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V. SUMMARY

Many bilevel images can be transformed into a sparse binary
image by preprocessing. An easily implemented image differencing
operation was presented that decorrelates the bilevel image prior to
block coding. This simple differencing method combined with well-
known block coding techniques extends the application areas of these
techniques to a wider variety of images.
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Multidirectional and Multiscale Edge
Detection via M-Band Wavelet Transform

Turgut Aydin, Yiicel Yemez, Emin Anarim, and Biilent Sankur

Abstract— In this correspondence, the problem of directional and
multiscale edge detection is considered. Orthogonal and linear-phase M-
band wavelet transform is used to decompose the image into M x M
channels. These channels are then combined such that each combination,
which we refer to as decomposition filter, results in zero-crossings at the
locations of edges corresponding to different directions and resolutions,
and inherently performs regularization against noise. By applying a zero-
crossing detector on the outputs of the decomposition filters, edge maps
of desired resolution and direction are obtained. In addition, with the
application of the Teager’s energy operator at the analysis stage, it is
possible to obtain a reduction in unwanted zero-crossings. Final edge
maps of images are obtained through simple combinations of directional
edge maps.

[. INTRODUCTION

Edge detection is defined as the problem of locating abrupt gray-
level changes in a luminance image or such depth changes in a range
image. If edge detection is perceived as the first step of an image
understanding scheme, then simultaneous detection of edges with
different orientations and at different scales becomes of interest.

The conventional approach to edge detection, that is, the detection
of gray-level changes, is based on either thresholding the first
derivative of the image (gradient) or locating the zero-crossings of
its second derivative (Laplacian). Such operators performing these
first or second derivatives have highpass characteristics, and have
a tendency to emphasize noise and create spurious edge pieces.
Therefore, these conventional approaches may cause difficulties in
many applications. Since edge detection is an ill-posed problem,
the behavior of these algorithms has been tamed via regularization
scheme. An example is the Laplacian operator combined with Gauss-
ian filters resulting in the so-called Laplacian of Gaussian (LoG)
filters. An important point is that all regularized edge detectors
possess bandpass filter characteristics [1]-[4]. For example, the
bandwidth of a LoG filter is determined by the variance of the
Gaussian smoother and by varying its bandwidth; edge maps at
different scales are obtained. This approach, also called the Marr
and Hildreth paradigm [4], aims to optimize the tradeoff between
noise filtering and edge detection.

‘We conjecture that the M -band wavelet transform has the potential
to perform such a multiscale multidirectional edge detection since it
is, basically, a tool to view signals at different scales, and decomposes
a signal by projecting it onto a family of functions generated from a
single wavelet basis via its dilations and translations [S]. The image
is first wavelet transformed into M? resolution cells by applying the
M -band transform separately in the horizontal and vertical directions.
Then, various combinations of these bandpass sections are taken to
obtain different scales and orientations in the frequency plane. This
filtering achieves the desired regularizations inherently.
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TABLE 1
FILTER COEFFICIENTS FOR EIGHT-TAP FOUR-BAND WAVELET TRANSFORM
n P1(n) ¥a(n) Pa(n) Pa(n)
0 | -0.067371764 | -0.094195111 | -0.094195111 | -0.067371764
1 { 0.094195111 | 0.067371764 | -0.067371764 | -0.094195111
2 0.40580489 0.56737176 0.56737176 0.40580489
3 0.56737176 0.40580489 -0.40580489 | -0.56737176
4 0.56737176 -0.40580489 | -0.40580489 0.56737176
5 0.40580489 -0.56737176 0.56737176 -0.40580489
6 | 0.094195111 | -0.067371764 | -0.067371764 | 0.094195111
7 | -0.067371764 | 0.094195111 | -0.094195111 | 0.067371764
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Fig. 1. Step edge (solid line), the smoothed edge (dashed line), and their

difference (dotted line).

Wavelets have been used previously for multiscale edge analysis.
For example, Mallat et al. [6] decomposed an image via regular
wavelets so that the various resolution bands corresponded to the
gradient of the smoothed image at different scales. The so-called
singularity points are then detected as the modulus maxima.

In our approach, one novelty is that we achieve the multidirectional
multiresolution edge detection filters by using the M -band wavelets.
The other novelty is that we apply “unconventional” nonlinear
operators, such as Teager’s operator, on the decomposed images in
order to enhance the “edge-to-background” ratio.

The organization of this correspondence is as follows. Section II
presents the analyses of the techniques involved in the proposed edge-
detection scheme, and details the algorithmic steps. In Section III,
results and performance of the proposed edge detector are discussed.

II. EDGE DETECTION USING WAVELET TRANSFORM

A. One-Dimensional Analysis

To clarify our method, we first pose the problem in one dimension.
The one-dimensional (1-D) analysis is also known as residual edge
detection [7].

The difference of the smoothed versions of a step edge at two
different scales results in a zero-crossing at the edge location. In
general, such edge detectors can be referred to as difference of
regularized solutions (DORS) [8]. When the wavelet filters are
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Fig. 2. Step edge (solid line), the two smoothed edges (dashed line by H;,
dashdot by Hy + H + H3), and their difference (dotted line).

orthogonal and the system has a perfect reconstruction quadrature
mirror filter (PR-QMF) structure with Efﬁf__l ¥, ¥ = 1, these
differences of smoothed solutions can also be obtained at the output
of proper additive combinations of the filters H;, = ¥, ¥}, i =
1,2,--- M, where ¥; stands for the ith band analysis filter and ¥7,
the ith band synthesis filter of the wavelet transform in frequency
domain. These combinations should also be chosen so that the
output of each different combination views the edge information at
a different resolution.

For the four-band case, one can look at the signal in the three scales
which, when expressed as DORS, become (in increasing resolution
order)

H,=(H1+ H2)- H: ¢))]
Hy+ Hs = (Hi+ Hy + Hs) — Hy (2)
Hy+ Hs+ Hy=(H:+ H, + Hs + Hy) — H;. 3

The occurrence of a zero-crossing through (3) and (2) is illustrated in
Figs. 1 and 2, respectively. The spectral behavior of the smoothing
lowpass filters Hy, H, + H> and H: + H: + H3 are displayed
in Fig. 3. To be able to have consistent results and selectivity in
resolution and direction, the wavelet filters are required to be flat and
compact at the desired frequency band. The time-domain coefficients
of the eight-tap, four-band orthogonal linear-phase wavelet filters ¥;,
designed so as to meet these requirements according to [5], are given
in Table L

Since the filters in (1) and (2) are differences of smoothing lowpass
filters, regularization against noise is inherently present. On the other
hand, zero-crossings will also appear at those locations where gray-
level differences are not so large, corresponding to weak edges.
In addition, zero-crossings will appear at nonedge locations with
increasing noise levels. The use of nonlinear operators (Section II-C)
is intended for filtering out those spurious edges.

B. Two-Dimensional Analysis

In extending the described methodology to the two-dimensional
(2-D) case, “meaningful” combinations of the filters are selected to
reflect both scale and orientation of the edges.

The M?-channel 2-D separable wavelet transform is obtained by
the tensor product of M-band 1-D wavelet filters, which are denoted
by ¥,; for i,j = 1,2,3,4 with M = 4. Also, the ijth resolution
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Fig. 3. The spectral behavior of the smoothing lowpass filters Hq (solid
line), Hy 4 Hy (dotted line), and Hy + Ho + Hs(dashed line).

Hyp | Hyo | Hys | Hyg
Q]

Hiq | Hip | Hiyg | Hay

Hyy | Hay | Has | Hoy

Hqyp | Hig | His | Hyy

Fig. 4. Frequency bands corresponding to decomposition filters.

cell is achieved via the filter H;; = ¥;;¥}; for 1,5 = 1,2,3,4
with M = 4. The decomposition of the image into 16 channels
is illustrated in Fig. 4. Recall that the spectral response to edges is
strongest in the direction perpendicular to the edge, while it decreases
as the look direction of the filter is aligned with the edge. Therefore,
we can perform edge enhancement by using 2-D filters that are
highpass along the edge direction and lowpass along the orthogonal
direction. The frequency response of a typical edge-enhancing filter
covers a sector in the 2-D spatial frequency domain as shown in Fig. 5
[3]. The meaningful combinations of the wavelet decomposition
filters are based on this frequency sector concept and correspond
to the summations > H;;, where R denotes the frequency sector
of a certain direction and resolution. We should note that these
summations are approximations to frequency sectors and actually
contain tiles of frequency.

Since our system is orthogonal, and has PR-QMF structure, that
is, oM, E?/il V¥ = 1, the summation » 5 ¥,; ¥}, makes
sense and results in 2-D filters of desirable form, which treats all
the frequencies in a resolution cell as equally as possible.
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Fig. 6. In increasing resolution. Top row, vertical; middle row, diagonal;
bottom row, vertical-diagonal decomposition filters in frequency plane. (See
Fig. 4 for comparison.)

The number of channels and, therefore, the number of possible
filter combinations depend on the number of bands, which in turn
determines the size of the selectivity in direction and scale. Some
of the decomposition filters ), H;; are displayed in Fig. 6 and are
formed as follows for different directions in increasing resolution
(see also Fig. 4).

» Horizontal direction:

Fg1 = Hio

Fygo = Hip + His

Frs = Hio + Hi3 + His + Hag
e Vertical direction:

Fyy = Hy

Fys = Ha + Hz

Fyz = Hoy + H31 + Ha1 + Hao
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Fig. 7. Block diagram of A -band wavelet-based edge detection method.

* Diagonal direction:
Fp1 = Hoo
Fpz = Hoeo + Hss
Fps = Hao + Hzz + Hyy
» Horizontal-diagonal direction:
Fyp1 = Hyy
Frpe = Hip + Hos
Frups = Hi2 + Hos + Hag.

Similarly, there are also vertical-diagonal direction filters that
are symmetrical counterparts of those for the horizontal-diagonal
direction.

All of the above 2-D filters are bandpass filters and, therefore,
recalling our 1-D analysis, each filtering operation results in zero-
crossings at the location of step edges, matching the direction and
resolution of that filter. Once the input image has been decomposed
into its components in M x M different channels, a zero-crossing
detector is applied on these components, and the initial edge maps
at different resolutions and directions are obtained. By-products of
this operation are false zero-crossings resulting from the Gibbs
phenomenon (See Figs. 1 and 2). However, these false zZero-crossings
are relatively small in magnitude and therefore can be eliminated by a
simple thresholding mechanism before labeling a zero-crossing as an
edge pixel. In order to further eliminate resulting Gibbs phenomenon,
the local variance of the original image has also been incorporated in
the decision stage. A final edge map is also obtained by combining
edge maps of different directions and resolutions, or by simply taking
the superpositions.

C. Nonlinear Operators

The multiresolution decomposition also avails us of the possibility
to apply nonlinear operations in the subbands before the final syn-
thesis for the purposes of enhancement. These operations may distort
the image at the advantage of edges, but perfect reconstruction is not
eventually required anyway. However, phase linearity is essential in
obtaining correctly located edges. It is also important to note that
the proposed system is orthogonal and preserves the energy since the
wavelet transform used is unitary. Therefore, the effect of nonlinear
operations on performance is kept as small as possible. Teager’s
energy operator is such a nonlinear operator that can be used at this
step to improve the performance of edge detection. It is defined in
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one dimension [9] as
df () o 2 f(t)
TIf()] = (===£) — —_—
en = - sk @
while in discrete domain, the operator becomes
T[f(n)] = f*(n) = f(n+1)f(n—1). ®)

Rather than searching for a 2-D version of this energy operator, the
above 1-D energy operator is utilized at the output of each of the
2-D analysis stage. Thus, after the application of Teager’s energy
operator on the outputs of the filters ¥,;, pixel values are thresholded
so that only the highly “energetic” edge locations are fed into the
interpolating filters. The resulting image is not the reconstruction of
the original anymore; false zero-crossings are mostly eliminated and
edge-detection performance is improved.

D. Algorithm

The edge-detection algorithm based on the M -band wavelet de-
composition and Teager enhancement is illustrated in the block
diagram (Fig. 7).

This algorithm consists of the following steps.

» The input image is first decomposed into M x M channels by
the wavelet analysis stage without downsampling. Unlike other
edge detection algorithms based on wavelet transforms, edge
information is not extracted at this stage. These outputs, are
subjected to Teager’s energy operator followed by background
thresholding. In this way, details containing less energy are
supressed and edgelike evidences are corroborated.

* These nonlinearly treated individual bands are then followed by
the synthesis stage (inverse wavelet transform). Linear combi-
nations of these channels are selected to constitute the desired
edge-detection filters with various scales and directions.

* The outputs of the edge-detection filters are the zero-crossing
magnitude images. Zero-crossing maps are obtained by thresh-
olding these images so as to eliminate the unnecessary zero-
crossing pixels while the threshold is adjusted to the statistics
of the zero-crossing magnitudes. Further refinement of these
zero-crossing maps by masking with respect to local variance
values of the original image results in the edge maps of different
directions and resolutions. The combination of a horizontal and
a vertical edge map with various directions or scales yields a
complete edge map of the image. The combinations may be
based on various directions or scales.
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Fig. 8. Original house image.
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Fig. 9. In increasing resolution from top left to bottom right. Top row:

zero-crossings corresponding to vertical edge candidates. Bottom row: vertical
edges.

III. EXPERIMENTAL RESULTS

Our test image is a 128x 128 window of the House image shown
in Fig. 8. In Figs. 9-11, we display the zero-crossings and the edge
maps corresponding to different resolutions and directions. These
edge maps are obtained with a 16-channel decomposition using four-
band linear phase orthogonal filter banks as in [5], and the filter
combinations are chosen as in Section II-B In these figures, we
observe that as the resolution is reduced, some of the details of the
original image, e.g., the shadow of the roof, are lost as expected.
The effects of the edge enhancement operation via Teager’s energy
operator followed by thresholding are illustrated in Figs. 12-14. In
these maps, the diagonal Teager’s operator is defined as

T[f(n7 m)] - ma‘x{f2 (Tl,’ m) _f(n— 17 m— 1)f(7l+ 19 m+1) (6>
fz(nam)“f(n_ 13m+1)f(n+ l’m_ 1)}
Similarly, it is also possible to define Teager’s operator for

horizontal-diagonal and vertical-diagonal directions if a window
size larger than 3 x 3 is chosen.

Fig. 10. In increasing resolution from top left to bottom right. Top row:
zero-crossings corresponding to horizontal edge candidates. Bottom row:
horizontal edges.
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Fig. 11. In increasing resolution from top left to bottom right. Top row:
zero-crossings corresponding to diagonal edge candidates. Bottom row: diag-
onal edges.
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Fig. 12. Incorporating Teager’s operator (in increasing resolution). Top row:
zero-crossings corresponding to vertical edge candidates. Bottom row: vertical
edges.

Notice that the resulting edge maps contain less spurious details,
especially in the horizontal and diagonal cases. Finally, the combined
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Fig. 13. Incorporating Teager’s operator (in increasing resolution). Top row:
zero-crossings corresponding to horizontal edge candidates. Bottom row:
horizontal edges.

Fig. 14. Incorporating Teager’s operator (in increasing resolution). Top
row: zero-crossings corresponding to diagonal edge candidates. Bottom row:
diagonal edges.

edge maps with and without Teager’s operator, which are obtained by
the union of the vertical and horizontal edge maps in low and high
resolutions, are shown in Fig. 15. It is interesting to note that the
edge locations that are supplied from various channels are coherent,
and the edges are correctly placed.

It is desirable to maintain quantitative evaluations on edge-
detection performance for the sake of comparison. Nevertheless,
the subjective nature of the definition of an approach like edge
detection means that it is not possible or realistic to come up with
a unique measure of quality. As a result, more than one approach
to evaluate performance of an edge detector exist, and the two most
commonly accepted measures for edge detection are based on the
following criteria:

* good localization; i.e., accuracy of estimated edge location;
* good detection; i.e., unique response to edge points and no
response to nonedge points.

A measure of localization performance [10]-[12] is given by

1 o 1
P =
! max(ng, 7o) ; 1+ ad?

where nq is the number of detected edge points, n, is the number of
original edge points, « is a calibration constant, d; is the Euclidian
distance between an edge pixel (detected edge point) denoted by

Fig. 15. In increasing resolution: Top row, union of vertical and horizontal
edge maps; bottom row, union of vertical and horizontal edge maps, obtained
by incorporating Teager’s operator.

index ¢ in the distorted image and the corresponding one (original
edge point) in the reference edge map.
The detection performance can be measured as follows:
ne

Po=2¢

No

where n, is the number of original edge points and n. is the number
of erroneous edge points.

These measures, unfortunately, cannot quote the quality of a given
edge map as it is, but rather make comparisons to a reference edge
map. Only when synthetic test images of step edge shapes (like the
popular Checkerboard image) are used is it possible to evaluate the
performance of an edge detector directly, since edge locations are
well defined for these images.

The performance of the edge-detection method for increasing
additive Gaussian white noise levels has been tested, and the results
are displayed in Figs. 16 and 17. The reference edge map in these
experiments has been obtained by the application of edge detection
onto the noiseless image. For the case with Teager’s operator, the
reference edge has also been obtained with Teager’s operator present
in edge-detection procedure. Since incorporation of Teager’s operator
changes the nature of the edge detector and numerical performance
depends on the reference edge map, a quantitative comparison of the
two schemes is not meaningful. Instead, the trends shown by the two
curves should be compared.

The results indicated by the performance curves may be grouped
as follows.

¢ Both edge-detection schemes show immune behavior with re-
spect to noise: The curves reflect smooth deterioration rather
than a sharp drop under increasing noise levels.

» Incorporation of Teager’s operator increases immunity to noise:
The declining performance trend is decelerated when Teager’s
operator is present. In other words, the detected edges under the
presence of noise is more similar to the detected edges under
noiseless conditions when Teager’s operator is utilized.
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Fig. 16. Detection performance of the edge-detection scheme against white
Gaussian noise.
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Fig. 17. Localization performance of the edge-detection scheme against
white Gaussian noise.
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Fig. 18. Edge maps obtained by (a) Canny’s edge detector; (b) Canny’s
edge detector with relaxed connectivity constraint; (¢) Marr—Hildreth’s edge
detector.

Edge detection results of Canny’s edge detector and Marr—Hildreth
edge detector are also illustrated in Fig. 18 for subjective evaluation.
The wavelet-based scheme should be regarded as the filtering stage
of a more intelligent edge-detection scheme such as Canny’s edge
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detector [1], by which the zero-crossings leading to edge pixels are
extracted and classified. Therefore, the performance of our scheme
can certainly be improved by employing some decision-based rules
on the edge maps of different directions and resolutions, and/or
by imposing connectivity constraints for being an edge pixel, as
in Canny’s edge detector. The Marr—Hildreth [4] edge detector
[Fig. 18(c): ¢ = 1.2, mask size = 17] without extra control finds
most of the edges, but also results in many unwanted details. The
Canny edge detector [Fig. 18(a): ¢ = 1, mask size = 9], on the other
hand, exhibits a very “clean” edge map, but loses some important
details. When the connectivity constraints are relaxed, the Canny
edge detector performance increases in terms of preserving details,
but noise edges dramatically increase [Fig. 18(b)].

Under subjective evaluation, the compared edge-detection schemes
would each find support depending on the subjective definition or
quality criteria put forward by the evaluator. Quantitative comparison
of different schemes with each other would, on the other hand, be
meaningful only if there had been a reference edge map to compare
against; however, it is not possible to define a reference edge map for
real scenery without ambiguity. Furthermore, all these edge detectors
function differently depending on the parameters that control each
detector’s peculiarities. For example, control of “scale” involves
the adjustment of variance of the Gaussian in the Marr—Hildreth
detector, while Canny suggests use of multiple-width edge masks
and adjustable decision thresholds for connectivity control.

IV. CONCLUSION

In this correspondence, a new method for edge detection by
using M -band wavelet transform and an energy operator has been
presented, and its performance has been analyzed.

Following is a summary of the advantages of our method.

» The method is multiscale and multidirectional in the sense that
it decomposes the edge information into various scales and
directions.

+ Since the filter bank is linear phase and orthogonal, the perfor-
mance is not degraded through the use of nonlinear operations,
and it becomes possible to incorporate Teager’s operator between
the analysis and synthesis stages to enhance the edges of
different scale and resolution independently.

o The filters can be designed so as to be compact and flat in
a frequency band and, therefore, the method is selective in
frequency and direction. In addition, the decomposition filters
are of desirable form and treat all the frequencies as equally as
possible.

» Edge pixels are always correctly placed.

» Regularization against noise is inherently present.

ACKNOWLEDGMENT

The authors wish to acknowledge TUBITAK for their support
during this work. The authors are also grateful to M. Unser on the
Editorial Board for his thoughtful guidance in revising the manuscript,
and the referees for their constructive review and valuable comments.

REFERENCES

[1] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-8, no. 6, pp. 679-697, Nov.
1986.

[2] V. Torre and T. Poggio, “On edge detection,” IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-8, no. 4, pp. 147-163, 1986.

[3] A.Ikonomopoulos and M. Kunt, “Image coding via directional filtering,”
Signal Processing, vol. 8, no. 2, pp. 179-202, Apr. 1985.

[4] D. Marr and E. C. Hildreth, in Proc. Roy. Soc. London, Series B, Theory
of Edge Detection, 1980, vol. 207, pp 187-217.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 9, SEPTEMBER 1996

[51 O. Alkin and H. Caglar, “Design of efficient M-band coders with
linear-phase and perfect-reconstruction properties,” IEEE Trans. Signal
Processing, vol. 43, no. 7, pp. 1579-1590, July 1995.

[6] S. Mallat and W. L. Hwang, “Singularity detection and processing with
wavelets,” Trans. Inform. Theory, vol. 38, no. 2, pp. 617-643, Mar.
1992.

[71 M. Chen, D. Lee, and T. Pavlidis, “Residual analysis for feature
detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 1,
pp. 3040, 1991.

[8] M. Gokmen and C. Li, “Multiscale edge detection using first order R-
filter,” in Proc. IEEE Conf. Pattern Recog., The Netherlands, 1992. pp.
307-310.

[9]1 J.F. Kaiser, “On a simple algorithm to calculate the energy of a signal,”

in Proc. IEEE ICASSP-90, Albuquerque, NM.

A. K. Jain, Fundamentals of Digital Image Processing. Englewood

Cliffs, NJ: Prentice-Hall, 1989.

L. Kitchen and A. Rosenfeld, “Edge evaluation using local edge

coherence,” IEEE Trans. Syst., Man, Cybern, vol. SMC-11, no. 9, pp.

597-605, 1981.

'W. Lunscher and M. Bodoes, “Optimal edge detector evaluation,” IEEE

Trans. Syst., Man, Cybern., vol. SMC-16, no. 2, pp. 304-312, 1986.

(10]

(1]

[12]

Steerable Wedge Filters for Local Orientation Analysis

Eero P. Simoncelli and Hany Farid

Abstract—Steerable filters have been used to analyze local orientation
patterns in imagery. Such filters are typically based on directional
derivatives, whose symmetry produces orientation responses that are
periodic with period 7, independent of image structure. We present a
more general set of steerable filters that alleviate this problem.

I. INTRODUCTION

Oriented linear filters are used in many vision and image processing
tasks such as edge detection, segmentation, texture analysis, and
motion analysis. Their basic behavior with regard to representation of
orientation may be examined by computing an “orientation map:” the
squared filter response as a function of filter orientation (e.g., [2]-[4],
[8]). Such filters are almost always either symmetric or antisymmetric.
The symmetry (or antisymmetry) of the filters imposes a periodicity
of period 7 on the orientation map, regardless of the underlying image
structure. For example, an orientation map computed at the end of a
line segment will produce a bimodal response. Such an ambiguity is
undesirable for many applications. For this reason, some authors have
recently begun to explore the use of asymmetric filters for orientation
analysis [6], [7], [9].

A secondary theme in this sort of orientation analysis is that of
rotation-invariance [1], [2], [4], [5], [7]. Along these lines, Freeman
and Adelson developed the concept of steerable filters, in which
an oriented filter is synthesized exactly from a linear combination
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of a fixed set of basis filters. They constructed such bases using
directional derivatives of Gaussians, and used these filters to compute
local orientation maps. But directional derivatives of Gaussians are
either symmetric or antisymmetric, and thus they suffer from the
periodicity problem mentioned above.

In this article, we describe a new class of filters for local orientation
and junction analysis. These filters are both asymmetric and steerable,
and are designed to produce an optimally localized oriented energy
map. A preliminary report of this work has been presented in [10].

II. STEERABILITY AND ORIENTATION MAPS

This section gives a brief overview of the principle of steerability,
and describes its use in computing orientation maps. The simplest
example of a steerable filter is the partial derivative of a two-
dimensional (2-D) Gaussian. In polar coordinates, the horizontal and
vertical derivatives are written

GO (r,8) = cos(8)(=re /%)
G (r,0) = sin(8)(—re™""?)

where the subscript indicates the derivative order and the parenthe-
sized superscript indicates the derivative direction. It is well known
(and easy to verify, using basic trigonometric identities) that G (r, )
can be synthesized at an arbitrary orientation, ¢, using the following
equation:

G\ (r,0) = cos(¢)GV (r,8) + sin(¢)G/P(r,8). (1)

This equation embodies the steerability of these functions: The di-
rectional derivative 1 can be generated at an arbitrary orientation ¢
via a linear combination of the rotated basis filters, G(lo) and G(l’r/ 2
The coefficients cos(¢) and sin(¢) are referred to as the interpolation
functions. Since convolution is a linear operation, the result of
convolving with an arbitrarily oriented filter may be computed via a
linear combination of the results of convolving with the basis filters.
Steerability is not limited to first derivative functions. The general
steerability condition, for polar-separable functions, is written as

N
FUr0) = b — a)g(r) =Y kn(a)h(d — an)a(r) ()

n=1

where h(-) is the angular portion of the steerable filter, g(-) is
the radial portion, k,(-) are interpolation functions, and «, are a
fixed set of IV orientations. Freeman and Adelson [2] showed that
this equation is satisfied by all functions with angular components
that are bandlimited to contain no more than N /2 harmonic terms.
They presented examples of steerable filter sets consisting of higher
order directional derivatives of a Gaussian, along with steerable
approximations to their Hilbert transforms.

Results of applying a steerable fourth-order directional derivative
of a Gaussian and an approximation to its Hilbert transform' to several
synthetic images are shown in Fig. 1. Orientation maps are computed
as the sum of squared responses of these filters. The maps of the
vertical line and cross are as expected. However, the filters respond
bimodally to the half-line at ¢ = 7/2 and ¢ = 3w /2 (instead of
exhibiting a single peak at ¢ = w/2). The response to the corner is

!'These filters are used in [2] and are notated as G4/ Hg.
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