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TABLE III
ESTIMATED VALUES OF (31, 32) FOR REALIZATIONS OF 1ST ORDER GMRFS DEFINED ON SQUARE LATTICES
BY MAXIMIZING (1) THE TRUE LIKELIHOOD, (2) THE APPROXIMATE LIKELIHOOD, AND (3) THE PSEUDO-LIKELIHOOD

Pixel number p/1 =020, B2 =020 81 =010, B2 =0.15
1 2 3 1 2 3

8 x 8 0.244053 0.243762 0.306052 0.191802 0.191399 0.199992
0.202476 0.203267 0.154937 0.167056 0.166789 0.147094

16 % 16 0.221357 0.221372 0.245706 0.093866 0.093970 0.086112
0.178942 0.179546 0.170371 0.188620 0.188378 0.208411

32 x 32 0.201495 0.201684 0.212936 0.065614 0.065632 0.072296
0.186200 0.186556 0.183712 0.134186 0.134147 0.148668

64 x 64 0.185070 0.185481 0.188647 0.099275 0.099298 0.098364
0.210321 0.210412 0.208736 0.133404 0.133393 0.131875

TABLE 1V

SAMPLE MEAN AND STANDARD DEVIATION OF THE ESTIMATES OF (31, 32) USING 1000 32 x 32 SUBIMAGES
EXTRACTED FROM REALIZATIONS OF GMRFS GENERATED WITH 31 = 32 = 0.2 By MAXIMIZING (1) THE
TRUE LIKELIHOOD, (2) THE APPROXIMATE LIKELIHOOD, AND (3) THE PSEUDO-LIKELIHOOD

Sample mean

Sample standard deviation

1 2 3 1 2 3
31 =02 0.199446 0.1997910 0.200814 0.0231955 0.02292836 0.0255177
B2 =0.2 0.200204 0.2005310 0.201290 0.0233693 0.02309547 0.0260651

values using the following experiment. For a given set of parameters
(B1,82), we repeat the above parameter estimation procedure for
1000 GMREF realizations, and then compute the sample mean and
sample variance for the resulting estimates of the 3's. For example,
Table IV shows the sample means and standard deviations of the
resulting estimates of (31, 32) using 32 x 32 subimages for GMRF’s
generated with 3; = 32 = 0.2. Note that the variance for the pseudo-
likelihood method is over 20% larger than the true ML method and
the approximate ML method, while all three result in sample means
very close to the true (31, /32).

When the true 3's approach the boundary of their valid domain, in
the asymptotic case |31]+|32| — 0.5, both the approximate ML and
pseudo-likelihood methods quickly become ineffective. For example,
for (B1,32) = (0.35,0.15) both methods result in a nonpositive

definite matrix B with 3’s estimated from a 64 x 64 subimage.
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Causal and Semicausal AR Image Model
Identification Using the EM Algorithm

Yiicel Yemez, Emin Anarim, and Yorgo Istefanopulos

Abstract—In this study, we extend the method presented in a recent
paper [1], which considers the problem of the semicausal autoregressive
(AR) parameter identification for images degraded by observation noise.
We propose a new approach to identify both the causal and semicausal AR
parameters without a priori knowledge of the observation noise power.
We decompose the image into 1-D independent complex scalar subsys-
tems resulting from the vector state-space model by using the unitary
discrete Fourier transform (DFT). Then, by applying the expectation-
maximization (EM) algorithm to each subsystem, we identify the AR
parameters of the transformed image. The AR parameters of the original
image are then identified by using the least squares (LS) method. The
restored image is obtained as a byproduct of the EM algorithm.
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L. INTRODUCTION

Processing of images generally requires some statistical knowledge
about the image. The concern of image identification is the estimation
of this statistical knowledge prior to the image processing application.
The type of the statistical knowledge is determined by assuming a
suitable image model. The most common approach is to model the
image by using a 2-D autoregressive (AR) model. Then, the problem
becomes the identification of the AR parameters. Usually, due to
the imperfections in the electronic, photographic, or transmission
medium, the image model identification has to be performed in
the presence of observation noise. The classical approaches in the
literature assume that the power of the observation noise is known
a priori, and only with this assumption does identification become
possible. In the recent studies of Katayama [1] and Lagendijk [2],
the necessity for the a priori knowledge of the observation noise has
been overcome by making use of the EM algorithm.
~In [2], the aim is actually to restore the images against blur
and noise. In this respect, the identification of 2-D causal AR
model parameters is required. By making use of the EM algorithm,
the method can identify only causal AR models without priori
knowledge of the observation noise; however, the computational load
is excessive due to the 2-D structure of images.

In [1], Katayama presents a computationally efficient method to
identify the semicausal AR model parameters in the presence of noise,
again by using the EM algorithm. The idea in his method is to reduce
the 2-D problem to a 1-D problem by using the unitary discrete sine
transform (DST), as proposed originally by Jain [3].

In this paper, we present a new approach, based on [1], that
can identify both causal (quarter-plane or nonsymmetric half-plane)
and semicausal AR model parameters in the presence of noise. Our
method makes use of the EM algorithm and reduces the dimension
by using the DFT, which makes the approach flexible for different
AR models.

The paper is organized as follows. In Section II, we describe the
image and the observation model to identify and derive a vector
state-space model from the causal and semicausal models. We solve
the boundary problem by assuming a circulant image model, and
consequently, the image model coefficient matrices become circulant.
In this respect, in Section III, we briefly review the DFT diagonaliza-
tion results for circulant matrices. In Section IV, using these results,
we decompose the image into 1-D uncorrelated subsystems by using
DFT. In Section V, we apply the EM algorithm to each subsystem
separately to restore and identify the AR parameters in the transform
domain. The AR parameters of the original image are then identified
by using the least squares (LS) method. The simulation results of
our approach are given in Section VI and concluding remarks are
considered in Section VII.

II. IMAGE MODELING

We consider a monochromatic image of size N x N and denote
the gray levels of the original image and the observed image by
z(n,m) and y(n,m), respectively, where n is the vertical and m
is the horizontal position variable. To model the image, we use the
following 2-D AR model driven by a zero mean random model noise
w(n,m):

z(n,m) = Z ariz(n —k,m —1) + w(n,m)
k€S

o

where {axi} denote the image model coefficients which are deter-
mined by minimizing the variance of the noise o2, El[w?(n,m)].
In (1), S stands for the image model support. Some common
model supports for first-order QP (quarter-plane) causal, NSHP
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Fig. 1. Examples of some commonly used model supports for various
first-order AR models. (a) QP causal. (b) NSHP causal. (c) Semicausal.

(nonsymmetric half-plane) causal, and semicausal models are shown
in Fig. 1.

We assume that the observed image is degraded by zero mean
additive Gaussian white noise. Therefore, the observation can be
modeled as

y(n,m) = z(n, m) + v(n,m) )
where v(n, m) denotes the observation noise with unknown variance
JUAlternatively, (1) and (2) can be written as

z(m) = iAo’lAjz(m—jHAo‘lw(m) 3
j=1
y(m) = ;(m) +v(m) @

where z(m), w(m), y(m), and v(m) are the mth column vectors
of the N x N original image, model noise, observed image, and
observation noise, respectively. In (3), A;,j = 0,1,---,p, are
the N x N model coefficient matrices determined by the 2-D AR
model coefficients {ax;}. For all types of AR models, the coefficient
matrices become circulant if we solve the boundary problem by
assuming that the image is circulant [4]. Below, we list the first rows
of the circulant coefficient matrices for QP, NSHP, and semicausal
AR models:

1. QP causal AR model:
Ao : [l 0---0—ap--- — a10]

Aj i lagj 0---0 apj---ay]
2. NSHP causal AR model:
Ao:[l 0---0—a,,0~-—aw]
Aj:laoy a1y rap; 040 apj---ay]
3. Symmetric' semicausal AR model:
Ao :[l—a10—apo 0-+-0—=ap-- — a)
Aj:lae; arjcrap; 0-4:0 ap;--ay]

For causal models, if we determine the AR model coefficients {ari}
by minimizing the variance of the model noise, then the resulting
model noise is necessarily white [S]. Therefore, we can write the
covariance matrix of the model noise w(m) as

Ew(m)w” (k)] = 02 I6mx ®)

where 4, is the Kronecker delta. For semicausal models, however,
minimizing the variance of the model noise does not assure that
the resulting model noise is white [5]. It is possible to assume the
covariance matrix of the model noise in this case as

Elw(m)w” (k)] = 02 Aobpni. ()

IIl. DIAGONALIZATION OF THE COEFFICIENT MATRICES

We recall that the coefficient matrices in (3) are circulant matrices.
Any circulant matrix can be diagonalized by using unitary DFT so
that [6]

FA;F* = diag(f;(WR), f;(Wh), -+, f; (WY1

I Symmetric modeling implies aj; = a_p

™)
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where A; denotes the jth coefficient matrix and F is the defining
matrix of DFT, which is given by

1 k
F={—=wWy" 0<kn<N-1 8
(i} oshns ®
where by definition, Wx = exp _1’3” . In (7), the diagonal elements
are the eigenvalues of the coefficient matrix A; and are given by the
DFT of its first column [6}):
N-1
HWR) = 3 a;(OWR

1=0

0<k<N-1 ©)

where {o;(I)} denote the elements of the first column of the
coefficient matrix A;. It is important to note that although DST almost
diagonalizes the coefficient matrices of the symmetric semicausal
model [3], the use of DFT does not require any approximation on
the diagonalization of the coefficient matrices of both causal and
semicausal models.

IV. REDUCTION OF DIMENSIONALITY

In this section, using the diagonalization results of Section III,
we aim to decompose the 2-D image into 1-D independent scalar
subsystems.

We define the DFT’s of the vectors in (3) and (4) as

8(m) = Fz(m)  &(m) = FA; w(m)

n(m) =Fy(m)  ((m)=Fv(m) 10
and taking the DFT of (3) and (4) yields
P
Ox(m) =Y (a;)8k(m — j) + &x(m) an
i=1
Me(m) = Bx(m) + Ce(m) (12)

for k =0,---, N -1, where the subscript & denotes the kth elements
of the vectors in (10) and

£ (WN)
fo(W§)
We note that the scalars in (11) and (12) are all complex-valued.

Equations (11) and (12) together with (5) and (6) imply that the
rows of the transformed image can be processed independently, and
the covariance matrices of the transformed complex scalars £(m)
and ((m) are given by [4]

13)

(ai) =

E[é(m)&] ()] = o (k)bkibme (14)
E[Ce ()¢ (8)] = 72 (k)bkibme s)
E[&x(m){ ()] =0 (16)
where, for causal models,
o) = T2 a7
ST [ fo(WE2
while for semicausal modeling,
oAy = e (18)
ST WE

Further reduction in computational complexity can be achieved after
a closer examination (see Appendix), by introducing the following
approximation which implies that the real and the imaginary parts of

the transformed image are nearly uncorrelated:
a;; ~0

J=1p 19
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Therefore, dropping the subscript k in (11) and (12) and considering
the imaginary and real parts of the complex scalars separately for
each row of the DFT image (11) and (12) can be written as

8r-(m) =" a;8-(m = j) + & (m)

=1

nr(m) = b-(m) + (-(m) (20)
P
B:(m) = a;8i(m — ) + &(m)
=1
ni(m) = 8:i(m) + Gi(m) @1

where a;’s are real scalars.

The real and the imaginary parts of DFT are actually two separate
linear transformations. Therefore, &-(m), &i(m), ¢-(m), and (;(m)
are zero mean Gaussian white random processes with variances o7,
0%, 0%, and 0%, respectively. It is also possible to write, dropping
the subscript &, the variances of the transformed noise vectors defined
in (14) and (15) as

22
23)

2 2 2
0t =0¢r 0

2 2 2
or =0¢r + 00

We note that (20) and (21) represent 1-D causal AR model equations
for the real and the imaginary parts of each row of the transformed
image separately and are suitable forms to apply 1-D Kalman filtering.
Now that we have decomposed the N x N image to N independent
1-D complex scalar subsystems, we can apply the EM algorithm
separately to each subsystem to restorc the image and identify the
AR parameters.

V. EM ALGORITHM

It has been shown that EM-like approaches lead to computa-
tionally efficient estimation algorithms in various signal processing
applications [7]-{9].

Let © denote the unknown parameter vector of the system, which
is given by

e = [{aj}aagr»agi»agrvdgi]' (24)

The problem is to estimate © based on the transformed observed
image n(m) by using the EM algorithm. The EM algorithm
has two steps, which are referred to as expectation step (E-
step) and maximization-step (M-step). E-step finds the conditional
expectation of the complete log-likelihood function L.(©) =
p(ZV,YN|O) where ZV = [2(=1)2(0)---2(N — 1)], YV =
[n(~1)n(0)---n(N — 1)] and z(m) = [6(m)6(m —1)---8(m —
p +1)]7. Since £(m) and {(m) are assumed to be Gaussian white,
it is possible to write the complete log-likelihood function denoted
by £.(0) = logp(ZN,YN|©) as

fc(@) = fcr(e) + [m(@)

where £, (©) and £.;(©) denote the complete log-likelihood func-
tion for the real and imaginary parts of the transformed image,
respectively.

The conditional expectation computed in E-step is, then, maxi-
mized in M-step with respect to the parameter vector © so that © is
updated. The algorithm alternates between the two steps iteratively
until © converges to its optimum value. The convergence of the
EM algorithm is assured under the conditions that the underlying
AR model is causal and the variances of the model noise and the
observation noise are positive [10]. These conditions are already
satisfied in our case, recalling that (20) and (21) are 1-D causal
AR model equations resulting from either causal or semicausal 2-D
model.

(25)
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Fig. 2. Original face image.

Maximization of the conditional expectation —E[{.(©)|Y", O]
with respect to the unknown parameter f = [a; - - - a,] yields the
following update equation in M-step:

F=68, + 8007 (S + S1.) ™ (26)

where sg? denotes the first column of So;. So; and $1; are given by
N

S [P(m,m = 1IN) + 2(m|N)z" (m = 1|N)]

m=1
N

Su =Y [P(m—1|N)+ i(m = 1{N):7 (m - 1|N)]

m=1

SOI

@7

and to be computed separately for real and imaginary parts. The
conditional mean estimate :(m|N) and the covariance matrices
P(m|N), P(m,m — 1|N) are given by the Kalman filter and the
fixed interval smoother [11], [12].

Maximization with respect to the unknown parameters o7,, 0;,
agr, and agi yields identical update equations to those in [1], which
are valid and must be computed separately for both the real and
imaginary parts. By iterating the conditional expectation and the
update, we obtain the parameters for each row of the transformed
image and the estimate of the transformed image itself. The original
image is then obtained by taking the inverse transform of the
estimated image.

1-D AR model parameters of the DFT image preserve all the
information that is sufficient to identify 2-D causal (QP and NSHP)
and semicausal AR model parameters of the original image. Having
computed the 1-D model parameters, we solve the linear equation
system resulting from (13) by making use of the well-known least
squares method and obtain the parameters of the original image model

(41 (1}

VL. SIMULATION RESULTS

In this section, we present the simulation results of the proposed
identification method for first-order AR models and compare them
with those in [1]. As the original image, we have used the monochro-
matic 100 x 100 face image shown in Fig. 2. Before processing,
we have normalized the observed image, i.e., we have corrected for
its mean value in order to satisfy the zero mean assumption on the
model noise.
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TABLE 1
IDENTIFICATION IN DFT DOMAIN
Quarter plane NSHP Semicausal
Noiseless —0.488 0.795 ~0.261 0475 —0.135 0.286
0.693 0.710 0.697
0.076 —0.135 0.286
SNR = dB —0.556 0.779 —0.389 0.561 —0.226 0.341
0.777 0.780 0.769
0.048 —0.226 0.341
SNR = 10 dB —0.482 0.776 —0.225 0418 —0.125 0.271
0.706 0.725 0.709
0.081 —0.125 0.271
TABLE 11
IDENTIFICATION IN DST DOMAIN
0 dB 10 dB
Semicausal —0.208 0.308 —0.132 0.276
0.801 0.712
—0.208 0.308 —0.132  0.276
TABLE III
PERFORMANCE OF RESTORATION IN DFT
AND DST DOMAIN: IMPROVEMENTS IN SNR
DFT DST
SNR = 0 dB 9.611 dB 9.506 dB
SNR = 10 dB 4.518 dB 4.977 dB

Tables 1 and Il show the identification results in DFT and DST
domain, respectively. We measure the performance of AR model
identification by comparing the identified coefficients with the coeffi-
cients found by directly applying the LS method to (20) and (21) using
the noiseless original image. In order to improve the performance of
identification, we have also used the constraint ), ;s an = 1,
which is true for most of the real images.

We measure the performance of image restoration by the improve-
ment in signal-to-noise ratio (SNR) which is defined as

2

SNR = 10log Z—2 (dB) ©8)

where o2 is the variance of the original image and o2 is the mean
squared error between the original image and the observed or restored
image. The performances of restoration in DFT and DST domain at
0 dB and 10 dB noise, by the improvement in SNR, are displayed
in Table III. The O dB noisy image and the images restored by DFT
and DST are shown in Figs. 3, 4, and 5, respectively.Although the
improvements in SNR are almost identical, in view of Figs. 3, 4, and
5, we observe that some important features of the original face image
seem to be restored more successfully in DFT domain as compared
to those restored in DST domain.

Since by using DFT we end up with a complex image in the
transform domain with uncorrelated rows, the computational load
in DFT approach increases by a factor of two, as compared to DST
approach. However, the computation is still of the same order.

VII. CONCLUSION

In this study, we have proposed a new approach for the identifi-
cation of the images degraded by noise, based on the method in [1].
The method presented in [1] makes use of the DST to decompose
the image into scalar subsystems and can identify the semicausal AR
parameters by applying the EM algorithm. In this study, we have used
the DFT for decomposition, and in this way, it has become possible to
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Fig. 3. Noisy image with SNR = 0 dB.

Fig. 4.

Image restored by DFT.

identify both causal and semicausal AR parameters without a priori
knowledge of the observation noise power.

The decomposition of images into uncorrelated scalar subsystems
is based on the diagonalization of the coefficient matrices of the vector
state-space model. While the DST almost diagonalizes the coefficient
matrices of the symmetric semicausal model, the use of DFT does not
require any approximation on the diagonalization of the coefficient
matrices.

The approximation introduced by (19) in our method can be
avoided; however, this would result in an unnecessary increase in
the computational complexity without a significant improvement in
the performance.

APPENDIX

Derivation of Equation (19)

Recalling (11), the complex coefficients a; = a, j+ia; ; are found
so as to minimize the log-likelihood function (omitting the constant

Fig. 5. Image restored by DST.
terms)
1 & P
logp(Z™1©) = = D 10(m) = Y _a;6(m — j)I’
6 m=1 j=1
N
= Z [6-(m) — al6,.(m — 1) + al 0;(m — 1)]?
1 :N
+= Z [6:(m) — al 0, (m — 1)
T¢ =1
—alt; (m — 1)) 29
where af = [ar1- - arpl], al = [aiy - -aip), 87 (m = 1)
[6-(m—=1)---8,(m—p)],and 67 (m—1) = [§;(m—1)---8;(m—p)),

with respect to a, and a;. Differentiating the log-likelihood function
with respect to a; and setting the derivative to zero yield

N
0= [Z 0.(m — 1)8T (m — 1) — 0:(m — 1)8% (m — 1)}“

m=1

N
+ [Z 0.(m—1)8T(m — 1)+ 6;(m — 1)87 (m — 1):| a;

m=1

N
+ Y 8:(m)8i(m — 1) — 6:(m)8.(m — 1). 30)

m=1

Since edges appear infrequently in images, or, in other words, images
contain relatively few high-frequency components, we introduce the
following approximation:

(m—j)=0 p (31)

Za(m)B(m —j)—0:;(m)8 j=1,-

Using (30) and (31), we get

Ha; ~0 32)
where B = 3N _ 0, (m — 1)0T (m — 1) + 8:(m — 1)87 (m — 1).
Unless the whole image is zero, H is nonsingular, thus the unique
solution to (32) is given by

a; ~ 0.
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Vector Directional Filters—A New Class
of Multichannel Image Processing Filters

P. E. Trahanias and A. N. Venetsanopoulos

Abstract— Vector directional filters (VDF) for multichannel image
processing are introduced and studied in this paper. These filters separate
the processing of vector-valued signals into directional processing and
magnitude processing. This provides a link between single-channel image
processing, where only magnitude processing is essentially performed,
and multichannel image processing where both the direction and the
magnitude of the image vectors play an important role in the resulting
(processed) image.

VDF find applications in satellite image data processing, color image
processing, and multispectral biomedical image processing. In this paper,
results are presented for the case of color images, as an important example
of multichannel image processing. It is shown that VDF can achieve very
good filtering results for various noise source models.

1. INTRODUCTION

Although conventional approaches to multichannel image process-
ing are based on processing the image channels separately, they fail to
utilize the inherent correlation that is usually present in multichannel
images. Consequently, vector processing of multichannel images is
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Fig. 1. A set of 2-dim vectors. The output of BVDF is always the middle
vector (f,); this is not necessarily the case for the VMF output (f).

desirable [1]. Recently, this has been adopted by many researchers
[2]-[4]. An important case of vector image processing operators
are the vector median filters (VMF) that have been introduced as
extension of scalar median filters [5]. VMF can be derived 1)
as maximum likelihood estimates when the underlying probability
densities are double-exponential or 2) using vector order statistics
[6]. In the latter case, the vector median of a population is defined
as the minimal vector according to the aggregate ordering technique
[6]. Based on vector order statistics, extensions or modifications of
VMF have also been proposed [2], [7].

The operation of the above-mentioned filters can be described
according to some distance criterion that is applied to the set of
vectors inside the processing window. However, the features that
uniquely characterize a vector, namely direction and magnitude, are
not considered by such an operation and this may produce erroneous
results in certain cases. Such an example is shown in Fig. 1, where
VMF is applied to the set of vectors f,,- - -, f. The output produced
is vector f, although vector f, would be a better candidate to output.

This paper approaches the aforementioned problem by explicitly
considering the vector features and separating the processing of
vector-valued signals into two steps: directional processing and
magnitude processing. A new class of filters is introduced, called
vector directional filters (VDF). VDF perform the first step, namely
directional processing. They operate on the direction of the image
vectors aiming at eliminating vectors with atypical directions in the
vector space. This is achieved by employing a novel vector ordering
technique in which the angle between the image vectors serves as
the ordering criterion. The term “directional processing” used here
denotes the processing performed according to the vectors’ direction
in the vector space. This term has been adopted by other authors to
denote processing in certain directions in the image plane [8]. Here it
is used in the context of vector spaces and hence it should not bring
any confusion. Similarly, the term “magnitude processing” denotes
the processing of image data where only the vector magnitudes are
taken into account.

The application of VDF results in the removal of vectors with
atypical directions and a set containing vectors with approximately
the same direction in the vector space is produced as the output set.
Since the vectors in this set are approximately collinear, a magnitude
processing operation (second step) can be applied to produce a single
output vector at each image pixel. This step can be performed by any
classical gray-level image processing filter.!

I'This is obvious since gray-level image processing filters operate on the
magnitude at each pixel location.
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