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Audio-Facial Laughter Detection
in Naturalistic Dyadic Conversations

Bekir Berker Turker™, Yucel Yemez, T. Metin Sezgin, and Engin Erzin, Senior Member, IEEE

Abstract—We address the problem of continuous laughter detection over audio-facial input streams obtained from naturalistic dyadic
conversations. We first present meticulous annotation of laughters, cross-talks and environmental noise in an audio-facial database
with explicit 3D facial mocap data. Using this annotated database, we rigorously investigate the utility of facial information, head
movement and audio features for laughter detection. We identify a set of discriminative features using mutual information-based
criteria, and show how they can be used with classifiers based on support vector machines (SVMs) and time delay neural networks
(TDNNSs). Informed by the analysis of the individual modalities, we propose a multimodal fusion setup for laughter detection using
different classifier-feature combinations. We also effectively incorporate bagging into our classification pipeline to address the class
imbalance problem caused by the scarcity of positive laughter instances. Our results indicate that a combination of TDNNs and SVMs
lead to superior detection performance, and bagging effectively addresses data imbalance. Our experiments show that our multimodal
approach supported by bagging compares favorably to the state of the art in presence of detrimental factors such as cross-talk,

environmental noise, and data imbalance.

Index Terms—Laughter detection, naturalistic dyadic conversations, facial mocap, data imbalance

1 INTRODUCTION

LAUGHTER serves as an expressive social signal in human
communication, and conveys distinctive information on
affective state of conversational partners. As affective com-
puting is becoming an integral aspect of human-computer
interaction (HCI) systems, automatic laughter detection is
one of the key tasks towards the design of more natural and
human-centered interfaces with better user engagement [1].

Laughter is primarily a nonverbal vocalization accompa-
nied with body and facial movements [2]. The majority of the
existing automatic laughter detection methods in the litera-
ture have focused on audio-only information [3], [4]. This is
mainly because audio is relatively easier to capture and ana-
lyze compared to other modalities of laughter, and often alone
sufficient for humans to identify laughter. Yet visual cues due
to accompanying body and facial motion also help humans to
detect laughter, especially in the presence of cross-talk, envi-
ronmental noise and multiple speakers. While there is some
recent trend in the community for automatic laughter detec-
tion from full body movements [5], [6], there are so far few
works that exploit facial motion [3]. The main bottleneck here,
especially for incorporation of facial data, is the lack of multi-
modal databases from which facial laughter motion can reli-
ably be extracted. The existing works that incorporate facial
motion mostly make use of audiovisual recordings. Hence
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they rely on facial feature points extracted automatically from
video data, which are in fact difficult to reliably track in the
case of sudden and abrupt facial movements such as in laugh-
ter. As a result, the common practice is to use the resulting dis-
placements of facial feature points (in the form of FAPS
parameters for instance) as they are, without further analysis.
In this respect the primary goal of this paper is to investigate
facial and head movements for their use in laughter detection
over a multimodal database that comprises facial 3D motion
capture data along with audio.

We address several challenges involved in automatic
detection of laughter. First, we present detailed annotation
of laughter segments over an audio-facial database compris-
ing explicit 3D facial mocap data. Our annotation includes
cross-talks and environmental noise as well. Second, using
this annotated database, we investigate different ways of
incorporating facial information along with head movement
to boost laughter detection performance. In particular, we
focus on discriminative analysis of facial features contribut-
ing to laughter and perform feature selection based on
mutual information. Another issue that we consider is the
relative scarcity of laughter instances in real world conver-
sations, which hinders the machine learning task due to
highly imbalanced training data. To address this problem,
we incorporate bagging into our classification pipeline to
better model non-laughter audio and motion. Finally, we
analyze the performance of the proposed multimodal fusion
setup that uses selected combinations of audio-facial fea-
tures and classifiers for continuous detection of laughter in
presence of cross-talks and environmental noise.

2 RELATED WORK

The work presented here falls under the general field of
affective computing. However laughter detection is very
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different from affect recognition [7] that has been receiving
the main thrust in the community. As indicated by various
active strands of work, laughter detection is an entirely sep-
arate field of interest driven by several research groups [3],
[8], [9], [10], [11], [12]. Laughter falls under the category of
‘affect bursts’” which denote specific identifiable events [13].
This is unlike the general work in affect recognition which
attempts to continuously assess the emotional state of the per-
son of interest.

The work on laughter detection can be categorized into
two major lines: unimodal and multimodal approaches.
Unimodal approaches have mainly explored the audio
modality. For example, Truong et al. have focused on laugh-
ter detection in speech [8], and Laskowski et al. explored
laughter detection in the context of meetings [9]. Other unim-
odal work focused on body movements [5], [6]. Griffin et al.
[6] studied how laughter is perceived by humans through
avatar-based perceptual studies, and also explored automatic
recognition of laughter from body movements. In another
work, Griffin et al. [14] presented recognition (not detection)
results on pre-segmented laughter instances falling into five
different categories. In contrast, here we take a multimodal
approach and perform detection. We use the term “detection”
to refer to the task of segmentation and classification over a
continuous data stream, and the term “recognition” for the
task of classification on pre-segmented samples.

In another work, Niewiadomski et al. [5] identified sets
of useful features for discriminating laughter and non-
laughter segments. They used discriminative and genera-
tive models for recognition, and showed that automatic rec-
ognition through body movement information compares
favorably to a human performance.

To distinguish pre-segmented non-verbal vocalizations
using audio only features, solutions employing different
learning methods have been proposed. Schuller et al. [15]
used a variety of classifiers on dynamic and static represen-
tations to differentiate non-verbal vocalizations (laughter,
breathing, hesitation, and consent). Among various classi-
fiers they used, hidden Markov models (HMMs) outper-
formed other classifiers such as hidden conditional random
fields (HCRFs) and support vector machines (SVM). Unlike
what we present, this work is unimodal in nature. Our
work complements these lines of work by shedding more
light into how audio and motion information contribute to
laughter recognition as individual modalities.

There are also other lines of work that have indirectly
studied laughter detection on the course of addressing other
problems. For example, since laughter is treated as noise in
speech recognition, its detection, segmentation, and sup-
pression have received attention [16]. Here laughter detec-
tion is our primary concern, and we treat it with rigor.

Our work is more closely related to the multimodal
laughter detection and recognition systems [3], [10], [11],
[17]1, [18], [19]. Escalera et al. combined audio information
with smile-laughter events detected at the frame level and
identified regions of laughter [17]. Petridis et al. proposed
methods for discrimination between pre-segmented laugh-
ter and speech using both audio and video streams [3], [18].
Extracted features are, facial expressions and head pose
from video, and cepstral and prosodic features from audio.
They have also showed that the decision-level fusion of the

modalities outperformed audio only and video only classifi-
cations using decision rules as simple as the SUM rule.
Recently Petridis et al. [11] have proposed a method for
laughter detection using time delay neural networks
(TDNN). They have explained their relatively lower values
for precision, recall and F} score by the presence of imbal-
anced data, where a typical stream would have way more
non-laughter frames than laughter ones. Our work further
supports the findings of these studies, and also gives clear
advantage through the use of bagging for dealing with
imbalanced databases.

In other multimodal work, Cosker and Edge [20] present
analysis of correlation between voice and facial marker points
using HMMs in four non-speech articulations, namely laugh-
ing, crying, sneezing and yawning. Although their work is
geared towards synthesis of facial movements using sound,
it provides useful insights into laughter recognition as well.
A recent study done by Krumhuber and Scherer [21] shows
that the facial action units, coded using Facial Action Coding
System (FACS), exhibit significant variations for different
affect bursts and hence can serve as cues in detecting and rec-
ognizing laughters.

Scherer et al. [22] proposed a multimodal laughter detec-
tion system based on Support Vector Machines, Echo State
Networks and Hidden Markov Models. Although they use
body and head movement information, the information is
extracted from video. Similarly, Reuderink et al. [10] per-
form audiovisual laughter recognition on a modified and
re-annotated version of the AMI Meeting Corpus [23]. They
report performance measures over data containing 60 ran-
domly selected laughter and 120 non-laughter segments.
They use 20 points tracked on the face to capture the move-
ments in the video. Both of these approaches use video
sequences for motion and facial feature point extraction in
contrast with the use of mocap data in our work.

In another recent work, Turker et al. proposed a method
for recognition between pre-segmented types of affect bursts,
namely, laughter and breathing using HMMs [24]. Although
this method is promising, it could not directly be used for
continuous detection of laughters over input streams.

The data we use in our evaluation is a broadened version
of the IEMOCAP database extended through a painstaking
annotation effort, and serves as one of our main contribu-
tions. Although there are databases of unimodal and multi-
modal audiovisual laughter data [25], [26], [27], [28], our
database stands out by the fact that it comprises explicit
facial mocap data and has been annotated for cross-talk and
environmental noise. Hence we were able to train models
with training data selected based on their clean, noisy and/
or cross-talk labels.

2.1 Contributions
In view of the related work discussed previously, the contri-
butions of this paper can be summarized as follows:

e We provide detailed annotation of laughter seg-
ments over an existing audio-facial database that
comprises 3D facial mocap data and audio, consider-
ing cross-talks and environmental noise.

e We perform a discriminative analysis on facial
features via feature selection based on mutual
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Laughter (speaker) 1 |

Speech (listener) ' '
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Fig. 1. Sample annotation fragment with speaker laughter, listener
speech and noise.

information so as to determine facial movements
that are most relevant to laughter over the annotated
database.

e We construct a multimodal laughter detection sys-
tem that compares favorably to the state of the art,
especially the facial laughter detection performs out-
standing among the best performing methods in the
literature.

e We analyze the performance for continuous detec-
tion of laughters and demonstrate the advantage of
incorporating facial and head features, especially to
handle cross-talks and environmental noise.

3 DATABASE

In our analysis and experimental evaluations, we have used
the interactive emotional dyadic motion capture database
(IEMOCAP), which is designed to study expressive human
interactions [29]. The IEMOCAP is an audio-facial database,
which provides motion capture data of face, head and par-
tially hands as well as speech. The corpus has five sessions
with ten professional actors taking part in dyadic interac-
tions. Each session comprises spontaneous conversations
under eight hypothetical scenarios as well as three scripted
plays in order to elicit rich emotional reactions. The record-
ings of each session are split into clips, where the total
number of clips is 150 with a total duration of approxi-
mately 8 hours.

The focus of the IEMOCAP database is to capture emo-
tionally expressive conversations. The database is not spe-
cifically intended to collect laughters, and hence the
laughter occurrences in the database are not pre-planned in
any of the recorded interactions whether spontaneous or
scripted; they are generated by the actors based on the emo-
tional content and flow of the conversation. Instead of read-
ing directly from a text, the actors rehearse their roles in
advance (in the case of scripted plays) or improvise emo-
tional conversations (in the case of spontaneous interac-
tions). The database in this sense falls under the category of
“semi-natural” according to the taxonomy given in [30].
The genuineness of acted emotions is an open issue in most
of the existing “semi-natural” databases as also mentioned
in this paper. Yet several works exist in the literature, which
are addressing this issue and suggesting possible strategies
to increase genuineness of acted emotions [30], [31], [32]. In
this sense, IEMOCAP can be viewed as an effort to capture
naturalistic multimodal emotional data through dyadic con-
versations performed by professional actors under carefully
designed scenarios. We note that there exists yet no emo-
tional database which includes accurate facial measure-
ments in the case of fully natural laughters.

In the IEMOCAP database, a VICON motion capture sys-
tem is used to track 53 face markers, 2 head markers, and 6

TABLE 1
Laughter Annotation Statistics
Clean Noisy Cross-talk All
Number of occurrences 231 44 194 248
Total duration (sec) 21392 1749 165.25 382.00
Average duration (sec)  0.93 0.40 0.85 1.54

hand markers of the actors at 120 frames per second. The
placement of the facial markers is consistent with the fea-
ture points defined in the MPEG-4 standard. In each ses-
sion, only one actor has markers. We call the actor with
markers as speaker and the other actor as listener. Speakers’
data will be in the main focus of this study, as they include
both audio and facial marker information. However, listen-
ers have also impact on the audio channel by creating cross-
talk effect on speakers’ laughters. The authors of [29] note
that the markers attached to speakers during motion data
acquisition are very small so as not to interfere with natural
speech. According to [29], the subjects also confirmed that
they were comfortable with the markers, which did not pre-
vent them from speaking naturally.

Throughout the paper, the motion capture data of the
facial and head markers will be referred to as motion fea-
tures. The proposed laughter detection will be using audio
and motion features in a multimodal framework.

3.1 Laughter Annotation

Although the text transcriptions were available with the
IEMOCAP, the laughter annotations were missing. We have
performed a careful and detailed laughter annotation task
over the full extent of the database. The annotation effort has
been carried out with one annotator. Laughter segments are
identified with a clear presence of audiovisual laughter
events. The laughter annotations have been performed only
for the speaker over each clip in the database. In addition, the
speech activity of the listener has also been annotated around
the laughter segments of the speaker, which can be defined
as cross-talk for the laughter event. Similarly, the acoustic
noise appears as a disturbance to laughter events. We define
noise as any distinguishable environmental noise in audio
caused by some external factors such as footsteps of record-
ing crew, creaking chairs of participants (that especially hap-
pens when laughing due to abrupt body movements). We
have annotated the presence of environmental noise in
speakers’” and listeners’ recordings around the laughter seg-
ments of speakers. Note that our annotation does not include
the noise which is due to data acquisition. The speech activity
and noise presence annotations allow us to label the laughter
conditions of a speaker as clean, noisy and/or cross-talk. A
sample annotation stream is shown in Fig. 1.

All five sessions of the IEMOCAP database have been
annotated as described above. Table 1 shows a summary of
the laughter annotations. The first three columns present the
number of occurrences and the duration information for
clean, noisy and cross-talk conditions. The last column of the
table is a summary of laughter annotation of speakers before
pruning the noisy and cross-talk conditions. After pruning
the noisy and cross-talk segments, the total duration of
laughter segments decreases from 382.00 to 213.92 sec. The
average duration of the laughter segments also decreases
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Fig. 2. Block diagram of the proposed laughter detection system. The diagram shows the best performing setup for classifier-feature combinations.

from 1.54 to 0.93 sec. This is due to the pruning process,
which splits some long laughter segments into shorter ones.
Note that we try to keep as much clean laughter data as pos-
sible to use them in model training.

As given in Table 1, the total duration of clean laughter
sequences is 213.92 sec, while the annotated IEMOCAP
database is 8 hours. This causes an data imbalance between
the two event classes of interest, laughter and non-laughter.
To train our classifiers, we construct a balanced database
(BLD) which includes all clean laughter segments and a
subset of non-laughter audio segments from IEMOCAP,
excluding all noisy and cross-talk laughter segments. The
non-laughter samples, which define a reject class for the
laughter detection problem, are picked randomly so as to
match the total duration of laughters.

4 METHODOLOGY

The main objective in this work is to detect laughter segments
in naturalistic dyadic interactions using audio, head and
facial motion. The block diagram of the proposed system is
illustrated in Fig. 2. Audio and face motion capture data are
inputs to the system, from which short-term audio and
motion features are extracted. Audio is represented with mel-
frequency cepstral coefficients (MFCCs) and prosody fea-
tures, whereas motion features are extracted from 3D facial
points and head tracking data in the form of positions, dis-
placements and angles. Two different types of classifiers, i.e.,
support vector machines and time-delay neural networks,
receive a temporal window of short-term features or their
summarizations in order to perform laughter versus non-
laughter binary classification. The classification task is
repeated for every 250 msec over overlapping temporal win-
dows of length 750 msec. While the TDNN classifier works on
short-term features, the SVM classifier runs on statistical sum-
marization of them. Both types of classifiers make use of bag-
ging so as to better handle data imbalance between laughter
and non-laughter classes. Finally, different classifier-repre-
sentation combinations are integrated via decision fusion to
perform laughter detection on each temporal window.

4.1 Audio Features

Acoustic laughter signals can be characterized by their spec-
tral properties as well as their prosodic structures. The mel-
frequency cepstral coefficient (MFCC) representation is the
most widely used spectral feature in speech and audio proc-
essing, and it was successfully used before in characterizing
laughters [3]. We compute 12-dimensional MFCC features
using a 25 msec sliding Hamming window at intervals of

10 msec. We also include the log-energy and the first order
time derivatives into the feature vector. The resulting 26-
dimensional spectral feature vector is represented with f.

Prosody characteristics at the acoustic level, including
intonation, rhythm, and intensity patterns, carry important
temporal and structural clues for laughter. We choose to
include speech intensity, pitch, and confidence-to-pitch into
the prosody feature vector as in [33], [34]. Speech intensity
is extracted as the logarithm of the average signal energy
over the analysis window. Pitch is extracted using the YIN
fundamental frequency estimator, which is a well-known
auto-correlation based method [35]. Confidence-to-pitch
delivers an auto-correlation score for the fundamental fre-
quency of the signal [34].

Since prosody is speaker and utterance dependent, we
apply mean and variance normalization to prosody fea-
tures. The mean and variance normalization of prosody fea-
tures is performed over small connected windows of voiced
articulation, which exhibits pitch periodicity. Then the nor-
malized intensity, pitch, confidence to pitch features and
the first temporal derivative of these three parameters are
used to define the 6-dimensional prosody feature vector
denoted by f°. The extended 32-dimensional audio feature
is then obtained by concatenating spectral and prosody fea-
ture vectors: f4 = [fMf9].

4.2 Head and Facial Motion Features
We represent the head pose using a 6-dimensional feature
vector f that includes z, y, z coordinates of the head posi-
tion and the Euler angles representing head orientation
with respect to three coordinate axes. The reference point
for the head position and the three coordinate axes are com-
mon to all speakers and computed from face instances with
neutral pose [29]. We will refer to fT as static head features,
whereas dynamic head features will be represented by Af#,
which are simply the first derivatives of static features. We
note that dynamic head features are less dependent to
global head pose and carry more explicit information about
head movements that are discriminative for laughter detec-
tion such as nodding up and down. Note also that the few
methods existing in the literature that incorporate explicit
3D head motion for laughter detection [5], [6] calculate head
related features based on positioning of head with respect
to full body such as the distance between shoulders and
head as in [5]. However these features are not applicable
when dealing with audio-facial data which does not include
full body measurements.

Likewise we define two sets of facial features: static facial
features and dynamic facial features. The static facial
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feature vector is obtained by concatenating the 3D coordi-
nates of the tracked facial points. Hence the dimension of
this vector is 3 x M, where M is the number of facial points,
which is at most 53 in our case. We assume that scale is nor-
malized across all speakers and the 3D coordinates are
given with respect to a common origin which is tip of nose
in the IEMOCAP database [29]. We denote the static facial
feature vector by f” and the dynamic facial feature vector
by A f” which is the first derivative of the static version. We
note that pose invariance is less of a problem in this case
compared to head motion since facial points are compen-
sated for rigid motion.

4.3 Feature Summarization

We use feature summarization for temporal characteriza-
tion of laughter. For feature summarization, we compute a
set of statistical quantities that describe the short-term dis-
tribution of each frame-level feature over a given window.
These quantities comprise 11 functionals, more specifically
mean, standard deviation, skewness, kurtosis, range, mini-
mum, maximum, first quantile, third quantile, median
quantile and inter-quantile range, which were successfully
used before by Metallinou et al. [36] for continuous tracking
of emotional states from speech and body motion. We
denote the window-level statistical features resulting from
summarization of frame-level features f by F. Hence the
statistical features computed on audio, static and dynamic
head and facial features are represented by FA FH AFH,
F? and AF?, respectively. The dimension of each of these
statistical feature vectors can be calculated as 11 times the
dimension of the corresponding frame-level feature vector.
We will use these window-level statistical features later to
feed SVM classifiers for laughter detection.

4.4 Discriminative Analysis of Facial Laughter

In this section, we perform discriminative analysis on facial
points to determine the relevance of each point in formation
of laughter expression over the given database. We also
explore possible correlations between facial points in order
to eliminate redundancies in distinguishing laughter. Such
correlations exist especially between symmetrical facial
points (e.g., right cheek versus left cheek) and between points
belonging to a muscle group. We will later use the results of
this analysis to define optimal sets of facial features to be fed
into our classification pipeline for laughter detection.

We employ the feature selection method minimum
Redundancy Maximum Relevance (mRMR)[37]. This method
assigns an importance score to each feature, which measures
its relevance to target classes under minimum redundancy
condition. Relevance is defined based on mutual information
between features and the corresponding class labels (laughter
versus non-laughter in our case), whereas redundancy takes
into account the mutual information between features. Hence
when features are sorted in a list with respect to importance
in descending order, the first m features from this list form
the optimal m-dimensional feature vector that carries the
most discriminative information for classification. Another
useful feature selection method that we utilize is called as
Maximum Relevance (maxRel)[37], which ranks features
without imposing any redundancy condition and takes
only relevance into account when assigning importance to

Fig. 3. Visualization of importance of facial points for laughter using
(a) maxRel-static features, (b) mRMR-static features, (c) maxRel-dynamic
features, and (d) MRMR - dynamic features. The size of a disc is propor-
tional to importance of its center point.

features. We report the results using both methods, maxRel in
order to observe importance of individual points for laughter,
and mRMR to find optimal subsets of features to be fed into
our classification engine.

We extract window-level statistical features from a reali-
zation of the BLD with their class labels and apply mRMR
and maxRel methods. Both methods result in a feature rank-
ing list. Since each facial marker point on the face has 3 x 11
statistical features in our case, the complete list has 53 x 3 x
11 features, where 53 is the number of facial markers. To
quantify the importance of each facial point based on this
ordered list of features with individual scores, we employ a
voting technique. Each point collects votes from 33 contrib-
utor features, where each contributor votes in proportion to
its importance score resulting from maxRel or mRMR. The
accumulated votes finally sum up to an overall importance
score for each facial point.

For visualization, the importance scores resulting from
the underlying selection process are used to modulate the
radius of a disc around each marker point. Figs. 3a and 3b
display the results of maxRel and mRMR for static facial
features F'¥, respectively. In these figures, the size of a disc
is proportional to the importance of its center point. In the
case of maxRel, as expected we observe a more symmetric
and balanced distribution of importance which is focused
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on certain regions of the face, especially on mouth and
cheek regions. In the case of mRMR however, we see that
the distribution is not that symmetric and the distribution
of importance tends to concentrate on fewer points.

Figs. 3c and 3d display the results of maxRel and mRMR
for dynamic facial features AF”, respectively. For dynamic
features, it is evident that most of the relevance is concen-
trated, with a symmetric and balanced distribution, on
mouth and chin regions which have relatively good amount
of movement than any other regions of the face. In mRMR
results however, we see that the points over chin region no
longer appears to be important. This is probably because the
motion of the points on the mouth carries very similar infor-
mation since lower lip points can rarely move independently
from the chin. In Fig. 3d, we also observe that points around
the eyes start to get more importance, which is an indication
of genuineness of the laughters in the database [2].

4.5 Classification

As discussed briefly at the beginning of this section, two sta-
tistical classifiers, SVM and TDNN, are employed for the
laughter detection system. SVM is a binary classifier based
on statistical learning theory, which maximizes the margin
that separates samples from two classes [38]. SVM projects
data samples to different spaces through kernels that range
from simple linear to radial basis function (RBF) [39]. We
consider the summarized statistical features as inputs of the
SVM classifier to discriminate laughter from non-laughter.
On the other hand, TDNN is an artificial neural network
model in which all the nodes are fully connected by directed
connections [40]. Inputs and their delayed copies construct
the nodes of the TDNN, where the neural network becomes
time-shift invariant and models the temporal patterns in the
input sequence. We use the TDNN classifier to model the
temporal structures of laughter events as it has been success-
fully used by Petridis et al. [11]. In this work, we adopt their
basic TDNN structure, which has only one hidden layer. The
further details of the classifier structure, its parameters and
the optimization process are explained in Section 5.

4.5.1 Bagging

In the nature of daily conversations, laughter occurrences
and their durations are sparse within non-laughter utteran-
ces. This data imbalance problem has been pointed out in
Section 3.1. This problem has been addressed and several
solutions have been suggested in the literature [41]. For
instance, SVM classifier performs better when class samples
are balanced in the training [42]. Otherwise, it tends to favor
the majority class. To deal with this problem, several meth-
ods have been proposed, such as down-sampling the major-
ity class or up-sampling the minority class by populating
with noisy samples. We choose to down-sample the major-
ity class and use the BLD database for model training as
defined in Section 3.1. Since the BLD database includes a
reduced set of randomly selected non-laughter segments, it
may not represent the non-laughter class fairly well. We use
bagging to compensate this effect, where a bag of classifiers
is trained on different realizations of the BLD database and
combined using the product rule for the final decision [43],
[44]. Hence in bagging, each classifier has a balanced train-
ing set, modeling the non-laughter class over different

realizations. The bagging approach is expected to bring in
modeling and performance improvements. We investigate
the benefit of bagging in laughter detection and report per-
formance results in Section 5.

4.5.2 Fusion

The last block of Fig. 2 is multimodal fusion, where we per-
form decision fusion of classifiers with different feature sets.
Decision fusion of multimodal classifiers is expected to
reduce the overall uncertainty and increase the robustness of
the laughter detection system. Suppose that N different
classifiers, one for each of the N feature representations
f1, fa, ..., fn,areavailable, and for the nth classifier a 2-class
log-likelihood function is defined as p, (A\;), k = 1, 2, respec-
tively for the laughter and non-laughter classes. The fusion
problem is then to compute a single set of joint log-likelihood
functions p(A;) and p(Az) over these N different classifiers.
The most generic way of computing joint log-likelihood
functions can be expressed as a weighted summation

v
pA) =D wup, () for k=1,2, (1)
n=1

where w, denotes the weighting coefficient for classifier n,
such that " ®, =1. Note that when w, =+ Vn, (1) is
equivalent to the product rule [43], [44]. In this study, we
employ the product rule and set all weights equal for deci-
sion fusion of the multimodal classifiers.

5 EXPERIMENTAL RESULTS

Experimental evaluations are performed across all modali-
ties, including audio features and static/dynamic motion fea-
tures using SVM and TDNN classifiers. All laughter
detection experiments are conducted in leave-one-session-
out fashion, which results in a 5-fold train/test performance
analysis. Since subjects are different across sessions, the
reported results are also speaker independent. In each fold,
training is carried out over a realization of the BLD, which is
extracted from the four training sessions. Hence, the training
set is balanced and does not include noisy and cross-talk sam-
ples. In the testing phase, laughter detection is carried out
over the whole test session data, including all non-laughter
segments and all laughter conditions. As discussed in
Section 4, laughter detection is performed as a classification
task for every 250 msec over temporal windows of length
750 msec. Any temporal window, which contains a laughter
segment longer than 375 msec, is taken as a laughter event.

For the SVM classifiers, the RBF kernel is used for all
modalities with the hyper-parameters ¢ and y. In order to
set the hyper-parameters, we execute independent 4-fold
leave-one-session-out validation experiments for each fold
of the 5-fold train/test. In these validation experiments, the
classification performance is evaluated on a grid of hyper-
parameter values. Finally, we set the ¢ and y parameters so
as to maximize the classification performance. Note that
this procedure yields different parameter settings for each
fold of the 5-fold train/test evaluation, but on the other
hand it ensures independence of the parameter setting pro-
cedure from the test data.

The TDNN classifiers are defined by two parameters,
number of hidden nodes and time-delay. Since TDNN
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Fig. 4. Audio laughter detection ROC curves and AUC performances of
the SVM and TDNN classifiers with different feature sets and with/with-
out bagging.

classifiers exhibit increasing performance as number of hid-
den nodes and time-delay increase, we tend to set these
parameters as low as possible to minimize the computa-
tional complexity (for especially training phase) while main-
taining a high classification performance.

Finally, the resulting laughter detection performances are
reported in terms of area under curve (AUC) percentage of
the receiver operating characteristic (ROC) curves, which
represents the overall performance over all operating points
of the classifier [45]. Note that AUC is 100 percent for the
ideal classifier and 50 percent for a random classifier.

5.1 Results on Audio

The SVM and TDNN classifiers are considered for audio
laughter detection experiments. In the case of SVM, the sum-
marized audio features, F* and F4, are used. Recall that F
includes spectral features, whereas F* includes both pro-
sodic and spectral features. Probabilistic outputs of the SVM
classifier are obtained and then the ROC curves are calcu-
lated. In TDNN, a single hidden layer with 30 nodes using
frame-level features, f* and f, is employed, and likelihood
scores of the laughter and non-laughter classes are produced
by the output layer, which has two nodes. The time-delay
parameter is used as 4 as in [11]. We also apply 10-fold bag-
ging to the best performing classifiers.

Fig. 4 plots all ROC curves and reports AUC performances
for six classifier-feature combinations. We observe that the
ROC curves are clustered into two groups, where the SVM
classifiers without bagging constitute the first group with
lower performances. Note that, bagging helps more to the
SVM classifier with 3 percent AUC performance improve-
ment, whereas the TDNN classifier improves 0.8 percent
with bagging. The best performing classifier-feature combi-
nation is observed as the TDNN classifier with bagging using
the audio feature f4, which achieves 88.0 percent AUC
performance.

5.2 Results on Head and Facial Motion

Laughter detection from head and facial motion features
is performed by using SVM and TDNN classifiers. The

TABLE 2
The AUC Performances (%) of TDNN Classifiers
with Dynamic Head Features A f7 and with Vary-
ing Delay t, and Number of Hidden Nodes n,

Hidden Nodes (n;,)

Delay (z4) 5 10 20
4 84.0 85.5 86.3
8 85.4 86.5 87.0
16 85.1 86.3 87.2

parameters of the TDNN classifier, number of hidden nodes
(ny) and time-delay (t,), are set for the motion features by
testing a fixed number of configurations with r; = 4,8,16
and n;, = 5, 10, 20.

In our preliminary studies, the static head features, 1
and F, have performed poorly for laughter detection,
possibly due to the fact that these features have severe
pose invariance problems. Hence in this paper, we con-
sider only the dynamic features Af and AF for head
motion representation. The laughter detection perform-
ances of the TDNN classifiers for varying t; and ny
values are given in Table 2. We observe that TDNN
achieves the best AUC performance as 87.2 percent with
parameters 7 = 16 and n, = 20. Yet, the other AUC per-
formances with number of hidden nodes 10 and 20 are
all close to the best performance. The parameters for the
final head-motion based laughter detection system are
fixed as ;=8 and n;, =20, since they attain lower
computational complexity and sustain 87.0 percent AUC
performance. On the other hand, the SVM classifier
attains 81.5 percent AUC performance with static head
features. Hence, in our experiments with bagging and
fusion, we keep using the TDNN classifier with the
dynamic head motion features.

For laughter detection from facial motion, we consider
both static and dynamic features, ', F¥, Aff and AF”. We
perform extensive experiments for the following three
objectives: 1) to determine the best performing classifier-fea-
ture combinations, 2) to set the best facial feature selection
based on the discriminative analysis results presented in
Section 4.4, and 3) to select the hyper-parameters of the
TDNN classifiers.

For the first two objectives, we take two settings for the
TDNN classifier, one with (r; = 4, n;, = 5) and the other for
a more complex structure with (ty =4, nj, = 20). Then, we
test all possible feature-classifier combinations (static versus
dynamic and TDNN versus SVM) with varying number of
features selected based on the mRMR discriminative analy-
sis. In Fig. 5, we plot the AUC performances of these combi-
nations with varying feature dimensions.

In Fig. 5, we observe that for static facial features, the
SVM classifier performs significantly better than the
TDNN classifiers and attains its best AUC performance as
97.2 percent at feature dimension 23. Its performance satu-
rates at this point and then starts to degrade slightly with
96.9, 94.8 and 95.2 percent for feature dimensions 30, 40
and 50, respectively. Hence in the upcoming experiments
we employ the SVM classifier for the static facial feature
FT with feature dimension 23.
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Fig. 5. AUC performances of laughter detection using discriminative
static and dynamic facial features at varying dimensions.

As for the dynamic facial features, the TDNN classifiers
outperform the SVM classifier. When we consider the per-
formance of the TDNN classifiers under two different
hyper-parameter settings, we observe an overall peak at fea-
ture dimension 4. Hence in the upcoming experiments, we
set the TDNN classifier with the dynamic facial features
A fT with feature dimension 4.

For the third objective, we evaluate the performance of
the TDNN classifier for dynamic facial features over vary-
ing values of 7; and ny,. Table 3 presents these performance
evaluations. Since the AUC performances at nj, = 20 are
higher compared to other n, settings and do not exhibit sig-
nificant changes for varying values of 74, we set the parame-
ters as 74 = 4 and n;, = 20, which yield lower computational
complexity due to a smaller delay parameter.

Finally, we evaluate the performance of bagging for the
best classifier-feature combinations, which are TDNN with
dynamic head and facial features and SVM with static facial
features. Fig. 6 displays the ROC curves and AUC perform-
ances of these three classifier-feature combinations with and
without bagging. Note that when bagging is incorporated,
the performance of the TDNN classifiers with dynamic head
and facial features improves attaining respectively 88.3 and
92.5 percent AUC values. On the other hand, bagging does
not help the SVM classifier with static facial features, which
attains 97.2 percent AUC performance without bagging.

5.3 Fusion Results
The best performing classifier-feature combinations are
integrated using the product rule defined in Section 4.5.2.

TABLE 3
The AUC Performances (%) of TDNN Classifiers with
Dynamic Facial Features A f” at Feature Dimension 4
with Varying Delay t, and Number of Hidden Nodes n,

Hidden Nodes (n;,)

Delay (z4) 5 10 20
4 87.2 90.9 92.2
8 86.2 91.1 92.4
16 86.1 89.4 92.1
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Fig. 6. ROC curves and AUC performances of laughter detection from
head and facial features using different classifier-feature combinations
with and without bagging.

Four classifier-feature combinations, SVM-f”, TDNN-A f”,
TDNN-Af# and TDNN-f4, are cumulatively populated,
where all except SVM-f" are with 10-fold bagging. Fig. 7
presents the ROC curves and AUC performances of three
fusion schemes, which respectively have the best AUC per-
formances for fusion of two, three and four classifiers. The
best fusion scheme for two classifiers (Fusion2) is between
SVM-f (FaceSta) and TDNN-f4 (Audio), which achieves
98.2 percent AUC performance. The best fusion scheme for
three classifiers (Fusion3) is between SVM-f (FaceSta),
TDNN-Af” (FaceDyn) and TDNN-f* (Audio) with 98.3
percent AUC performance. Finally, the fusion of all four
classifiers (Fusion4) attains 98.0 percent AUC performance.
We further assess the performance of our audio-facial
laughter detection schemes by using other common perfor-
mance measures, such as recall, precision and F; score. We
set 2 percent false positive rate (FPR) as the anchor point on
the ROC curve. At this anchor point, we first evaluate the

True positive rate
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Fig. 7. ROC curves and AUC performances of laughter detection with
fusion of best classifier-feature combinations, face static (SVM- ), face
dynamic (TDNN-A f'), head dynamic (TDNN-A /) and audio (TDNN- f4)
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TABLE 4
Recall Performances Under All, Clean, Cross-Talk
and Noisy Laughter Conditions for Unimodal and
Multimodal Classifiers at 2 Percent FPR Point

All Clean Cross-talk Noisy
Fusion3 83.2 80.4 87.6 86.5
Fusion4 82.7 80.2 86.6 88.5
Fusion2 79.0 77.1 82.3 82.7
FaceSta 73.1 67.9 80.0 80.8
Audio 40.9 50.1 29.2 34.8
FaceDyn 40.1 36.3 452 455
HeadDyn 28.0 27.4 28.9 48.5

recall performance under clean, cross-talk and noisy laugh-
ter conditions in Table 4. We observe that multimodal fusion
of classifiers performs significantly better for all conditions.
Static face features with SVM classifier perform reasonably
well under cross-talk and noisy conditions, while audio fea-
tures with the TDNN classifiers suffer heavily in these cases.
The Fusion3 scheme, which already has the best AUC perfor-
mance, also yields the best recall performances except for the
noisy condition. Note that dynamic head features with
TDNN improve the multimodal fusion performance under
noisy conditions, which makes the fusion of four classifiers,
Fusion4, to be the most robust one against noise.

Table 5 presents recall, precision and F; score perform-
ances of the unimodal and multimodal classifiers at 2
percent FPR anchor point. Note that these performances
are over all laughter conditions. As expected, the precision
scores are lower than the recall scores due to data imbal-
ance. Yet again, the best precision and F} score performan-
ces are obtained with multimodal fusion, where the best is
the Fusion3 scheme.

5.4 Discussion
We have reported the results of a detailed evaluation of our
laughter detection scheme using various combinations of
classifiers, modalities and strategies. Below we highlight
some important observations and findings drawn from
these experiments.

The discriminative analysis of laughter in Section 4.4
reveals that the facial laughter signal has a steady compo-
nent, such as the contractions on the cheek region, which can
be characterized with our positional (static) features, as well
as a dynamic component, such as the abrupt and repetitive
movements of head and mouth, that can be represented with
our differential (dynamic) features. Our experiments also
show that TDNNs can successfully capture temporal charac-
teristics of laughter by relying on frame-level dynamic fea-
tures while SVMs can model the steady content via window-
level summarization of static features. We observe that the
SVM classifier with the static face features attains the best
unimodal performance for laughter detection among all
other classifier-modality combinations available.

The best classifier according to AUC performance is the
Fusion3, which is multimodal fusion of SVM with static
face features, TDNN with dynamic face features and TDNN
with audio features. Note that, although dynamic head
features with TDNN attain 88.3 percent AUC performance,
it does not improve the fusion of all classifiers, i.e., the

TABLE 5
Recall, Precision and F; Scores of Laughter Detection with
Unimodal and Multimodal Classifiers at 2 Percent FPR Point

Recall(%) Precision(%) Fy score(%)
Fusion3 83.2 26.5 40.2
Fusion4 82.7 26.4 40.0
Fusion2 79.0 25.5 38.6
FaceSta 73.1 24.1 36.2
Audio 40.9 15.8 22.8
FaceDyn 40.1 15.5 224
HeadDyn 28.0 11.4 16.2

Fusion4 classifier. However, it brings 2 percent improve-
ment in the recall rate of noisy laughter segments, as
observed in Table 4. Hence head motion becomes valuable
as a modality for laughter detection, especially in the pres-
ence of environmental acoustic noise.

Our multimodal laughter detection scheme benefits from
the discriminative facial feature analysis presented in Sec-
tion 4.4 in two aspects. First, as observed in Fig. 5, the AUC
performance drops more than 10 percent for the dynamic
face features as the feature dimension grows further beyond
a certain point. Second, feature dimension reduction helps to
keep the training and testing complexities of the classifiers
low, which avails the possibility of real-time implementa-
tions. In fact, the SVM and TDNN classifiers that we employ
are both well suited to real-time implementations with O(M)
time complexity, where M is the size of the feature vector.
The latency of the detection system in both cases is propor-
tional to and actually a fraction of the window duration over
which a decision is given. In the proposed framework, the
worst mean computation times of the SVM and TDNN clas-
sifiers running in Matlab 2014b platform on a computer (Dell
Latitude E5440) with Intel Core i7, 2.1 GHz CPU, are mea-
sured as 8.7 and 11.3 msec, respectively. Recently, we have
utilized a real-time extension of the proposed laughter detec-
tion framework for analysis of engagement in HCI [46].

For the data imbalance problem, the bagging scheme has
been investigated with both SVM and TDNN classifiers. We
have observed that bagging brings much higher improve-
ments for the TDNN classifiers. In general, TDNN architec-
tures become harder to train as the number of parameters,
the number of nodes and delay taps increase. Although we
have a fairly large laughter database, it does not allow us to
employ larger TDNN structures. The balanced BLD data-
base that we use in the training probably restricts the
TDNN from better learning the non-laughter class. This
could be the reason of the higher improvements that we
obtain with bagging in the case of TDNN.

Table 6 positions our work in the context of the related
work, and compares our approach with the state of the art in
laughter detection and recognition. Existing work can be
characterized as either recognition or detection frameworks.
Recognition frameworks assume that the data has been pre-
segmented into individual chunks, and the task reduces to
classifying each chunk using standard classification algo-
rithms. However, the data almost never comes in such pre-
segmented format. Hence one needs to automatically seg-
ment the continuous data stream into smaller chunks and
classify them. This is called detection. Detection is a far more
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TABLE 6
Summary of the State of the Art in Laughter Detection and Recognition
Reference Year Task Modality Classifier Database Database Size Performance
[19] 2005 Detection Audio, Face GMM Own 3 clip, each 4-8 mins Recall: 71%, Precision: 74
(Image Based)
[18] 2008 Recognition Audio, Head NN AMI Laughter: 58.4 F1: 86.5%, ROC-
and Face Video sec, Speech: 118.1sec  AUC:97.8%
Tracking
[10] 2008 Detection Audio, Face GMM, HMM, SVM  AMI Total: 25 mins ROC-AUC: 93%
Video Tracking (59% speech)
[17] 2009 Detection Audio, Face Gentle Adaboost New York Total: 72 mins Accuracy: 0.77,
Video Tracking Times Sensitivity: 0.65,
Specificity: 0.77
[12] 2011 Recognition Audio, Face Neural Nets AMI, SAL, Laughter: 33.6 min, Average F1: 74.5
Video Tracking DD, AVLC Speech: 18.9 min
[22] 2012 Detection Audio, Face HMM, SVM-GMM, FreeTalk Total: 180 mins, ESN Model, F1: 63%
and Body activity ESN Laughter: 289 sec,
from video Speech-laugh: 307 sec
[11] 2013 Detection Audio, Face TDNN SEMAINE Training: 77.3 min, Recall: 41.9%,
Video Tracking Validation: 60.2 min, Precision: 10.3, F1: 16.4
Test: 51.3 min
[14] 2013 Recognition Body Motion k-NN, RR, Own 508 laughter, 41 RF Model, MSE: 0:011,
Capture SVR, KSVR, non-laughter segments  CS: 0:91, TMR: 0:67,
KRR, MLP, RF, IR RL: 0:27, F1=74.4%
[6] 2015 Recognition Body Motion k-NN, RR, SVR, UCL body 112 laughter, 14 RF Model, F-score:
Capture KSVR, KRR, LASSO, laughter dataset non-laughter instances 0.60 (laughter class)
MLP, MLP-ARD,
RF, IR
[5] 2016 Recognition Body Motion SVM, RF, k-NN, MMLI Laughter: 27 min 3 sec, RF Model, Recall:
Capture NB, LR Other: 46 min 18 sec 0.67, Precision: 0.66,
F-score: 0.66
Our Method 2016 Detection  Audio, Face SVM, TDNN IEMOCAP Total: approx. 8 hours, ROC-AUC: 98.3%
and Head Laughter: 382 sec (Fusion3)
Motion Capture

challenging problem, because it requires identifying seg-
ments in addition to recognition. Our method is a detection
method, which sets it apart from most of the existing work.

There are three frameworks that use only body movements
[5], [6], [14] for performing recognition on pre-segmented
laughters. Using various classification frameworks and differ-
ent datasets, all these three studies show that body move-
ments convey valuable information for laughter recognition.
The performance figures reported by these methods are com-
parable to the ones which have audio and face modalities.

The first seven studies in the table [10], [11], [12], [17], [18],
[19], [22], use audio and face information in recognition and
detection tasks. Two of them [12], [18] used pre-segmented
laughters. In [18], although they perform recognition task,
unimodal and multimodal performances parallel our obser-
vations. That is, spectral features are the main source of high
performance while prosody features can provide additional
enhancement up to some point. Also, the face modality leads
to better performance compared to audio, and the head move-
ment information has the lowest performance. The work in
[12] describes a recognition system, however, the results are
valuable since they come from a cross database evaluation
spanning four different datasets (AMI, SAL, DD and AVLC).

The next set of systems cover audio-facial laughter detec-
tion [10], [11], [17], [19], [22]. In [10], although the authors
claim to present a detection method, the test results are

reported on a relatively small set of pre-segmented data.
The database used in this study is also unusually balanced
(60 laughters and 120 non-laughters), atypical of the highly
skewed distributions observed in naturalistic interaction.
Furthermore, the evaluation in this work has been carried
out by filtering away instances of smiles. This makes the
dataset further biased by removing conceivable false posi-
tive candidates and thus potentially inflating performance.
The best performance reported is 93 percent AUC-ROC for
audio and face fusion.

In [19], the authors propose a laughter detection system
and test it on 3 clips of 4-8 minutes each. Unlike our work,
the conversational data used in this study is not recorded in
a face-to-face interaction scenario, but through a video call
between separate rooms. In addition, laughter instances
constitute 10 percent of the whole data, which is quite high
compared to ours (1.33 percent). This imbalance makes our
task much more challenging.

Three threads of work [11], [17], [22] present proper
detection algorithms on continuous data streams using rela-
tively larger datasets. The method presented in [17] uses
only the mouth movements in the facial modality and there
is almost no performance improvement in multimodal
scheme over only audio modality. The work in [22] contains
2 clips of 90 minutes dyadic conversation. The major limita-
tion of this work is the lack of fine visual features in the data
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stream. A video of the face and the body was recorded
simultaneously using a single omni-directional camera. The
camera captures the entire scene, and all the participants in
a single image, which makes it hard to capture fine level
facial detail and reliable facial features. As such, the added
benefits of the coarse visual information is unclear. Our
work fills in the gap in this respect by demonstrating that
the high resolution facial features based on tracked land-
marks do improve the performance of laughter detection.

Finally, the work in [11] can be regarded as representing
the state of the art in audio-facial laughter detection. Here,
the authors used the SEMAINE database with a fairly large
test partition. In audio, they used MFCCs and in the visual
modality they used FAPS information extracted from a
facial point tracker. Recall, precision and F; scores are
reported in a speaker dependent scheme. Also, they have a
voice activity detector to get rid of silent regions in data. In
agreement with our findings, they state that performance
measures (recall, precision) suffer from class skewness
(sparse positive class in natural interaction). They reported
recall, precision, and F; scores of 41.9, 10.3, 16.4 percent
respectively for the audio-facial scheme. If one seeks a com-
parison with our results, comparing F; scores would be
meaningful. Our audio-facial F; score for Fusion2 is given
in Table 5 as 38.6 percent, while they have reported audio-
facial scheme F} score as 16.4 percent.

6 CONCLUSION

We have introduced a novel audio-facial laughter detection
system and evaluated its performance in naturalistic dyadic
conversations. We have annotated the IEMOCAP database,
which was originally designed to study expressive human
interactions, for laughter events under cross-talk, noise and
clean conditions. In this annotated database, we have investi-
gated the utility of facial and head motion and audio for
laughter detection using SVM and TDNN classifiers. For the
face modality, we have used low dimensional and discrimi-
native feature representations extracted using the mutual
information-based mRMR feature selection method. Our
experimental evaluations show that static motion features
perform much better with the SVM classifier for the laughter
detection task, whereas dynamic motion features as well as
audio features perform much better with the TDNN classifier.
One of the main findings of this work is that facial information
as well as head motion is useful for laughter detection, espe-
cially under the presence of acoustic noise and cross-talks.
Although the facial analysis in the presented system relies on
the markers attached to skin, the marker positions are consis-
tent with the MPEG-4 standard, and 3D tracking sensors such
as Kinect can facilitate incorporation of these facial features
into real-time laughter detection applications.

As future work, we think that the performance of our
laughter detection system can further be improved using
large scale training data, possibly by incorporating deep neu-
ral network architectures, such as recurrent neural networks.
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