated counterparts. This performance difference in
favour of BIM during these complete correspondence tests is ac-
tually as expected since our main concern is the more challenging
partial correspondence problem that cannot be handled by the BIM
method as we demonstrate next.

We emphasize that BIM has been designed specifically for com-
plete shape matching; yet one could envisage using it for partial
matching since it blends the generated complete maps by confidence
weighting. Hence, as a final set of experiments, we have tested BIM
for its possible use in partial and part matching, as shown in Fig-
ure 13. We have used the same publicly available BIM code with
the same settings as we have used in the complete correspondence
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Figure 13: Blended Intrinsic Maps with different source (S) choices
(top two rows) versus our method (bottom row), for partial matching
on two different shape pairs from TOSCA (Horse↔Horse-part and
Centaur↔Human). Same display format as Figure 12.

experiments. We observe that BIM is unstable in these scenarios
and can generate incorrect pairings. This is mainly due to uncom-
mon or dissimilar parts that constrain the distortion estimate and
hence the weights of the blending process. Note also in Figure 13
that the output is severely dependent on the choice that assigns one
shape as source and the other as target. For the part matching sce-
nario, for instance, we do not require to know the small or cropped
mesh in advance since our method first establishes one-to-one maps
between subsets of extremities, each of which then points to re-
gions of interest to be densely matched in many-to-one fashion. The
BIM method, however, directly seeks a many-to-one mapping from
source mesh to target mesh, hence requiring a priori knowledge of
the smaller shape to be used as the source before performing any
partial matching if that is the intention.

9.3. Timing

The execution times of our shape correspondence algorithm (in-
cluding dense matching) on a 2.53GHz PC are about 150, 175,
145, 91, 557, 1216 and 22 s for Horse↔Horse, Centaur↔Horse,
Seahorse↔Horse, Centaur↔Human, SHREC-iso↔SHREC-iso,
Gorilla↔Human and SCAPE↔SCAPE, respectively. The rela-
tively high execution time on Gorilla↔Human is mainly due to
15 samples in matching as opposed to the typical 10 samples for the
others. The fastest runs are on SCAPE↔SCAPE pairs, dealing with

Table 4: Quantitative evaluation of our method in comparison with its
modified versions (v.0 represents the original RAVAC algorithm).

Dense map of size ∼250

v.0 v.1 v.2 v.3 v.4

Data set Dgrd Dgrd Dgrd Dgrd Dgrd

Horse↔Horse 0.042 0.049 0.051 0.054 0.203
Centaur↔Centaur 0.059 0.063 0.070 0.075 0.227
SCAPE↔SCAPE 0.053 0.056 0.066 0.071 0.224

only ∼6 samples. The percentage of the execution time devoted to
each specific step of the algorithm, respectively, for sampling, rank-
ing, voting, combining and dense matching, is 11.1%, 0.9%, 85.4%,
0.4% and 2.2% on a SCAPE pair with 6 samples and ∼12.5K ver-
tices; 0.4%, 9.6%, 89.1%, 0.8% and 0.1% on a Centaur–Horse pair
with 11 versus 9 samples and ∼3.4K vertices. We see that the ex-
ecution times are dominated by the voting module which creates
and samples regions of interests, whereas the fast ranking phase just
demands shortest path distances between few number of extremity
samples.

9.4. Validation of the RAVAC algorithm

We now show by experiments the benefit of each additional step of
our correspondence algorithm in terms of quantitative improvement.
Specifically, we compare our original RAVAC algorithm with six
modified versions as described below:

� Version 1 excludes both the voting and combining steps from
the original algorithm (Version 0) by directly blending the par-
tial dense maps {§̂l} as described in Section 7. Recall also from
Section 5.3 that {§̂l} are originally designed to accumulate confi-
dence values for the coarse extremity matches in the vote matrix
(see Equation 4).

� Version 2 excludes from the original algorithm the pruning step
involved in ranking; it uses all possible one-to-one maps S (k) for
traversal in Equation (3). Thus, this version keeps ranking but
without pruning.

� Version 3 excludes the pruning step from Version 1 in a similar
way as in Version 2.

� Version 4 excludes the ranking step altogether from the original
algorithm. Hence, all possible partial maps between triplets of
extremities vote for matching pairs.

We perform the tests on SCAPE as well as the Horse and the
Centaur classes from TOSCA, hence for the complete shape corre-
spondence scenario, for which dense ground-truth correspondence
information is available. The resulting ground-truth distortions
(computed using the same randomized protocol as in Section 9.1 to
select pairs from each class) are shown in Table 4 where we observe
that the best performance is obtained using the original RAVAC
algorithm.

The superior performance of RAVAC over direct blending ver-
sions (Versions 1 and 3) is mainly due to two reasons. The first
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Figure 14: Comparison of our original algorithm (left) to Version
1 (right) for Centaur–Horse partial matching.

one is the iterative outlier removal process involved in the combin-
ing step, that keeps only the reliable extremity matches to be used
in blending. The second reason is the voting step that eliminates
some of the (potentially safe) partial maps which may be incorrect
or symmetrically flipped. Also note that the results given in Ta-
ble 4 are obtained for the complete correspondence scenario. If the
shapes to be matched contain uncommon surface parts, then the rel-
ative performance of the direct blending approaches becomes even
worse since the outlier matches from uncommon parts cause much
more error in overall extremity matching as well as in blending.
We demonstrate this visually in Figure 14 on an example where we
compare the performance of Version 1 to our original algorithm in
partial matching. We observe that, in the case of Version 1, outlier
matches distract the whole correspondence process, resulting in an
unsmooth and erroneous dense map.

Another important observation (Versions 2 and 3) is that the prun-
ing step involved in the ranking phase not only reduces the compu-
tational load, but also increases the performance by pre-filtering a
significant portion of the partial maps based on a simple geodesic
consistency constraint. When the ranking step is omitted totally
(Version 4), we see that the performance drop becomes very severe.
This is as expected since the number of incorrect partial maps in
consideration becomes significantly high in this case and so is the
resulting distortion.

9.5. Limitations

The most obvious limitation of the RAVAC algorithm is the ap-
proximate isometry requirement. Our method can be used to match
shapes which contain surface parts that are approximately isometric,
but fails to handle severe non-isometries.

Another limitation is that our method can confuse small-scale
features that are close to each other, due to distraction of spurious
samples as well as uncommon parts and local non-isometries, such
as the nose-to-ear matching in Figures 6 and 12 (top). In Figure 15
(right), we display a more severe failure case that occurs mainly
due to the local non-isometry on the tails and imprecise setting
of the jump threshold in the outlier removal process. As the jump
threshold value, we currently use the same setting (3ζ ) for all data
sets, that may sometimes lead to incorrect removal of some matches,
such as those between the heads of Seahorse↔Horse in Figure 7
as well as failures in detecting mismatches as in Figure 15 (right).
Note that the mismatch in Figure 15 is displayed in magenta colour,

Figure 15: A symmetrically flipped dense map (left) and an example
to failure in detecting matches (right).

meaning that it is the least confident match of the resulting map,
hence it would be the first to be removed if the jump threshold were
fine-tuned over the specific data set. The blue leg-to-tail matching
would then probably be corrected at the next iteration of the outlier
removal process.

The use of geodesic distance metric for distortion computations
can also be viewed as a limitation. Although our method generally
performs well for shapes with holes, such as SHREC-part meshes,
employed in our experiments with no restriction on shape topology,
it may not be possible to compute geodesics reliably in the case
of severe topological noise, and the algorithm may fail to generate
accurate matchings.

The last limitation is due to the classical symmetrical flip problem
which is actually inherent to all purely isometric correspondence
techniques. We may hence occasionally end up with flipped results
(see Figure 15, left) for the cases where the dense analysis with ∼100
samples (see Section 5.2) remains insufficient to resolve intrinsic
symmetries.

10. Conclusion

The basic assumption in our RAVAC algorithm is that two shapes can
be matched based on their extremities. As long as this assumption
holds, which is the case for partially isometric shapes, and these
extremities can reliably be extracted, our algorithm produces correct
matchings, which can then be extended to dense correspondence.
This assumption can, however, also be seen as a restraining factor
for the generality of our method to handle non-isometries as well
as a possible source of inaccuracies since it makes our method
sensitive to the performance of the extremity extraction process.
Nevertheless, the experiments that we have conducted on various
data sets show that our method performs reasonably well in the
case of approximate isometries, and even for shapes with holes,
such as SHREC-part meshes, with no restriction on shape topology.
Some spurious extremities may appear in such cases but they are
mostly handled thanks to our reliable voting approach and outlier
elimination procedure. Provided that isometrically similar parts are
represented by sufficient number of extremities (which is 3 at least),
our method can match shapes exhibiting large deviations from global
isometry, such as the Gorilla–Human pair from our experiments, or
partially isometric shapes with quite small similarity overlap, such
as the Centaur–Human pair.
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The experiments that we have conducted show that our method
outperforms the MV method of [LF09], the best performant algo-
rithm available in the literature for partial shape correspondence. We
once again iterate that the focus of this work is on partial correspon-
dence, though the proposed algorithm can also generate complete
correspondences. In the case of complete shape correspondence,
the performance of our method is found to be worse than the BIM
method of [KLF11], yet better than MV.

One possible way of further improving the results obtained by our
method is to incorporate local shape descriptors, into the extremity
sampling process in order to increase the precision and consistency
of the samples, and/or into the cost (vote) matrix in order to increase
the accuracy of the matching process. Another direction is to address
the trade-off between the accuracy of the geodesic distortion metric
currently in use and the topological noise robustness of the diffusion-
based metrics as an alternative.
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