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Abstract

We address the symmetric flip problem that is inherent to multi-resolution isometric shape matching algorithms. To this effect,
we extend our previous work which handles the dense isometric correspondence problem in the original 3D Euclidean space via
coarse-to-fine combinatorial matching. The key idea is based on keeping track of all optimal solutions, which may be more than
one due to symmetry especially at coarse levels, throughout denser levels of the shape matching process. We compare the resulting
dense correspondence algorithm with state-of-the-art techniques over several 3D shape benchmark datasets. The experiments
show that our method, which is fast and scalable, is performance-wise better than or on a par with the best performant algorithms
existing in the literature for isometric (or nearly isometric) shape correspondence. Our key idea of tracking symmetric flips
can be considered as a meta-approach that can be applied to other multi-resolution shape matching algorithms, as we also

demonstrate by experiments.
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1. Introduction

Finding correspondences between shapes is a fundamental research
problem in computer graphics and vision with various applications
[VKZHCOL11]. Isometry is an important clue for shape correspon-
dence; not only since most real world shape deformations are iso-
metric (translation, rotation and bending), but also because semanti-
cally similar shapes have similar metric structures. Isometric shapes
appear in many contexts such as different poses of an articulated
object, models of a mesh sequence representing the motion of a
human actor, or two shapes representing different but semantically
similar objects (e.g. two different humans or animals) [BBKO8].

The shape correspondence problem can be thought of as the
problem of finding maps between shapes, which are as isomet-
ric as possible, hence an optimization problem where a minimum
distortion mapping is sought. The simplest way that guarantees to
find the optimal mapping is to explicitly search the space of all
maps, which is however computationally intractable due to factorial
complexity. Hence, most of the isometric correspondence meth-
ods existing in the literature adhere to embedding in some way
or other to achieve invariance against isometric deformations and
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thereby to reduce the problem into a closest point matching prob-
lem. As a result, they all remain as approximate methods due to
ambiguities and errors introduced by the embedding process itself
[BBKOS8], where the embedding may be Euclidean [JZ06, CHO3,
EKO03, WSB09, MHK*08, OSGO07] or non-Euclidean [OMMG10,
SH10, LF09, ZWW#*10, DK11, KLF11, OBCS*12]. One exception
is the GMDS (generalized multi-dimensional scaling) method pro-
posed in [BBKO6b, BBKO6a]. The GMDS method eliminates the
approximation error by embedding one shape onto the surface of the
other, that however requires minimization of a non-convex function
which is difficult and expensive to optimize. Another exception is
the method presented in [SY 12], which minimizes the isometric dis-
tortion in the original 3D Euclidean space by using an EM algorithm.
Both methods, however, do not scale well to large meshes.

An important problem in shape correspondence is how to achieve
dense correspondence, i.e. a matching between all vertices of two
given high-resolution meshes. The main bottleneck in achieving
dense correspondence is the computational complexity of the ex-
isting algorithms. Most embedding-based methods naturally sup-
port dense correspondence but their computational load is usually a
limiting factor. To the best of our knowledge there exist only two



178 Y. Sahillioglu & Y. Yemez / Coarse-to-Fine Isometric Shape Correspondence by Tracking Symmetric Flips

Figure 1: Our method vs. BIM. The yellow vertex on the face of
the source human model is mapped to the hand of the target by BIM
(left) and to the face by our method (right). Note also the unmatched
target vertices (in grey colour) on the BIM result, which do not exist
in our case.

methods in the literature [KLF11, SY11], that can achieve this in
O(V log V) time, where V is the number of vertices in the given
meshes to be matched.

One of the best performant dense matching algorithms in the
literature appears to be the BIM (blended intrinsic maps) method
proposed in [KLF11]. The approach is to search for a continuous
blend of multiple low-dimensional maps which can be explored via
Mobius transformations. By combining these conformal maps with
weights varying smoothly over the surface, a space of maps is ob-
tained, which can be searched in polynomial-time. Thanks to blend-
ing, non-isometric deformations are handled better with this method
as compared to other M&bius transformation based methods such as
in [LF09, ZWW#*10]. However, the BIM method introduces various
approximations to achieve dense correspondence in O(V logV)
time. First, the isometric distortion of each blending map is es-
timated on the extended complex plane to which the surfaces to
be matched are transformed (flattened) via mid-edge uniformiza-
tion, hence with some embedding error. Second, geodesic centroids
of the blending maps are approximated with Euclidean distances.
Third, confidence weights of the blending process are computed
over all vertices of a dense surface mesh via interpolation. These
approximations may lead to inaccurate matches (see Figure 1 for an
example). Moreover the method has restrictions on topology, suf-
fering from non-delaunay triangles during the process of mid-edge
uniformization and also requiring zero-genus meshes as input.

In [SY11], the isometric dense correspondence problem is solved
by using a multi-resolution strategy. A minimum distortion map-
ping is searched in the original 3D Euclidean space via coarse-to-
fine combinatorial matching, hence as free of embedding errors. A
coarse-to-fine approach is employed also in [BBK06a, WBBP11,
RDK11] to speed up the optimization process and to improve ac-
curacy. A major drawback of coarse-to-fine shape correspondence
algorithms in general is the symmetric flip problem due to few num-
ber of samples to be matched at coarse levels (e.g. left arm/leg is

matched to right arm/leg between two human shapes). This paper
essentially addresses this initial symmetric flip problem by extend-
ing the previous work presented in [SY11]. Our key idea is to keep
track of all the optimal solutions, which may be more than one
due to symmetry especially at coarse levels, throughout denser lev-
els of the shape matching process. This becomes possible thanks
to the coarse-to-fine combinatorial matching process involved in
the method described in [SY11], which can sort out all possible
mappings with respect to their isometric distortions. We test the
performance of our method with extensive experiments on several
shape benchmarks in comparison to two state of the art methods
mentioned above, namely the GMDS method [BBKO06a] and the
BIM (blended intrinsic maps) method [KLF11].

This paper has two main contributions. First, it addresses the
symmetric flip problem which is actually inherent to all coarse-to-
fine correspondence algorithms, and extends the dense isometric
shape correspondence method proposed in [SY11] in that respect.
Our key idea of tracking symmetric flips can also be considered
as a meta-approach which can be applied to other multi-resolution
shape matching algorithms such as [BBKO06a], as we demonstrate by
experiments. Second, the extended method is tested on several shape
benchmarks and compared with two state of the art techniques.

We note that the source code and the executables for the
method that we present in this paper are publicly available in
http://home.ku.edu.tr/~yyemez/symflip.

2. Coarse-to-Fine Approach for Shape Correspondence

The basic idea in coarse-to-fine shape correspondence methods is
to compute the correspondence at resolution level k based on the
correspondence atlevel k — 1 [BBK06a, SY11, WBBP11, RDK11].
Hence, starting from a coarse initial correspondence, a dense match-
ing can efficiently be obtained by iterating this recursion. In this
work, we focus on the method proposed in [SY11], which pro-
vides an isometric dense shape correspondence algorithm based on
combinatorial search. We will refer to this method as coarse-to-fine
combinatorial matching (C2FCM). We will also demonstrate the
use of our idea of tracking symmetric flips on another well-known
technique, namely the multi-resolution GMDS (generalized multi-
dimensional scaling) [BBKO06a]. In the sequel, we provide a brief
summary of the C2FCM technique by highlighting its differences
from GMDS.

The idea in C2FCM is to reduce the search space by exploiting
the fact that the optimal correspondence maps nearby vertices on the
source shape to nearby vertices on the target. Hence, shape matching
is performed efficiently on a patch-by-patch basis in a coarse-to-fine
manner. The C2FCM algorithm is composed of three basic tasks at
each level of detail: sampling, combinatorial matching and merging
(see Figure 2). Each of the shape surfaces to be matched is initially
regarded as a root patch on which evenly-spaced high-curvature
M base vertices are sampled. Each of these base vertices defines a
surface patch around itself with a sampling radius. Once the sam-
ples, hence the patches, are matched via combinatorial matching
by evaluating the isometric distortion of all M! possible mappings,
the matched parent patches are recursively subdivided into smaller
sub-patches as levels of detail increase, by further sampling M base
vertices on each parent. At each level, the samples on each pair
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Figure 2: Block diagram of the C2FCM algorithm [SY11].

of corresponding patches are separately matched via combinato-
rial matching and then merged into one single correspondence. The
number M is chosen to be small enough (M = 5) so that combinato-
rial matching becomes possible. We note that the algorithm does not
require the initial set of samples to include all the shape extremities
or to be exactly aligned on the two surfaces since the samples are
evenly distributed over each surface and the combinatorial search
algorithm guarantees to find the correspondence which is optimal
in the minimum-distortion sense at the initial level. As the levels
of detail proceed, the samples corresponding to high-curvature ver-
tices are gradually populated and the correspondence accuracy is
improved to the extent that the precision of the current level allows,
as explained in detail in [SY11]. At the finest level, a complete dense
correspondence is obtained, that matches every vertex in either of
the shapes with at least one vertex on the other. Hence, the final
correspondence is usually a many-to-many mapping. Although the
algorithm is built upon the basic assumption that the shapes to be
matched are perfectly isometric, the experiments conducted show
that it performs well also on nearly isometric shapes. In the case of
severe deviations from isometry however, the initially selected M
samples can be in very different configurations on the two surfaces
so that unintuitive matchings can be generated as the output of the
algorithm. We finally note that the method can handle input meshes
with arbitrary genus.

While C2FCM uses the coarse-to-fine scheme to gradually
populate and fine-tune the correspondence pairs based on proximity
clues, the GMDS method uses it to address a difficult non-linear opti-
mization problem, where a non-convex stress function is minimized

by an iterative gradient-type algorithm which requires good initial-
ization. A patch-based vertex hierarchy, which is similar to that of
C2FCM, is first constructed via farthest point sampling [ELPZ97].
Then, starting from an initial coarse correspondence, the optimal
solution computed at each resolution level is interpolated to the next
level and used as an initialization for the non-convex optimization
at that level. This process is repeated until the finest level solution
is obtained. Hence, the coarse-to-fine scheme utilized in GMDS
can be thought of as a smart way of initializing the non-convex
optimization problem. In addition to the symmetric flip problem due
to coarse sampling at the initial level, one disadvantage of GMDS is
that it produces matchings which do not necessarily coincide with
the initial sampling and often yields clustered correspondences due
to the gradient-type algorithm employed in the optimization process.

3. Symmetric Flip Problem

Given a mapping §: S — T between two vertex sets S and 7' sam-
pled from source and target shapes, respectively, we measure its
isometric distortion Dj, as follows [SY11]:

1
Diol®) = 1 D diolsis 1)), (0
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where di(s;, t;) is the contribution of the individual correspondence
(s;, ;) to the overall isometric distortion:

1
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and g(., .) is the geodesic distance between two vertices on a given
surface. Both d;,, and D;,, take values in the interval [0, 1] since
the function g is normalized with respect to the maximum geodesic
distance over the surface. In its simplest form, ' =s— {(s;, #;)},
but can also include some known correspondence pairs on the sur-
faces to be matched, if there are any, which are different than the
ones included in 5. Hence, more generally, s — {(s;, ;)} €. The
correspondence problem can then be formulated as a combinatorial
search for an optimal §* over all possible mappings, that minimizes
this isometric distortion function. One key observation here is that
one can find more than one optimal mapping for symmetrical ob-
jects: the true correspondence plus the flipped versions. In the case
of coarse-to-fine approach, the symmetric flip problem becomes
even more severe due to few number of samples to be matched at
coarse levels; a coarsely sampled version of a shape may sometimes
appear to be symmetric although the shape is not symmetric when
considered at a finer resolution as illustrated in Figure 3. Especially
the initial level of the matching process in the C2FCM algorithm (or
similarly in multi-resolution GMDS) may exhibit this configuration,
and therefore is liable to symmetric flips which cannot be recovered
as levels proceed. We note that all purely-isometric shape corre-
spondence methods existing in the literature actually suffer from
this symmetric flip problem regardless of the correspondence den-
sity since shapes may naturally exhibit intrinsic symmetries. In the
coarse correspondence method of [DK11] for instance, the symmet-
ric flip problem is cast to a sign ambiguity problem associated with
the eigenfunctions of the Laplace—Beltrami operator to explicitly
seek for all possible mappings which are equally or approximately
optimal in terms of isometric distortion.

© 2013 The Authors

Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.



180 Y. Sahillioglu & Y. Yemez / Coarse-to-Fine Isometric Shape Correspondence by Tracking Symmetric Flips

§*

Sy

Figure 3: Symmetric flip problem due to coarse sampling: Although
the shapes to be matched are not perfectly symmetric, the sampled
vertices at the first level appear to be symmetric in terms of geodesic
distances. This may yield a flipped coarse correspondence result as
shown, which is actually one of the four optimal solutions.

§*

Figure 4: The C2FCM method handling symmetric flip problem at
intermediate levels. Suppose that the mapping obtained at the first
level is free of symmetric flips. Then at the next level, while matching
the base vertices inside the highlighted patches (cyans and blue),
the isometric distortions are computed by taking into account also
the correspondences obtained at the previous level (other matching
colours), which usually resolves the matching ambiguities due to
symmetry.

In the C2FCM algorithm, symmetric flips may theoretically ap-
pear at any level since base vertices at each level are matched patch
by patch, where each patch consists of only about M = 5 samples.
However, because the C2FCM method expands the correspondence
list ' used in computation of the distortion in Equation 2 at each in-
termediate level with the known correspondence pairs computed at
the previous level, the chance of having flipped correspondences is
greatly reduced at intermediate levels, as illustrated in Figure 4. This
expansion is not possible at the first level, and the correspondence
listy in Equation 2 can thus simply be set to s — {(s;, #;)}.

4. Tracking Symmetric Flips

The discussion in Section 3. basically suggests that by avoiding the
symmetric flip problem only at the initial level, we can greatly reduce
the chance of having a flipped dense correspondence. We propose to
resolve any such ambiguities due to coarse sampling by tracking all
the optimal (or near-optimal) solutions of the first level (optimal in

the minimum distortion sense) throughout intermediate levels of the
shape matching process. This is possible thanks to the combinatorial
matching algorithm that can sort all possible mappings with respect
to their distortion values. The algorithm is described in the sequel.

We start by launching the C2FCM method at the first level (level
0), i.e. via combinatorial matching of the initial M samples. Al-
though the original algorithm would pick and pursue only the
minimum-distortion mapping of the first level, we keep track of
top-N minimum-distortion mappings until some level K;, where
the number of matched vertices is sufficiently large, which occurs
typically at level 4 with about 250 vertices. Hence, for each of
these N initial mappings, we separately pursue the C2FCM al-
gorithm and compute the corresponding denser mapping at level
K. The choice of N is automatic since we choose it as the first
significant jump in the ascendingly sorted sequence of distortion
values Dy, D,, ..., Dy of all possible mappings s, s, ..., sz, Ie-
spectively, where distortions are computed via Equation (1) with
L = M. The first instance on this sorted distortion sequence, where
the condition Dy, — Dy > & holds, reveals the desired jump in-
dex N which is typically 4 for human shapes. We set the threshold
8 as twice the average of the first 10 distortion difference values:
8 =20,,(Dy — D_1))/10.

This tracking process along with the distortion curve is illustrated
in Figure 5 for a pair of human shapes. Among the four mappings
which are tracked until level K; = 4, the blue one (5;) wins the race,
having the least isometric distortion at this intermediate level, and is
to be maintained on its own until the final level that gives the dense
map. Note that, with the original C2FCM method, the mapping s; (in
green) would continue alone and eventually converge to a flipped
result in the absence of any other flipped competitors. We also
observe that §; yields flipped hands and legs, whereas g (cyan) has
correct hands but flipped legs. The mapping s (orange), that is not
actually tracked due to jump condition, would yield hand-to-head
matching and flipped legs. Another demonstration of the tracking
process is given in Figure 6 for a pair of glass shapes, where N
comes out to be 2, a common value for the glasses class.

We note that, in all our experiments, we have used a fixed value,
K, = 4, for the level of decision. One possible way of automating
the choice of K could be to keep tracking the N best initial maps
up to the level where a clear winner among these maps can be
differentiated based on the individual isometric distortions. For this
purpose, a jump detection algorithm, that is similar to the one used
for choosing N, can be employed.

5. Computational Complexity

The complexity of the original C2FCM method is O(V log V),
where V is the number of vertices in the original meshes to be
matched [SY11]. In our case, running the C2FCM method N times
for tracking purposes up to some level K, whichis typically K| = 4,
i.e. not up to the finest level where the dense map is obtained, in-
curs no additional asymptotic cost since N is usually a small num-
ber varying based on the intrinsic symmetries of the shapes to be
matched, which is for example typically 4 for human shapes. Ini-
tial sorting of M! mappings for jump detection also comes free
of asymptotic cost for M < 8 but nevertheless, for practical usage,
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Figure 5: (Top) The distortion plot for the top 6 mappings at the
first level along with the visualizations of s, s, 4 and s. (Bottom)
The mappings that s, and g lead to at level K| = 4. Spheres
of matching colours and lines indicate the correspondence pairs
(all lines are not drawn at level 4). The mapping s (orange) is not
tracked since its distortion value appears after the first significant
Jjump. The mapping s is actually tracked but not shown in the figure
for visual convenience.

we perform the sorting only on mappings with isometric distortion
below a threshold value (0.15 in our experiments). This signifi-
cantly reduces the number of mappings (typically to M’ ~ 300) to
sort with no accuracy loss as the true mapping to be tracked will
almost certainly be in the top-M’ least distorted mappings. In our
experiments, it has always remained within the top 6.

Our overall O(V log V) complexity outperforms that of other
isometric dense shape correspondence algorithms in the literature,

Level 0
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g3 2+ — -
L
y
8 =2
& 53 83 84 85

Level 4

Figure 6: Symmetric flip tracking for a pair of glasses shapes. Same
layout with Figure 5 except three out of top 5 mappings at level 0
shown for visual convenience.

Table 1: Percentage values for dense correspondence results without sym-
metric flips, obtained with different methods. A: Within animals, B: Within
humans and C: Across humans. Last three rows show the results on down-
sampled versions of classes A—C.

% of all results

Dataset: TOSCA A B C
C2FCM 59 61 38
Our method 69 68 78
BIM 100 100 95
C2FCM 37 60 67
Our method 58 75 83
GMDS 37 54 39

such as O(V? log V) complexity of [JZ06] and GMDS [BBK06a],
O(V?) complexity of HKM [OMMG10], O(V21logV + Y*logY)
complexity of Mobius Voting [LF09]. Note that, GMDS and Mobius
Voting can achieve a coarse correspondence between Y feature
points which can later be interpolated into a dense one with no addi-
tional asymptotic cost. Blended intrinsic maps of [KLF11] is faster
than these methods with max(O(V log V), O(W?)) complexity with
W being an upper bound on the number of maps considered.
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Table 2: Isometric and ground-truth distortions obtained on TOSCA with
our method as compared to BIM. A: Within animals, B: Within humans and
C: Across humans.

Our method BIM
Class Dico, dis Dga, d! Dico, dis Dga. d!
is0s diso grds ard is0s diso grds ard
A 0.018, 0.081 0.030, 0.226 0.018, 0.071 0.018,0.155
B 0.015, 0.052 0.033, 0.202 0.013, 0.266 0.021, 0.417
C 0.019, 0.065 n/a 0.017, 0.068 n/a

Table 3: Isometric distortions obtained on TOSCA downsampled with our
method as compared to GMDS. A: Within animals, B: Within humans and
C: Across humans.

Our method GMDS
Class Diso, di-io Diso, dito
A 0.024, 0.045 0.017,0.051
B 0.018, 0.049 0.022, 0.043
C 0.020, 0.081 0.026, 0.057

6. Experimental Results

We have employed a comprehensive test suite consisting of five well-
known 3D shape benchmark datasets: TOSCA [BBKO08], Watertight
[GBPO7], SHREC’11 [BBB*11], SCAPE [ASK*05] and Nonrigid
World [BBKO06a]. Our results are also compared with two state-of-

the-art techniques, namely GMDS [BBKO06a] and Blended Intrinsic
Maps (BIM) [KLF11] by running their publicly available codes.

We provide symmetric flip ratios resulting from each dataset in
Tables 1, 4, 6 and 8. We also demonstrate numerical (Tables 2, 3, 5,
7 and 9) and visual (Figures 7-11) quality of our final dense maps in
comparison with the two methods. We measure isometric quality of
the final maps by D;s, using Equation (1), whereas ground-truth dis-
tortion is measured by Dg;q (Whenever ground-truth correspondence
pairs are available as (s;, #;)Vi):

1
Dyna) = > sl 3)

[CRFIEN

We also employ two additional worst-case distortion measures, the
maximum ground-truth distortion:
dT

= max g(t,1;), 4
grd Si,lj)€§g(l _/) ( )

(

and the maximum isometric distortion:

di, = max diy(si, 1)), ®)
(si1j)€§
where dj, is the isometric distortion function given in Equation (2).
In computation of the performance measures, we use normalized
geodesic distances so that the maximum geodesic distance on a
shape surface is taken as 1.0.

As a convention that applies to all figures, for each dataset and a
particular shape class, we display the mapping on the pair for which
the method whose d;, (or d;rd) is worse than the other method for

that particular class; a t sign emphasizes this interesting mapping.

C2F

Figure 7: Dense correspondence results on TOSCA, obtained with our method (C2F) vs. BIM. The red and green lines indicate the worst
matches w.r.t. isometric and ground-truth distortions, respectively. The worst matchings are in general better in our case when compared to
BIM. Notice for example hand-to-breast and breast-to-arm matches (third column) as well as the unmatched regions shown in grey for BIM
results. In addition to transferred colours, some lines ending with spheres of matching colours are used to enhance visuals. When red and
green lines overlap, only red is shown. This whole representation scheme applies to the subsequent figures as well.
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GMDS §

C2F 1

Figure 8: Dense correspondence results on TOSCA downsampled,
obtained with GMDS (left) and with our method (right). Generat-
ing 150 correspondence pairs for GMDS are shown as spheres of
matching colours.

The same pair is also shown with the mapping computed by the other
method—expected to be better. In all figures, the dense mapping is
visualized by transferring source vertex colours to the target through
computed correspondences.

Finally, there is also a downsampled version of each dataset that
we use, with meshes of size at most 5K to be able to run the GMDS
method which does not scale well to large meshes.

6.1. Dataset: TOSCA

The original TOSCA dataset is explored under three classes: within
animals (11 cats and 8 horses), within humans (two different males
with 12 and 20 poses each and 12 females), and across humans
(using the three human classes above). The within-animal results are
obtained by matching every cat (or horse) to a different randomly
selected cat (or horse). The same applies to within-human results.
Likewise, in the across-human experiments, each human model in
the dataset is matched to another model randomly selected from a
different human class.

In Table 1—rows 2—4, we see for instance that 100% — 38% =
62% of across-human tests start with an initial symmetric flip at
level 0, which means that if we had employed the original C2FCM
algorithm, then 62% of the resulting dense maps would suffer from

being symmetrically flipped. With our method, on the other hand,
only 100% — 78% = 22% of all correspondence results is symmet-
rically flipped at the end. Another interpretation is that 62% initial
symmetric flips reduce to just 22% in the final result, an improve-
ment of 40%. The BIM method [KLF11] is 95% free of symmetric
flip errors for this class, and outperforms our method for all other
classes as well in this set as far as the symmetric flip problem is
concerned.

For isometric and ground-truth distortions in this dataset, we
observe in Table 2 that df, and dgrd values favour our method for
within and across humans as those classes may include pairs with
touching surface parts, e.g. hand-to-breast, which are confused by
BIM that approximates geodesic centroid as a weighted Euclidean
centroid (see Figure 7 and also Figure 1). As for the average values

Diyo and Dgq, our method is on a par with the results of BIM.

We run the GMDS method of [BBKO6a] on a downsampled
version of TOSCA database, using random test pairs chosen in the
same way as described previously. The number of vertex samples to
be matched on the decimated models is set to be 150, a parameter of
the publicly available code. The 150 correspondence pairs, which
are obtained with GMDS for each shape pair, are then used to
interpolate a dense map as described in [KLF11].

The resulting symmetric flip ratios (Table 1—rows 5-7) as well as
average isometric distortion values (Table 3) all favour our method
in this dataset when compared to GMDS. Our maximum distortion
values, however, are slightly worse on human test pairs. Neverthe-
less, we see that 150 vertices matched with GMDS are not evenly
distributed on the shape surfaces, which results in clustered corre-
spondences (Figure 8), hence one of the major shortcomings of the
GMDS method. This is mainly due to the fact that the GMDS algo-
rithm employs a gradient-based iterative optimization process that
produces sub-vertex matchings which do not necessarily coincide
with the initial sampling. We also note that, while computing the
resulting isometric distortion value for a GMDS output, we round
sub-vertex coordinates to their nearest vertices on the surface mesh.
The effect of this rounding process to the computed distortion values
is negligible since the mesh models in this, and all other datasets are
almost uniform and at relatively high resolution. We also observe
from the visual comparison that the GMDS matching often misses
the salient points of a shape (e.g. ear tips of the cats).

6.2. Dataset: Watertight

The part that we have used from the original dataset consists of
human, glasses, chair, teddy bear, hand, fish and armadillo classes
of cardinality 20 each. We have omitted ant and octopus classes
which are too symmetric to handle in the sense that the shapes in
these classes do not contain sufficient clues to resolve ambiguities
due to symmetry even at denser resolution levels. We also exclude
the remaining 10 classes since they exhibit severe non-isometries,
such as airplanes and four-leggeds, while our method, as well as
GMDS, has been designed to work on isometric shapes. In these
experiments, an object fetched from a class is matched to a random
object from the same class.

Concerning symmetric flips (Table 4—rows 2—4), our method is
as good as BIM which cannot however handle the chair class with
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Table 4: Percentage values for dense correspondence results without sym-
metric flips, obtained with different methods. A: Humans, B: Glasses, C:
Chairs, D: Teddy bears, E: Hands, F: Fishes and G: Armadillos. Last three
rows show the results on downsampled versions of classes A to G.

% of all results

Dataset:

Watertight A B C D E F G
C2FCM 28 63 30 50 50 69 60
Our method 89 88 70 67 88 88 90
BIM 89 57 n/a 83 100 85 89
C2FCM 61 29 69 42 50 43 37
Our method 83 71 66 50 83 86 75
GMDS 28 40 n/a 33 50 71 25

nonzero genus objects and is slightly worse than our method on
isometric distortion measurements (Table 5—columns 2-3).

As the flow of the transferred colours shows (Figure 9—top), our
dense map is not always as smooth as the one generated by BIM
which interpolates the feature correspondences in the extended com-
plex plane by nearest neighbour search to generate the conformal
maps to be blended. However, these smooth outputs are obtained at
the expense of leaving a fair amount of target vertices unmatched
(grey), mainly due to the blending step as well as discretization
involved while generating discrete conformal maps. Our final map,
on the other hand, is always onto, i.e. no vertices are left unmatched.

Table S: Isometric distortions on Watertight dataset, obtained with different
methods. A: Humans, B: Glasses, C: Chairs, D: Teddy bears, E: Hands, F:
Fishes and G: Armadillos. Fourth and fifth columns give the results on
downsampled versions of classes A-G.

Our method BIM Our method GMDS

Class Diso, djso Diso, diTso Diso, diTso Diso, diTso
A 0.022, 0.109 0.035, 0.121 0.021, 0.053 0.031, 0.079
B 0.008, 0.020 0.063, 0.248 0.007, 0.015 0.034,0.147
C 0.024, 0.109 n/a 0.022, 0.022 n/a

D 0.032, 0.108 0.048, 0.225 0.029, 0.081 0.032,0.119
E 0.034, 0.138 0.046, 0.167 0.027, 0.049 0.029, 0.134
F 0.033,0.140 0.061, 0.192 0.024, 0.079 0.024, 0.069
G 0.030, 0.185 0.049, 0.193 0.031, 0.098 0.039, 0.135

Downsampled Watertight models, when fed into GMDS in the
way described in Section 6.1., are significantly more prone to sym-
metric flips than our method (Table 4—rows 5-7). Initial GMDS
matchings suffer from the clustering issue (Figure 9—bottom), and
when interpolated into a dense map, produce worse results as com-
pared to ours in terms isometric distortion (Table 5—columns 4 and
5). Note also that, although a small topological noise connecting
index and middle fingers does not fail our method (see Figure 9),
noisy connections that alter geodesic distances more severely may
cause instabilities that are not expected in diffusion-based methods

BIM

such as [OMMG10].
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Figure 9: Dense correspondence results on Watertight dataset, obtained with our method vs. BIM (top) and vs. GMDS (bottom, separated by

yellow line).
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Table 6: Percentage values for dense correspondence results without sym-
metric flips, obtained with different methods. A: Noise, B: Shotnoise and C:
Shotnoise on the downsampled set.

% of all results

Dataset: SHREC’11 A B C

C2FCM 20 87 54
Our method 80 94 62
BIM 50 38 n/a
GMDS n/a n/a 23

Table 7: Isometric distortions on SHREC’11, obtained with different meth-
ods. A: Noise, B: Shotnoise and C: Shotnoise on the downsampled set.

Our method BIM GMDS
Class Diso, diTso Diso, diTso Diso, diTso
A 0.019, 0.066 0.013, 0.079 n/a
B 0.015, 0.042 0.032, 0.108 n/a
C 0.010, 0.066 n/a 0.026, 0.074

6.3. Dataset: SHREC’11

We employ SHREC’ 11 dataset to see to what extent our algorithm
tolerates noise and holes of various sizes. Due to zero genus con-
straint of the BIM method, only noise and shotnoise classes are
used for the corresponding comparison suite. The GMDS public
code, on the other hand, crashes on all test cases but the shotnoise.
The results summarized in Tables 6 and 7 generally show that both
of our competitors are more sensitive to noise as compared to our
method (see Figure 10 as well). Among five different shotnoise lev-
els tested, we fail to achieve stable results for the forth and fifth
levels (in increasing order) which possess severe shotnoises.

We give our results on microholes, holes and viewing classes
(which cannot be obtained with BIM and GMDS) in the format
of (Dis, dif,)), as (0.013, 0.059), (0.022, 0.058) and (0.016, 0.068),

respectively (Figure 10—bottom).

6.4. Dataset: SCAPE

Each SCAPE model represents the articulated motion of a human
actor reconstructed from range data. We match each SCAPE model
to a random model from the remaining 71 shapes. Although the
BIM method handles symmetric flips better than our method in
this dataset (Table 8), the mid-edge uniformization phase of their
conformal maps to be blended suffers from non-delaunay triangles
on this raw data, hence leaving them slightly behind us in distor-
tion performances (Table 9) when coupled with weighted Euclidean
centroids approximation of geodesic centroids for efficiency. The
GMDS method is again slightly worse than our method in terms
of symmetric flips (Table 8) and distortion measurements ((Djso,
di ) =(0.025,0.086) of our method versus (0.028, 0.103) of GMDS)

180
mainly due to their clustered generating matches.

C2F

Figure 10: Dense correspondence results on SHREC’11. Sample
pairs for noise, shotnoise and downsampled shotnoise classes (top
to bottom), obtained with our method (right) and with BIM and
GMDS (left). Our result samples for microhole, hole and viewing
classes are displayed separately at the bottom (left—right).

6.5. Application to GMDS

In addition to C2FCM [SY11] on which our symmetric flip tracking
approach has been verified thus far, we now show how well this
method, as a meta-approach, extends to another multi-resolution
isometric shape matching algorithm, namely GMDS [BBKO6a],
whose optimization method is completely different from C2FCM.
To this end, we first run the public GMDS code on a part of the
Nonrigid World database that contains 8 cats, 6 centaurs and 17
horses (for within animals class) as well as 10 male and 23 female
figures (for within and across humans classes), where the classes
are formed in the same way as described in Section 6.1. We then
slightly modify the original public code so as to initialize GMDS
with the qualified maps generated at the first level of our method
where qualification is based on the jump detection scheme described
in Section 4. Amongst the qualified maps that are tracked until a
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Table 8: Percentage values for dense correspondence results without sym-
metric flips, obtained with different methods. A: SCAPE and B: SCAPE
downsampled.

% of all results

Dataset: SCAPE A B

C2FCM 56 24
Our method 60 61
BIM 92 n/a
GMDS n/a 42

Table 9: Isometric and ground-truth distortions on SCAPE dataset, ob-
tained with our method in comparison to BIM.

Our method BIM
Diso, diTso Dgrd9 d;rd Diso, diTso Dgrds d;rrd
0.019, 0.097 0.045, 0.308 0.027,0.254 0.039, 0.306

relatively dense GMDS level that matches 250 vertices, we select
the one yielding the minimum GMDS distortion as the final map.
In Table 10, we provide the symmetric flip ratios on the final maps,
which clearly favour the latter GMDS modified by our tracking
method (last row). We depict the tracking process in Figure 12
along with the corresponding distortion curve, where the number of
tracked (qualified) maps is 8, a common value for centaurs having
three different pairs of limbs.

6.6. Timing

With O(V log V) time complexity, our algorithm scales well to
large meshes such as TOSCA and SHREC’11 humans of 53
K vertices, TOSCA animals and Watertight armadillos of 28 K
vertices and SCAPE humans of 13 K vertices. The tracking process
for symmetric flips (Section 4.) is quite fast; on the largest pair of
53 K vertices, a 2.53 GHz 64-bit workstation takes 10 s to evaluate
M! distortions of maps of sizes M each via Dj, (Equation 1)
for M = 8 and sort about 300 of them. This is followed by about
48 s tracking of top-N (typically < 4) mappings until level K,
(typically 4). The original C2FCM method then continues to bring
the qualified mapping to a dense map in 1578 s. For a SCAPE
pair with around 13 K vertices, these evaluation-sorting, tracking
and dense mapping times become 2, 13 and 391 s, respectively,
whereas for a downsampled shape pair, e.g. from TOSCA, with 5
K vertices, the respective execution times are 1, 4 and 66 s.

6.7. Discussion
We summarize our comparative experimental findings as follows:
1 In terms of symmetric flip ratio, our method is always better

than GMDS which is, as a coarse-to-fine solution, prone to
symmetric flips at the initial levels with yet no care taken.

GMDS 7

Figure 11: Dense correspondence results on SCAPE. BIM yields
the worst d, (top row, red line), our method the worst dgrd (middle
row, green overlapped by red) and GMDS the worst d;fso (bottom
row) on SCAPE downsampled.

While BIM performs as good as our approach on Watertight
models, it is worse for SHREC’ 11 models that are exposed to
various types of noises. The results on TOSCA and SCAPE
models favour BIM as the conformal maps being blended are
area-preserving at every point which proves useful in distin-
guishing mapping the front of a human to the back.

2 In isometric distortion performance, which goes paral-
lel to ground-truth performances (whenever ground-truth
correspondences are available), our method outperforms
GMDS for all datasets mainly because of the clustered match-
ings of the latter, that are interpolated into a dense map. The
BIM method, on the other hand, is on a par with ours on
TOSCA and slightly worse for all other datasets concerning
average distortions as the conformal maps to be blended induce
embedding errors, and more importantly confidence weights
of the blending process are computed over all vertices of a
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Table 10: Percentage values for correspondence results without symmetric
flips, obtained with the original and modified GMDS methods. A: Within
animals, B: Within humans and C: Across humans.

% of all results

Dataset: Nonrigid world A B C

GMDS 19 42 47

GMDS modified with tracking 61 70 67
Level 0

Diso(§)x107°

oL
wy

N
[

39 40 41 42

§152 §384 8586 6798 B8 S0

Deciding level

Figure 12: (Top) The distortion plot for the top 10 mappings at the
first level along with the visualizations of s, 3, &7 and s10. (Bottom)
The GMDS mappings that 51, 3 and s lead to at the dense GMDS
level where the map generated by s; (cyan) wins the race having the
least distortion. The mapping 510 (orange) is not even tracked.

dense surface mesh via interpolation. Recall that our algo-
rithm is embedding and interpolation free. Moreover, the BIM
yields unstable results on the datasets that include shapes with
touching surface parts since Euclidian centroid is replaced with
the geodesic one, with worst distortion behaviour significantly
behind ours.

3 In the case of GMDS, the uniformity of the evenly-spaced
initial samples is not necessarily preserved in the final corre-
spondence output, hence matching salient shape points such
as ear tips is not guaranteed. Besides, the algorithm does

not support dense matching without interpolation that incurs
more errors. We usually hit salient points at intermediate lev-
els and yet support dense matching without need for any
interpolation.

4 Sphere topology restriction of the BIM as well as its sensitiv-
ity to peculiarities of a given triangulation, e.g. non-delaunay
triangles, are avoided in our approach (see especially the ex-
perimental results on SHREC’11 and SCAPE datasets).

5 The conformal maps in BIM are not usually onto after closest
point matching in the embedding domain, which in turn leaves
a significant amount of target vertices unmatched after blend-
ing. Further interpolation would be required to obtain the full
dense mapping that we produce, which is many-to-many. The
interpolated conformal maps in BIM, however, generally leads
to smoother dense maps than ours.

6 Our symmetric flip tracking approach, when applied to the
multi-resolution GMDS method, significantly reduces the per-
centage of the correspondence results with symmetric flips.

7 By tracking, we significantly reduce the occurrence rate of
symmetric flips as an end result, yet cannot completely solve
the problem. In our experiments, in almost all cases where
the symmetric flip problem cannot be resolved, the true so-
lution is included in the initial set of qualified mappings, but
does not yield the minimum-distortion after tracking (further
increasing the resolution of the intermediate dense level does
not help either). This is mainly due to two reasons. First, in the
case of perfectly isometric and intrinsically symmetric shapes,
even at dense resolutions, there are actually more than one
correspondence, yielding distortion values which are all close
to the global minimum but possibly with some inaccuracy due
to discretization and modeling errors. Second, the shapes to
be matched are often only nearly isometric while the multi-
resolution correspondence algorithms that we have tested are
designed to work on perfectly isometric shape pairs. For the
rare cases where the true correspondence does not even appear
in the initial set of maps to be tracked, one possibility could
be to seek for local minima of the distortion function, that
would reveal the approximate symmetries more accurately, as
suggested in [RBBK09].

7. Conclusion

We have extended our original efficient dense isometric shape cor-
respondence algorithm [SY11] so as to address the symmetric flip
problem. To this effect, we couple the coarse-to-fine structure of
the original algorithm with a tracking mechanism that brings some
candidate initial maps into a finer resolution where their isometric
distortions can be more accurately computed. Maintaining only the
best one at this stage generally reduces the symmetric flips in the
final correspondence, as demonstrated on five well-known bench-
mark 3D shape datasets in comparison with two state-of-the-art
techniques. Our final dense maps are also better than or on a par
with our competitors as far as the final isometric and ground-truth
distortions are concerned. We perform the isometric matching in the
original 3D Euclidean space wherein isometry is defined, and hence
free of embedding errors. Our dense map is also interpolation-free
as the combinatorial matching continues efficiently until all vertices
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are explicitly matched. Note also that, this tracking-based solution
can be used until a desired coarseness level of correspondence de-
pending on the application or the method to be compared with. The
core idea of tracking symmetric flips (Section 4.) can be adapted to
other techniques affected by the same issues (Section 6.5.) as well
as to future multi-resolution isometric shape matching algorithms.
We finally note that the proposed method can be used for symmetry
detection by seeking optimal (or near-optimal) maps from a shape to
itself in the same spirit as other symmetry detection methods avail-
able in the literature such as [RBBK09, OSGO07]. As future work, we
plan to make the framework available for partially isometric shapes.
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