Available pqline at www.sciencedirect.com
“*.* ScienceDirect

Signal Processing 86 (2006) 3549-3558

SIGNAL

PROCESSING

www.elsevier.com/locate/sigpro

Multimodal speaker/speech recognition using lip motion,
lip texture and audio ™

H.E. Cetingiil*, E. Erzin, Y. Yemez, A.M. Tekalp

College of Engineering, Ko¢ University, Sariyer, Istanbul 34450, Turkey

Received 1 July 2005; received in revised form 5 December 2005; accepted 1 February 2006
Available online 2 June 2006

Abstract

We present a new multimodal speaker/speech recognition system that integrates audio, lip texture and lip motion
modalities. Fusion of audio and face texture modalities has been investigated in the literature before. The emphasis of this
work is to investigate the benefits of inclusion of lip motion modality for two distinct cases: speaker and speech
recognition. The audio modality is represented by the well-known mel-frequency cepstral coefficients (MFCC) along with
the first and second derivatives, whereas lip texture modality is represented by the 2D-DCT coefficients of the luminance
component within a bounding box about the lip region. In this paper, we employ a new lip motion modality representation
based on discriminative analysis of the dense motion vectors within the same bounding box for speaker/speech recognition.
The fusion of audio, lip texture and lip motion modalities is performed by the so-called reliability weighted summation
(RWS) decision rule. Experimental results show that inclusion of lip motion modality provides further performance gains
over those which are obtained by fusion of audio and lip texture alone, in both speaker identification and isolated word

recognition scenarios.
© 2006 Published by Elsevier B.V.
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1. Introduction

Audio is probably the most natural modality to
recognize speech content and a valuable source to
identify a speaker [1]. Video also contains important
biometric information, which includes face/lip texture
and lip motion information that is correlated with the
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audio. Audio-only speaker/speech recognition sys-
tems are far from being perfect especially under noisy
conditions. Furthermore, it is a known fact that the
content of speech can be revealed partially through
lip-reading. Performance problems are also observed
in video-only speaker/speech recognition systems,
where poor picture quality, changes in pose and
lighting conditions, and varying facial expressions
may have detrimental effects [2,3]. Hence, robust
solutions for both speaker and speech recognition
should employ multiple modalities, such as audio, lip
texture and lip motion in a unified scheme.

The design of a multimodal recognition system
requires addressing three basic issues: (i) Which
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modalities to fuse; (i) How to represent each
modality with a discriminative and low-dimensional
set of features; and (iiil) How to fuse existing
modalities. Speech content and voice can be
interpreted as two different, though correlated,
information existing in audio signals. Likewise,
video signal can be split into different modalities,
such as face/lip texture and lip motion. The second
issue, representative feature selection, also includes
modeling of classifiers through which each class is
represented with a statistical model or a representa-
tive feature set. Curse of dimensionality, computa-
tional efficiency, robustness, invariance and
discrimination capability are the most important
criteria in selection of the feature set and the
recognition methodology for each modality. As
for the final issue, that is, the fusion problem,
different strategies are possible: in the so-called
“early integration”, modalities are fused at data or
feature level, whereas in ““late integration” decisions
or scores resulting from each unimodal recognition
are combined to give the final conclusion. Multi-
modal decision fusion can also be viewed from a
broader perspective as a way of combining classi-
fiers, which is a well-studied problem in pattern
recognition. The main motivation for multimodal
fusion is to compensate possible misclassification
errors of a certain classifier with other available
classifiers and to end up with a more reliable overall
decision. Misclassification errors are in general
inevitable due to numerous factors such as environ-
mental noise, measurement and modeling errors or
time-varying characteristics of signals. A compre-
hensive survey and discussion on classifier combina-
tion techniques can be found in [4].

State-of-art speech recognition systems have been
jointly using lip information with audio [5-9]. For
speech recognition, it is usually sufficient to extract
the principal components of the lip information and
to match the mouth openings—closings with the
phonemes of speech. Speaker identification using
audio and lip information, on the other hand, has
been addressed in only few works such as [10-15].
The main challenge is that the principal components
of the lip information are not usually sufficient to
discriminate between speakers. Non-principal com-
ponents are also valuable especially when the
objective is to model the biometrics. In the speaker/
speech recognition literature, audio is generally
modeled by mel-frequency cepstral coefficients
(MFCC) [16]. However for lip information, there
are several approaches reported in the literature

such as texture-based, motion-based, geometry-
based and model-based [17]. In texture-based
approaches, pure or DCT-domain lip image inten-
sity is used as features [8,11,18]. Motion-based
approaches compute motion vectors to represent
the lip movement during speaking [10,19]. Geome-
try-based and model-based approaches, in fact,
utilize similar processing methods such as active
shape models [20,21], active contours [22,23] or
parametric models [24] to segment the lip region.
They differ in feature selection such that model-
based approaches assign the fitted model para-
meters as features, while shape features such as
lengths of horizontal and vertical lip openings, area,
perimeter, pose angle are selected for lip representa-
tion in geometry-based approaches. In [10], the lip
motion is represented by the full set of DCT
coefficients of the dense optical flow vectors
computed within the rectangular lip region, and
then fused with the face texture and the acoustic
features for multimodal speaker identification.
However, no discrimination analysis and dimen-
sionality reduction are performed in [10]. The
speaker  recognition schemes proposed in
[10,12,13,25,26] are basically opinion fusion techni-
ques that combine multiple expert decisions through
adaptive or non-adaptive weighted summation of
scores, whereas in [15,27], fusion is carried out at
feature-level by concatenating individual feature
vectors so as to exploit the temporal correlations
that may exist between audio and video signals. In
audio-visual speech recognition [18] concatenates
audio and lip data, while in [28] unimodal decisions
are combined to obtain the fused result. Further-
more, recent works show the success of multistream
HMM structures in speech recognition [7-9,17].

In this study, we use the lip motion features that
are extracted by a novel discrimination analysis
method [19]. Then we integrate lip texture, lip
motion and audio features by the reliability-based
decision fusion system reported in [11]. The main
contribution of this paper is to investigate the fusion
of audio modality with the best lip motion and
texture representations for two distinct problems,
speaker and speech recognition. In this investiga-
tion, the performance gain due to the fusion and the
optimal modality selection for speaker and speech
recognition problems are also discussed. The audio
and lip features are presented in detail in Section 2.
In Section 3, we describe the probabilistic frame-
work that we use for the speaker/speech recognition
problem, and present the reliability weighted
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summation (RWS) rule for decision fusion of the
multimodal system. Experimental results are pre-
sented and discussed in Section 4, and finally
concluding remarks are given in Section 5.

2. Modalities and features

In this paper, audio, lip texture and lip motion are
considered as different modalities. The MFCC are
used as features for the audio modality. The features
for the lip texture modality are 2D-DCT coefficients
of the luminance component, and features for the
lip motion modality are based on the dense motion
vectors within a rectangular box about the lip
region. The features for the different modalities are
explained in more detail below.

2.1. Features for audio modality

Audio stream is represented with the MFCC, as
they yield good discrimination of speech signal. The
audio stream is processed over 10ms frames
centered on 25ms Hamming window for 16kHz
sampled audio signal. Each analysis frame is first
multiplied with a Hamming window and trans-
formed to frequency domain using Fast Fourier
Transform (FFT). Mel-scaled triangular filter-bank
energies are calculated over the square magnitude of
the spectrum and represented in logarithmic scale
[16]. The resulting MFCC features, c;, are derived
using discrete cosine transform (DCT) over log-
scaled filter-bank energies e;:

N .
G :LEM:e,.cos((i—o.ﬂ]—”), j=12...,N,
NM =1 NM

(M
where N, is the number of mel-scaled filter banks
and N is the number of MFCC features that are
extracted. The MFCC feature vector is defined as
C=[c; ¢ --- cy]". The audio feature vector f, is
formed as a collection of MFCC vector C along
with the first and second delta MFCCs, f, =
[C AC AAC]. Audio feature extraction is briefly
illustrated in Fig. la.

2.2. Features for lip texture modality

It has been a common practice to use intensity-
based features for the representation of lip texture
[8,11]. There are certain advantages and drawbacks
of the intensity-based lip features, such as represent-
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Fig. 1. Block diagrams of the feature extraction for modalities:
(a) audio; (b) lip texture; and (c) lip motion.

ing texture information as well as shape but being
sensitive to illumination changes. Fig. 1b shows the
intensity-based DCT feature extraction scheme that
we employ in our system. The intensity-based lip
features are extracted by applying the Bayesian
discrimination technique [19] to the low-indexed
2D-DCT coefficients along the zig-zag scan.

In the Bayesian discrimination, the DCT coeffi-
cients are ordered based on the discrimination
measure presented in [19]. Let f, and P(f;|4)
denote the kth component of a feature vector f and
its class conditional probability for the class 4;,
respectively. Then the ratio of intra-class and
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inter-class probabilities,

P(f 1|20)P(4;)
> izi PUEIADPGy)’

which appears in the maximum mutual information
estimator (MMIE) [29], is employed to define the
discrimination content of each feature component.
The discrimination content of the kth component of
feature f, d(f}), is computed as the average of
discriminative ratio over all training repetitions,

ICilf ) = (@)

M—1
A0 =342 > 1G4 3)
m=0

4

where f };(m) is the kth feature component of the mth
feature vector observation for the class A; and M the
total number of training repetitions for each class.
After finding the discrimination content d(f,) for
each feature component, the most discriminative 50
DCT coefficients are concatenated to form the lip-
texture feature vector f .

A preprocessing step is required to locate the lip
region and eliminate the global motion of the head
between the frames so that the extracted motion
features within the lip region provides us with the
pure movement of the speaking act. To this effect,
each face frame is aligned with the first frame of the
sequence using a 2D parametric motion estimator.
For every two consecutive face images, global head
motion parameters are calculated using hierarchical
Gaussian image pyramids and 12-parameter quad-
ratic motion model [30]. The face images are
successively warped according to these calculated
parameters [19]. In the resulting aligned image
sequence, the location of the lip region remains
almost unchanged except for local movements.
Thus, by only hand-labeling the mid-point of the
lip region on the first frame, we automatically
extract a region of interest around this point so as to
obtain a sequence of lip frames of size 128 x &0.

2.3. Features for lip motion modality

Although lip movement is considered as the
primary source for visual speech applications, it is
rarely represented by its pure motion features.
There are few studies incorporating the pure lip
motion as the visual feature [10]. In [10], the lip
motion is represented by the full set of 2D-DCT
coefficients of the vectors. In this study the best lip
motion representation that is found in [19,31] is

employed. A brief summary of this representation is
presented in the following.

After performing global head motion compensa-
tion and lip region extraction as defined in Section
2.2, the use of a dense uniform grid of size 64 x 40
on the intensity lip image is considered. This grid
definition allows us to analyze the whole motion
information contained within the rectangular
mouth region and it has proven its identification
performance [31]. We use hierarchical block match-
ing to estimate the lip motion in quarter-pixel
accuracy by interpolating the original lip image with
appropriate 6-tap Wiener and bilinear filters as used
in H.264/MPEG-4 AVC [32]. The motion estima-
tion procedure yields two 64 x 40 2D matrices V',
and V,, each of which stores the motion vector
components at grid points of the mouth region. The
x and y components of the motion vector computed
at the grid point (i, ) is given by the (i, j)th entries of
V. and V,, respectively. The motion matrices, V
and V,, are separately transformed via 2D-DCT.
The first 50 DCT coefficients of the zig-zag scan
both on x and y directions are combined to form a
feature vector of dimension 100.

In [19], we proposed a two-stage discriminative
feature selection approach to determine the best lip
motion features. It takes into account the temporal
discrimination information as well as the intra-class
and inter-class distribution of individual single-
frame lip feature vectors. At the first stage, we
achieve discrimination in the Bayesian sense using a
probabilistic measure that maximizes the ratio of
intra-class and inter-class probabilities. The most
discriminative features among the whole set of 100
features are seclected. At the second stage, the
successively concatenated lip feature vectors are
created as a new sequence of higher dimensional
feature vectors, each centered at the current frame
instant. Then, they are projected to a lower
dimensional feature space using linear discriminant
analysis (LDA). The resulting lower dimensional
feature vector representing the dense grid motion
will be denoted by f, . Fig. lc presents a block
diagram for the lip motion feature extraction.

3. Multimodal fusion

When more than one information source is
available, the fusion of information from different
sources can reduce overall uncertainty and increase
the robustness of a classification system. Suppose
that a different classifier, which employs the
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maximum likelihood solution using the class-condi-
tional probabilities P(f,|4,), is available for each of
the N modalities f,f>,...,f». Equivalently, each
classifier, say the nth classifier, produces a set of R
log-likelihood values p,(4,) = log P(f,|A,) for each
of the R classes Ai,4s,...,4Ag. The problem then
reduces to compute a single set of joint log-
likelihood values p(4;), p(42),...,p(Ag) for these N
modalities. In the Bayesian framework, assuming
that f|,f,...,fy are statistically independent, the
joint log-likelihood is given by the sum of the
individual log-likelihoods:

pGr) =1og P(F112) - P(fyli) =D pu(r),  (4)

which is equivalent to the so-called product rule [4].
In practice, there are a couple of problems with the
optimality of this rule. First, the partial decisions
coming from different classifiers may be correlated.
Second, due to modeling errors and/or measure-
ment noise, the estimated distribution model of
training features, i.e., P(f,|4,), may not always
comply with the actual distribution of the test
features. As a result, the log-likelihood values
coming from separate classifiers should each be
considered as an opinion or a likelihood score
rather than a probabilistic value. The statistics and
the numerical range of these likelihood scores
mostly vary from one classifier to another, and thus
using sigmoid or variance normalization, they are
often normalized into (0,1) interval before the
fusion process. In this work, we employ the sigmoid
normalization described in [11].

In order to cope with the above problems, various
approximation approaches have been proposed in
the literature as alternatives to the product rule (i.e.,
the sum rule in log domain) such as max rule, min
rule and reliability-based weighted summation. In
fact, the most generic way of computing joint ratios
(or scores) can be expressed as a weighted summation

N
P =) _wup, (%) forr=12,... R 5)

n=1

where ®, denotes the weighting coefficient for
modality n, such that ), w, = 1. Then, the fusion
problem becomes finding the optimal weight coeffi-
cients. Note that when w, = 1/N Vn, (5) is equiva-
lent to the product rule. Since the w, values can be
regarded as the reliability values of the classifiers, we
referred to this combination method as the reliability
weighted summation (RWS) rule in [11]. Reliability

values w, can be set to some fixed values using a
priori knowledge about the performance of each
modality classifier or can be estimated adaptively for
each decision instant via various methods such as
those in [11,12,25].

In this work, we employed the RWS rule for the
fusion of audio, lip texture and lip motion
modalities using the reliability value estimation
which is described in Section 3.3.

3.1. Speaker recognition

The recognition task can be formulated as either a
verification or an identification problem. The latter
can further be classified as open-set or closed-set
identification. In the closed-set identification pro-
blem, a reject scenario is not defined and an
unknown observation is classified as belonging to
one of the R registered pattern classes. In the open-
set problem, the objective is, given the observation
from an unknown pattern, to find whether it
belongs to a pattern class registered in the database
or not; the system identifies the pattern if there is a
match and rejects otherwise. Hence, the problem
can be thought of as an R+ 1 class identification
problem, including also a reject class. Open-set
identification has a variety of applications such as
the authorized access control for computer and
communication systems, where a registered user can
log onto the system with her/his personalized profile
and access rights. In this paper, we formulate the
speaker recognition problem in an open-set identi-
fication framework, which is a more challenging and
realistic way of addressing the problem as compared
to closed-set speaker identification and verification.
Note that verification is a special case of the general
open-set identification problem.

In the open-set identification problem, an im-
poster class Agy; is introduced as the (R+ 1)th
class. Since it is difficult to accurately model the
imposter class, Agy;, we employ the following
solution which includes a reject strategy through
the definition of the likelihood ratio:

P(f14,)

pay) = 10gm = log P(f14,) — log P(f|Ag+1).
(6)

Then, the decision strategy of the open-set identifica-
tion can be implemented in two steps. First, determine

Ay = arg max p(4,) @)

AlseesdR
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and then

if p(A4)=7 accept,

otherwise  reject, ®
where 7 is the optimal threshold which is usually
determined experimentally to achieve the desired false
accept or false reject rate.

Computation of class-conditional probabilities
needs a prior modeling step, through which a
probability density function of feature vectors is
estimated for each class r=1,2,..., R by using
available training data. A common and effective
approach to model the impostor class is to use a
universal background model, which is estimated by
using all available training data regardless of which
class they belong to.

3.2. Speech recognition

The speech recognition problem can be formu-
lated so as to identify a specific utterance, such as in
the isolated word recognition task. Therefore, the
closed-set identification framework can be used to
address the speech recognition problem with an
isolated word dictionary.

We address the closed-set identification problem
within the maximum likelihood framework that
maximizes the class-conditional probability, P(f|4,),
for r=1,...,R. Hence a decision in the closed-set
identification is taken as
A« = arg max log P(f|4,) = arg max p(4,). 9)

AlseeshR AlseeshR

3.3. The reliability estimation for the RWS

Among various reliability estimation techniques
existing in the literature, we favor the one proposed
in [11], since it is better suited to the open-set
speaker identification problem by assessing both
accept and reject decisions of a classifier, and it can
also be easily used for the closed-set identification
problem.

The RWS rule combines the likelihood ratio
values of the N modalities weighted by their
reliability values w, as in (5). The reliability value
w,, 18 estimated based on the difference of likelihood
ratios of the best two candidate classes A, and A..,
that is, A, = p,(4s) — p,(4ss), for modality z. In the
absence of reject class, that is for closed-set
identification, the likelihood difference of the best
two candidates, A,, can be used as the reliability

value. However, in the presence of a reject class, one
would expect a high-likelihood ratio p,(4.) and a
high A, value for true accept decisions, and a low-
likelihood ratio p,(4.) and a low A, value for true
reject decisions. Hence, a normalized reliability
measure @, can be estimated by

on = 5 . (10)
where

A, closed-set,
T (e(l)n(i*)-&-An) -1 (11)

_}_(e(lc—p"(i*)—An) — 1) open-set.

The first and second terms for open-set identifica-
tion in y, are associated with the true accept and
true reject, respectively. The symbol x stands for an
experimentally determined factor to reach the best
compromise between accept and reject scenarios.
The k value is set to 0.65 as it is found to be optimal
for the open-set speaker identification task in [11].

4. Experimental results

Hidden Markov models (HMM) are known to be
as effective structures to model the temporal
behavior of the speech signal, and thus they are
widely used both in audio-based speaker identifica-
tion and speech recognition applications [1]. The
speaker identification problem can be classified as
text-dependent and text-independent depending on
the audio content. In the text-independent problem,
identification is performed over a content free
utterance of the speakers, whereas in the text-
dependent case, each speaker is expected to utter a
personalized secret phrase for the identification
task. State-of-the-art systems use HMMs for text-
dependent and Gaussian mixture models (GMM)
for text-independent speaker identification [33].
HMM-based techniques are preferred in text-
dependent scenarios since HMM structures can
successfully exploit the temporal correlations of a
speech signal. Since lip motion is strongly coupled
with audio utterance, HMMs can also be employed
for temporal characterization of lip features. Hence,
class-conditional probabilities of both audio and lip
features are modeled and estimated using HMM
architectures in our experiments.

In this work, we consider a text-dependent
scenario for the speaker recognition problem and
address it in the open-set identification framework,
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whereas for the speech recognition problem, the
closed-set identification framework is employed. We
use word-level continuous-density HMM structures
for both speaker identification and speech recogni-
tion tasks. Each speaker or utterance in the
database is modeled using a separate HMM that
is trained over some repetitions of the lip-motion
streams of the corresponding speaker or utterance.
In the recognition process, given a test feature set,
each HMM structure associated with a speaker or
an utterance produces a likelihood. In the speaker
identification case, a world HMM model is also
trained over the whole training data of the popula-
tion. The log-ratio of the speaker likelihoods to the
world class likelihood results in a stream of log-
likelihood ratios that are used in the speaker
identification process. The system identifies the
person if there is a match and rejects otherwise. In
speech recognition, the impostor or world class is
not defined; thus the best match is given by the
utterance class that maximizes the produced like-
lihood as described in Section 3.2.

The performance of speaker verification systems
is often measured using the equal error rate (EER)
figure. The EER is calculated as the operating point
where false accept rate (FAR) equals false reject rate
(FRR). In the open-set identification case, FAR and
FRR can be defined as

F, F
FAR =100 x —*— and FRR =100 x —,
N, + N, N,

(12)

where F, and F, are the number of false accepts and
rejects, and N, and N, are the total number of trials
for the true and imposter clients in the testing,
respectively. The performance of speech recognition
systems, on the other hand, is usually measured with
the recognition rate, that is, the ratio of the true
matches to the total number of trials.

The speaker and speech recognition experiments
have been conducted using the MVGL-AVD audio-
visual database [34]. The database includes 50
subjects and considers two distinct text-dependent
speaker identification scenarios, which are the name
(2,) and the digit (2,) scenarios. In the name
scenario, each subject utters 10 repetitions of her/his
name as the secret phrase. A set of impostor data is
also collected with each subject in the population
uttering five different names from the population. In
the digit scenario, each subject utters 10 repetitions
of a fixed digit password 348 572. Although we have
a limited variation in the name scenario, each name

1s considered as an isolated word, and a subset of
the name scenario, 4, C ,, which includes each
name utterance with more than 12 repetitions, is
considered as the testbed of the speech recognition
experiments.

The audio recordings are perturbed with varying
levels of additive noise during the testing sessions to
simulate adverse environmental conditions. The
additive acoustic noise is picked to be a mixture of
office and babble noise. Abbreviations and descrip-
tions for the modalities and fusion techniques are
given in Table 1.

4.1. Speaker recognition: name scenario

The 2, database is partitioned into two sets
namely {Z,, and %;,}, where &,, and %;, are
mutually exclusive sets each having five repetitions
from each subject in the database. The subsets &,
and Z;;, are used for training and testing, respec-
tively. Since there are 50 subjects and five repetitions
for each true and imposter client tests, the resulting
total number of trials for the true accepts and
true rejects become, respectively, N, =250 and
N; = 250.

Table 2 presents the EER performances of the
unimodal and multimodal open-set speaker identi-
fication systems with audio, lip texture and lip
motion modalities. The EER performances of the
lip texture and lip motion modalities are 5.6% and
5.2%, which are close to each other and better than
the audio modality at 15dB SNR and below. When
the product rule and the RWS rule are applied to
fuse a pair of modalities or all the three modalities,
the EER performance increases significantly. The
RWS rule is observed to perform better than
the product rule, especially under noisy conditions.
The best EER performance is achieved with the
fusion of all three modalities at 15dB SNR and
below. Above 15dB SNR, the best performance is
achieved with the fusion of lip texture and audio
modalities.

Table 1
Abbreviations and descriptions for modalities and fusion
techniques

A Audio modality

L Lip texture modality
Ly Lip motion modality
+ Product rule

® RWS rule
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Table 2

Speaker identification results for name scenario: equal error rates
at varying noise levels for different modalities and multimodal
fusion structures

Table 3

Speaker identification results for digit scenario: equal error rates
at varying noise levels for different modalities and multimodal
fusion structures

Source modality Noise level (dB SNR)

Clean 25 20 15 10 7 5

Source modality Noise level (dB SNR)

Clean 25 20 15 10 7 5

EER (%)

A 1.0 1.6 24 53 148 254 315
L, 5.6

L 52

L+ 4 26 32 36 44 72 175 228
Ly ®A 0.8 12 18 32 56 136 192
Lo+ 4 04 04 08 20 44 112 159
L®d 1.0 08 10 18 30 68 96
Lm+ L+ 4 1.6 14 14 14 174 36 44
Lo®L ®A 12 12 12 12 14 32 32

EER (%)
A 24 34 69 122 249 331 371
L. 1.7

L 52

L+ 4 24 24 24 40 104 180 232
Ln®A 24 24 24 40 100 168 22.0
L+ 4 04 04 04 14 68 140 184
L&A 04 04 04 08 40 100 138
Ln+Li+4 08 08 12 12 26 42 52
Ln®L®A 04 04 06 08 24 38 52

4.2. Speaker recognition: digit scenario

The 2, database is partitioned into two sets {Z,,
and Z; }, where 9,, and %; are mutually
exclusive sets each having five repetitions of the
same 6-digit number from each subject in the
database. The subsets 74, and Z; are used for
training and testing, respectively. Note that, in the
digit scenario no imposter recordings are performed
since every subject utters the same 6-digit number.
Hence, the imposter clients are generated by the
leave-one-out scheme, where each subject, let us
denote her/him by S, becomes the imposter of the
remaining R — 1 subjects in the population. Since,
the class S is out of the population during the
imposter tests, every test utterance that belongs to S
becomes an imposter test. Having R = 50 subjects
and five testing repetitions the resulting total
number of trials for the true accepts and true rejects
(imposters) become, respectively, N, =250 and
N, = 250.

Table 3 presents the EER performances of the
unimodal and multimodal open-set speaker identi-
fication systems with audio, lip texture and lip
motion modalities. The EER performances of the
lip texture and lip motion modalities are 1.7% and
5.2%. Since every subject utters the same six digit
password in the digit scenario, the discrimination of
true and imposter clients is poor for audio modality.
However, this discrimination is better for the lip
texture modality, since true and imposter clients
carry different lip textures. When the product rule
and the RWS rule are applied to fuse a pair of
modalities or all the three modalities, the EER

performance increases significantly. The RWS rule
is observed to perform better than the product rule
at all SNR conditions. The best EER performance is
achieved with the fusion of all three modalities at all
SNR levels.

4.3. Speech recognition

In this scenario, the database %, includes 35
different phrases (isolated words) where each phrase
is actually names of the subjects in the database and
repeated at least 12 times. The &, database is
partitioned into two sets &, and %;,, where they
are mutually exclusive sets each having equal
number of utterance repetitions. The subsets Z;,
and Z;, are used for training and testing, respec-
tively.

Table 4 presents the recognition performances of
the unimodal and multimodal speech recognition
systems with audio, lip texture and lip motion
modalities. The recognition performances of the lip
texture and lip motion modalities are 62.86% and
72.86%. The recognition rate of the lip texture
modality is poorer than the lip motion modality.
This is as expected since motion information is more
important than texture in lip reading. When the
product rule and the RWS rule are applied to fuse a
pair of modalities or all the three modalities, the
recognition performance increases when the lip
texture modality is not included in the fusion. The
best recognition performance is achieved with the
RWS fusion of audio and lip motion modalities at
all SNR levels.
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Table 4
Speech recognition results: recognition rates at varying noise
levels for different modalities and multimodal fusion structures

Source modality Noise level (dB SNR)

Clean 25 20 15 10 7 5

Recognition (%)

A 90.00 88.57 87.62 86.67 80 62.86 39.05
L 62.86

Ly, 72.86

Ln+ A4 86.19 84.28 84.28 84.28 80.95 72.38 63.33
Ln,® A 91.43 90.95 88.57 88.10 84.76 75.71 69.05
L+ 4 76.67 77.14 78.57 76.67 76.19 69.04 54.76
L ® A 76.67 77.14 75.24 74.76 73.33 68.57 61.69

Ln+Li+ A4 80.95 81.42 80.95 81.90 79.04 75.71 69.52
Lo®Li®A 78.57 78.57 76.19 77.14 74.28 72.38 68.10

5. Conclusions

A multimodal speaker/speech recognition system
that integrates audio, lip texture and lip motion
modalities has been investigated, where the lip
motion modality is represented by the dense-
motion-based features within a rectangular grid.
We emphasize that the lip motion modality carries
additional useful information over that is present in
the lip texture modality for both speaker and speech
recognition applications. Hence, the fusion of lip
motion with audio and lip texture modalities is
observed to provide additional performance gains.
Furthermore, the lip motion is found to be more
valuable than the lip texture modality for speech
recognition. The fusion of audio, lip texture and lip
motion modalities is performed by the so-called
reliability weighted summation (RWS) decision rule,
which is observed to perform better than the
product rule.
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