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Abstract—We propose a novel framework for learning
many-to-many statistical mappings from musical measures to
dance figures towards generating plausible music-driven dance
choreographies. We obtain music-to-dance mappings through
use of four statistical models: 1) musical measure models, repre-
senting a many-to-one relation, each of which associates different
melody patterns to a given dance figure via a hidden Markov
model (HMM); 2) exchangeable figures model, which captures the
diversity in a dance performance through a one-to-many relation,
extracted by unsupervised clustering of musical measure segments
based on melodic similarity; 3) figure transition model, which cap-
tures the intrinsic dependencies of dance figure sequences via an
-gram model; 4) dance figure models, capturing the variations in
the way particular dance figures are performed, by modeling the
motion trajectory of each dance figure via an HMM. Based on the
first three of these statistical mappings, we define a discrete HMM
and synthesize alternative dance figure sequences by employing a
modified Viterbi algorithm. The motion parameters of the dance
figures in the synthesized choreography are then computed using
the dance figure models. Finally, the generated motion parameters
are animated synchronously with the musical audio using a 3-D
character model. Objective and subjective evaluation results
demonstrate that the proposed framework is able to produce
compelling music-driven choreographies.

Index Terms—Automatic dance choreography creation, multi-
modal dance modeling, music-driven dance performance synthesis
and animation, music-to-dance mapping, musical measure clus-
tering.

I. INTRODUCTION

C HOREOGRAPHY is the art of arranging dance move-
ments for performance. Choreographers tailor sequences

of body movements to music in order to embody or express
ideas and emotions in the form of a dance performance. There-
fore, dance is closely bound to music in its structural course,
artistic expression, and interpretation. Specifically, the rhythm
and expression of body movements in a dance performance are
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in synchrony with those of the music, and hence, the metric
orders in the course of music and dance structure coincide, as
Reynolds states in [1]. In order to successfully establish the
contextual bond as well as the structural synchrony between
dance motion and the accompanying music, choreographers
tend to thoughtfully design dance motion sequences for a given
piece of music by utilizing a repertoire of choreographies.
Based on this common practice of choreographers, our goal
in this study is to build a framework for automatic creation
of dance choreographies in synchrony with the accompanying
music; as if they were arranged by a choreographer, through
learning many-to-many statistical mappings from music to
dance. We note that the term choreography generally refers
to spatial formation (circle, line, square, couples, etc.), plastic
aspects of movement (types of steps, gestures, posture, grasps,
etc.), and progression in space (floor patterns), whereas in this
study, we use the term choreography in the sense of composi-
tion, i.e., the arrangement of the dance motion sequence.

A. Related Work

Music-driven dance animation schemes require, as a first
step, structural analysis of the accompanying music signal,
which includes beat and tempo tracking, measure analysis,
and rhythm and melody detection. There exists extensive
research in the literature on structural music analysis. Gao and
Lee [2] for instance propose an adaptive learning approach to
analyze music tempo and beat based on maximum a posteriori
(MAP) estimation. Ellis [3] describes a dynamic programming
solution for beat tracking by finding the best-scoring set of
beat times that reflect the estimated global tempo of music. An
extensive evaluation of audio beat tracking and music tempo
extraction algorithms, which were included in MIREX’06,
can be found in [4]. There are also some recent studies on the
open problem of automatic musical meter detection [5], [6]. In
the last decade, chromatic scale features have become popular
in musical audio analysis, especially in music information
retrieval, since introduced by Fujishima [7]. Lee and Slaney [8]
describe a method for automatic chord recognition from audio
using hidden Markov models (HMMs) through supervised
learning over chroma features. Ellis and Poliner [9] propose a
cross-correlation based cover song identification system with
chroma features and dynamic programming beat tracking. In
a very recent work, Kim et al. [10] calculate the second order
statistics to form dynamic chroma feature vectors in modeling
harmony structures for classical music opus identification.
Human body motion analysis/synthesis, as a unimodal

problem, has also been extensively studied in the literature in
many different contexts. Bregler et al. [11] for example describe
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a body motion recognition approach that incorporates low-level
probabilistic constraints extracted from image sequences of
articulated gestures into high-level manifold and HMM-based
representations. In order to synthesize data-driven body motion,
Arikan and Forsyth [12], and Kovar et al. [13] propose motion
graphs representing allowable transitions between poses, to
identify a sequence of smoothly transiting motion segments. Li
et al. [14] segment body motions into textons, each of which is
modeled by a linear dynamical system, in order to synthesize
human body motion in a manner statistically similar to the
original motion capture data by considering the likelihood of
switching from one texton to the next. Brand and Hertzmann
[15] study motion “style” transfer problem, which involves in-
tensive motion feature analysis and learning motion patterns via
HMMs from a highly varied set of motion capture sequences.
Min et al. [16] present a generative human motion model for
synthesis of personalized human motion styles by constructing
a multilinear motion model that provides explicit parametrized
representation of human motion in terms of “style” and “iden-
tity” factors. Ruiz and Vachon [17] specifically work on dance
body motion, and perform analysis of dance figures in a chain
of simple steps using HMMs to perform automatic recognition
of basic movements in the contemporary dance.
A parallel track of literature can be found in the domain of

speech-driven gesture synthesis and animation. The earliest
works in this domain study speaker lip animation [18], [19]. In
[18], Bregler et al. use morphing of mouth regions to re-sync
the existing footage to a new soundtrack. Chen shows in [19]
that lip reading a speaker yields higher speech recognition
rates and provides better synchronization of speech with lip
movements for more natural lip animations. Later a large
body of work extends in the direction of synthesizing facial
expressions along with lip movements to create more natural
face animations [20]–[22]. Most of these studies adopt vari-
ations of hidden Markov models to represent the relationship
between speech and facial gestures. The most recent studies
in this domain aim at synthesizing not only facial gestures but
also head, hand, and other body gestures for creating more
realistic speaker animations [23]–[25]. For instance, Sargin et
al. develop a framework for joint analysis of prosody and head
gestures using parallel branch HMM structures to synthesize
prosody-driven head gesture animations [23]. Levine et al. in-
troduce gesture controllers for animating the body language of
avatars controlled online with the prosody of the input speech
by training a specialized conditional random field [25].
Designing amusic-driven automatic dance animation system,

on the other hand, is a relatively more recent problem involving
several open research challenges. There is actually little work
in the literature on multimodal dance analysis and synthesis,
and most of the existing studies focus solely on the aspect of
synchronization between a musical piece and the corresponding
dance animation. Cardle et al. [26] for instance synchronize mo-
tion to music by locally modifying motion parameters using
perceptual music cues, whereas Lee and Lee [27] employ dy-
namic programming to modify timing of both music and motion
via time-scaling the music and time-warping the motion. Syn-
chronization-based methods cannot however (actually do not
aim to) generate new dance motion sequences. In this sense,

the works in [28]–[31] present more elaborate dance analysis
and synthesis schemes, all of which follow basically the same
similarity-based framework: They first investigate rhythmical
and/or emotional similarities between the audio segments of a
given input music signal and the available dance motion seg-
ments, and then, based on these similarities, synthesize an op-
timal motion sequence on a motion transition graph using dy-
namic programming.
In our earlier work [32], we have addressed the statistical

learning problem in a multimodal dance analysis scheme by
building a correlation model between music and dance. The cor-
relation model was based upon the confusion matrix of co-oc-
curring motion and music patterns extracted via unsupervised
temporal segmentation, and hence, was not complex enough
to handle realistic scenarios. Later in [33], we have described
an automatic music-driven dance animation scheme based on
supervised modeling of music and dance figures. However the
considered dance scenario was very simplistic, where a dance
performance was assumed to have only a single dance figure to
be synchronized with the musical beat. In this current paper, we
propose a complete framework, based on [34], for modeling,
analysis, annotation, and synthesis of multimodal dance per-
formances, which can handle complex and realistic scenarios.
Specifically, we focus on learning statistical mappings, which
are in general many-to-many, betweenmusical measure patterns
and dance figure patterns for music-driven dance choreography
animation.

B. Contributions

An open challenge in music-driven dance animation is due
to the fact that, for most dance categories, such as ballroom
and folk dances, the relationship between music and dance
primitives usually exhibits a many-to-many mapping pattern.
As discussed in the related work section, the previous methods
proposed in the literature for music-driven dance animation,
whether similarity-based [28]–[30] or synchronization-based
[26], [27], do not address this challenge. They are all deter-
ministic methods and do not involve any true dance learning
process (other than building motion transition graphs), therefore
cannot capture the many-to-many relationship existing between
music and dance, producing always a single optimal motion
sequence given the same input music signal. In this paper we
address this open challenge by modeling the many-to-many
characteristics via a statistical framework. In this respect, our
primary contributions are 1) choreography analysis: automatic
learning of many-to-many mapping patterns from a collection
of dance performances in a multimodal statistical framework,
and 2) choreography synthesis: automatic synthesis of alterna-
tive dance choreographies that are coherent to a given music
signal, using these many-to-many mapping patterns.
For choreography analysis, we introduce two statistical

models: one capturing a many-to-one and the other capturing
a one-to-many mapping from musical primitives to dance
primitives. The former model learns different melody patterns
associated with each dance primitive. The latter model learns
the group of candidate dance primitives that can be replaced
with one another without causing an artifact in the choreog-
raphy. To further consolidate the coherence and the quality of
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the synthesized dance choreographies, we introduce a third
model to capture the intrinsic dependencies of dance primitives
and to preserve the implicit structure existing in the continuum
of dance motion. Combining the aforementioned three models,
we present a modified Viterbi algorithm to generate coherent
and enriched sequences of dance primitives for plausible
choreography synthesis.
The organization of the paper is as follows: Section II first

gives an overview of our music-driven dance animation system,
and then describes briefly the feature extraction modules. We
present the proposed multimodal choreography analysis and
synthesis framework, hence our primary contribution, in
Section III. The problem of character animation for visual-
ization of synthesized dance choreographies is addressed in
Section IV. Section V presents the experiments and results,
and finally, Section VI gives concluding remarks and discusses
possible applications of the proposed framework.

II. SYSTEM OVERVIEW AND FEATURE EXTRACTION

Our music-driven dance animation scheme is musical mea-
sure based, hence we regard musical measures as the music
primitives. A measure is the smallest compositional unit of
music that corresponds to a time segment, which is defined as
the number of beats in a given duration. We define a dance
figure as the dance motion trajectory corresponding to a
single measure segment. Dance figures are taken as the dance
primitives.
The overall system, as depicted in Fig. 1, comprises of three

parts: analysis, synthesis, and animation. Audiovisual data
preparation and feature extraction modules are common to both
analysis and synthesis parts. An audiovisual dance database
can be pictured as a collection of measures and dance figures
aligned in two parallel streams: music stream and dance stream.
Fig. 2 illustrates a sample music-dance stream extracted from
our folk dance database. In the data preparation module, the
input music stream is segmented by an expert into its units, i.e.,
musical measures. We use to denote the measure segment
at frame . Measure segment boundaries are then used by the
expert to define the motion units, i.e., dance figures. We use
to denote the dance figure segment corresponding to measure
at frame . The expert also assigns each dance figure a
figure label to indicate the type of the dance motion. The
collection of forms the set of candidate dance figures, i.e.,

, where is the number of distinct
dance figure labels that exist in the audiovisual dance database.
The resulting sequence of dance figure labels is regarded as
the original (reference) choreography, i.e., , where

and is the number of musical measure segments.
The feature extraction modules compute the dance motion
features and music chroma features for each and
, respectively.
We assume that the relation between music and dance prim-

itives in a dance performance has a many-to-many mapping
pattern. That is, a particular dance primitive (dance figure) can
be accompanied by different music primitives (measures) in a
dance performance. Conversely, a particular musical measure
can correspond to different dance figures. Our choreography
analysis and synthesis framework respects the many-to-many

Fig. 1. Block diagram of the overall multimodal dance performance analysis-
synthesis framework.

Fig. 2. Audiovisual dance database is a collection of dance figure-musical mea-
sure pairs. Recall that a measure is the smallest compositional unit of music
that corresponds to a time segment, which is defined as the number of beats in
a given duration. On the other hand, we define a dance figure as the dance mo-
tion trajectory corresponding to a single measure segment. Hence, by definition,
the boundaries of the dance figure segments coincide with the boundaries of the
musical measure segments, which is in conformity with Reynolds’ work [1].

nature of the relationship between music and dance primitives
by learning two separate statistical models: one capturing a
many-to-one and the other capturing a one-to-many mapping
from musical measures to dance figures. The former model
learns different melody patterns associated with each dance
figure. For this purpose, music chroma features are used
to train a hidden Markov model for each dance figure label
to create the set of musical measure models . The latter

model, i.e., the model capturing a one-to-many relation from
musical measures to dance figures, learns the group of candidate
dance figures that can be replaced with one another without
causing an artifact in the dance performance (choreography).
We call such a model as exchangeable figures model . Music
chroma features are used to cluster measure segments
according to the harmonic similarity between different measure
segments. Based on these measure clusters, we determine the
group of dance figures that are accompanied by the musical
measures with similar harmonic content. We then create the
exchangeable figures model based on such dance figure
groups. While the former model is designed to keep the under-
lying correlations between musical measures and dance figures
as intact as possible, the latter model is useful for allowing ac-
ceptable (or desirable) variations in the dance choreography by
offering various possibilities in the choice of dance figures that
reflect the diversity in a dance performance (choreography). To
further consolidate the coherence and quality of the synthesized
dance choreography, we introduce a third model, i.e., the figure
transition model , to capture the intrinsic dependencies of the
dance figures and to preserve the implicit structure existing in
the continuum of dance motion. The figure transition model
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basically appraises the figure-to-figure transition relations by
computing -gram probabilities from the audiovisual dance
database. The choreography synthesis makes use of these three
models, namely, , , and , to determine the output dance
figure sequence (i.e., choreography), taking music chroma
features as input, which are extracted from a test music signal.
Here, , where and is the number of
musical measure segments. Specifically, the choreography
synthesis module employs a modified Viterbi decoding on a
discrete HMM, which is constructed by the musical measure
models, , and the figure transition model, , to determine
the sequence of dance figures subject to the exchangeable
figures model .
In the analysis part of the animation model, the dance motion

features are used to train a hidden Markov model for
each dance figure label to construct the set of dance figure
models . Eventually, the body posture parameters corre-
sponding to each dance figure in the synthesized choreography
are generated using the dance figure models to animate

a 3-D character.

A. Music Feature Extraction

Unlike speech, music consists of a sequence of tones whose
frequencies are defined. Moreover, musical melody is a rhyth-
mical succession of single tones in different patterns. In this
study, we model the melodic pattern in each measure segment
with tone-related features using temporal statistical models, i.e.,
HMMs. We extract tone-related chroma features to characterize
the melodic/harmonic content of music. In order to represent the
chroma scale, we project the entire spectrum onto 12 bins cor-
responding to the 12 distinct semi-tones of the musical octave.
Theoretically, the frequency of the th note in the th octave
is defined as , where the pitch of the C0 note
is Hz based on Shepard’s helix model in [35] and

, . In this study, we extract the chroma
features of 60 semi-tones for (over 5 octaves from
the C4 note to the B8 note).
We extract chroma features similar to the well-known mel-

frequency cepstral coefficient (MFCC) computation [36] by ap-
plying cepstral analysis to the semitone spectral energies. Hence
our chroma features capture information of fluctuations of semi-
tone spectral energies. We center the triangular energy windows
at the locations of the semi-tone frequencies, , at different oc-
taves for and . Then, we compute
the first 12 DCT coefficients of the logarithmic semitone spec-
tral energy vector, that constitute the chromatic scale cepstral
coefficient (CSCC) feature set, , for the music frame .
We also compute the first and second time derivatives of these
12 CSCC features, using the following regression formula:

(1)

The music feature vector, , is then formed by including
the first and second time derivatives:

(2)

Each , therefore, corresponds to the sequence of music fea-
ture vectors that fall into themeasure segment . Specif-
ically, is a matrix of CSCC features in the form

(3)

where is the number of audio frames in measure segment
.

B. Motion Feature Extraction

We acquire multiview recordings of a dancing actor for each
dance figure in the audiovisual dance database using 8 synchro-
nized cameras. We then employ a motion capture technique for
tracking the 3-D positions of the joints of the body based on the
markers’ 2-D projections on each camera’s image plane, using
the color information of the markers [33]. The resulting set of
3-D points are used to fit a skeleton structure to the 3-D mo-
tion capture data. Through this skeleton structure, we solve the
necessary inverse kinematics equations and calculate accurately
the set of Euler angles for each joint in its local frame as well as
the global translation and rotation of the skeleton structure for
the motion trajectory defined by the input 3-D motion capture
data. We prefer joint angles as our dance motion features due
to their widespread usage in human body motion analysis-syn-
thesis and 3-D character animation literature. We compute 66
angular values associated with 27 key joints of the body as
well as 6 values for the global rotation and translation of the
body, which leads to a dance motion feature vector of di-
mension 72 for each dance motion frame . However, angular
features are generally discontinuous at boundary values due to
their -periodic nature and this situation causes a problem in
training statistical models to capture the temporal dynamics of
a sequence of angular features. Therefore, instead of using the
static set of Euler angles , we use their first and second dif-
ferences computed with following difference equation:

(4)

where the resulting discontinuities are eliminated by the fol-
lowing conditional update:

if
if
otherwise.

(5)

Then the 44-dimensional dynamic motion feature vector is
formed as

(6)

Hence, each is a sequence of motion feature vectors
that fall into dance figure segment while training temporal
models of motion trajectories associated with each dance figure
label . That is, is a matrix of body motion feature values
in the form

(7)

where is the number of dance motion frames within dance
motion segment . We also calculate the mean trajectory for
each dance figure label , namely , by calculating for each
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motion feature an average value over all instances (realizations)
of the dance figures labeled as . These mean trajectories ( )
are required later in choreography animation since each dance
figure model capture only the temporal dynamics of the first
and second differences of the Euler angles of the key joints as-
sociated with the dance figure label .

III. CHOREOGRAPHY MODELING

In this section we present the proposed choreography anal-
ysis-synthesis framework. We first describe our choreography
analysis procedure which involves statistical modeling of
music-to-choreography mapping. We then explain how this
statistical modeling is used for choreography synthesis.

A. Multimodal Choreography Analysis

We perform choreography analysis through three statis-
tical models, which together define a many-to-many mapping
from musical measures to dance figures. These choreography
models are: 1) musical measure models , which capture
many-to-one mappings from musical measures to dance figures
using HMMs; 2) exchangeable figures model , which cap-
tures one-to-many mappings from musical measures to dance
figures, and hence, represents the subjective nature of the dance
choreography with possibilities in the choice of dance figures
and in their organization; and 3) figure transition model ,
which captures the intrinsic dependencies of dance figures.
We note that these three choreography models constitute the
“choreography analysis” block in Fig. 1.
1) Musical Measure Models ( ): In a dance performance,

musical measures that correspond to the same dance figure
may exhibit variations and are usually a collection of different
melodic patterns. That is, different melodic patterns can ac-
company the same dance figure, displaying a many-to-one
mapping relation from musical measures to dance figures.
We capture this many-to-one mapping by employing HMMs
to identify and model the melodic patterns corresponding to
each dance figure. Specifically, we train an HMM over the
collection of measures co-occurring with the dance figure ,
using the musical measure CSCC features, . Hence, we
train an HMM for each dance figure in the dance performance.
We define left-to-right HMM structures with for

, where is the transition probability from
state to state . The transitions from state to account
for the differences in measure durations. Emission distributions
of the chroma-based music features are modeled by Gaussian
mixture density functions with diagonal covariance matrices in
each state of . The use of Gaussian mixture density in
enables us to capture different melodic patterns that correspond
to a particular dance figure. We denote the collection of musical
measure models as , i.e., .
Musical measure models provide a tool to capture the
many-to-one part of the many-to-many musical measure to
dance figure mapping problem.
2) Exchangeable Figures Model ( ): In a dance perfor-

mance, it is possible that several distinct dance figures can be
performed equally well along with a particular musical mea-
sure pattern, exhibiting a one-to-many mapping relation from
musical measures to dance figures [1]. To represent this one-to-

many mapping relation, we introduce the notion of exchange-
able figure groups, each containing a collection of dance fig-
ures that can be replaced with one another without causing an
artifact in a dance performance. To learn exchangeable figure
groups, we cluster the measure segments in each musical piece
with respect to their melodic similarities. The melodic simi-
larity between two different measure segments and
is computed as the local match score obtained from dynamic
time warping (DTW) [37] of the chroma-based feature matrices

and , corresponding to and , respectively, in the
musical piece . Then, based on the melodic similarity scores
between pairs of musical measure segments in , we form an
affinity matrix , where

if , and . Finally, we apply the spectral clus-
tering algorithm described in [38] over to cluster the mea-
sure segments in . The spectral clustering algorithm in [38]
assumes that the number of clusters is known a priori and em-
ploys k-means clustering algorithm [39]. Since we do not know
the number of clusters a priori, we measure the “quality” of the
partition in the resulting clusters using the internal indexes, sil-
houettes [40], to determine the appropriate number of clusters.
The silhouette value for each point is a measure of how sim-
ilar that point is to the points in its own cluster compared to
the points in the other clusters, and ranges from to . Av-
eraging over all the silhouette values, we compute the overall
quality of the clustering for a range of cluster numbers and pick
the one that results in the highest silhouette value.
We perform separate clustering for each musical piece in

order to increase the accuracy of musical measure clustering
since similar measure patterns are likely to occur in the same
musical piece rather than spread among different musical
pieces. Once we obtain clusters of measures in all musical
pieces, we can then use all of the measure clusters in all musical
pieces to determine the exchangeable figures group for
each dance figure by collecting the dance figure labels that
co-appear with in any of the resulting clusters. Note that a
particular dance figure can appear in more than one musical
piece (see also Fig. 5). Based on the exchangeable figure groups
, we define the exchangeable figures model as an indicator

random variable:

if
otherwise

(8)

where is the exchangeable figure group associated with the
dance figure . The collection of for all dance figure labels
in gives us the exchangeable figures model .
The notion of exchangeable figures is the key to reflect the

subjective nature of the dance choreography with possibilities
in the choice of dance figures and their organization throughout
the choreography estimation process. The use of exchangeable
figures model allows us to create a different artistic dance per-
formance content each time we estimate a dance choreography.
3) Figure Transition Model ( ): The figure transition

model is built to capture the intrinsic dependencies of the
dance figure sequences within the context of dance chore-
ographies. The intrinsic dependencies of the choreography
are defined with figure-to-figure transition probabilities.
The figure-to-figure transition probability density functions
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are modeled in -gram language models, where the prob-
ability of the dance figure at given the dance figure
sequence at , , , , i.e.,

, defines the -gram
dance language model. This model provides a number of rules
that specify the structure of a dance choreography. For instance,
a dance figure that never appears after a particular sequence of

dance figures in the training video does not appear in the
synthesized choreography either. We can also enforce a dance
figure to always follow a particular sequence of dance
figures if it is also the case in the training video with the help
of the -gram dance language model.

B. Multimodal Choreography Synthesis

We formulate the choreography synthesis problem as esti-
mating a dance figure sequence from a sequence of musical
measures. The core of the choreography synthesis is defined
as a Viterbi decoding process on a discrete HMM, which is
constructed by the musical measure models, , and the figure
transition model, . Furthermore, the exchangeable figures
model, , is utilized to introduce acceptable variations into the
Viterbi decoding process to enrich the synthesized choreog-
raphy. Based on this Viterbi decoding process, we define three
separate choreography synthesis scenarios: 1) single best path,
2) likely path, and 3) exchangeable path, which are explained
in detail in the following subsections. We note that all these
choreography synthesis scenarios are multimodal, that is, they
depend on the joint statistical models of music and choreog-
raphy, and they have different refinements and contributions to
enrich the choreography synthesis.
Besides these three synthesis scenarios, we investigate two

other reference (baseline) choreography synthesis scenarios:
one using only the musical measure models to map each
measure segment in the test musical piece to a dance figure label
(which we refer to as acoustic-only choreography), and another
one using only the figure transition model (which we refer to
as figure-only choreography). The acoustic-only choreography
corresponds to a synthesis scenario in which only the corre-
lations between musical measures and dance figure labels are
taken into account, but the correlations between consecutive fig-
ures are ignored. In contrast to the acoustic-only choreography,
the figure-only choreography scenario predicts the dance figure
for the next measure segment only according to figure-to-figure
transition probabilities, which are modeled as bigram proba-
bilities of , by discarding the correlations between musical
measures and dance figures. Note that the figure-only synthesis
can be regarded as a synchronization-based technique discussed
in Section I-A, such as the ones proposed in [26] and [27]. In
figure-only synthesis, the dance figure sequence is generated
randomly by only respecting figure-to-figure transition prob-
abilities to ensure visual continuity of the resulting character
animation. The dance figure sequences resulting from these two
baseline scenarios constitute reference choreographies that help
us comparatively assess the contributions of our choreography
analysis-synthesis framework.
1) Single Best Path Synthesis: We construct a discrete HMM,
, using the musical measure models, , and the figure tran-
sition model, . In the figure transition model , the figure-to-

Fig. 3. Lattice structure of the discrete HMM .

figure transition probability distributions are computed with bi-
gram models. This choice of model is due to the scale of chore-
ography database that we use in training, and amuch larger data-
base can be used to model higher order -gram dance language
models. The discrete HMM, , is defined with the
following parameters:
• is the number of time frames (measure segments). For
each time frame (measure), the choreography synthesis
process outputs exactly one dance figure label. Recall that
we denote the individual dance figures as and individual
measures as for .

• is the number of distinct dance figure labels, i.e., ,
where . Dance figure labels are the outputs
of the process being modeled.

• is the dance figure transition probability distri-
bution with elements defined as

(9)

where the elements, , are the bigram probabilities from
the figure transition model and they satisfy
.

• is the dance figure emission distribution for
measure . Elements of are defined using the musical
measure models as

(10)

• is the initial dance figure distribution, where

(11)

The discrete HMM constructs a lattice structure, say ,
as given in Fig. 3. The proposed choreography synthesis can be
formulated as finding a path through the lattice . Assuming
a uniform initial figure distribution , the single best path syn-
thesis scenario decodes the Viterbi path along the lattice to
estimate the synthesized figure sequence . The Viterbi algo-
rithm for finding the single best path synthesis can be summa-
rized as follows:
1) Initialization:

(12)
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2) Recursion: For

(13)

(14)

3) Termination:

(15)

4) Path (dance figure sequence) backtracking:

(16)

Here represents the partial likelihood score of performing
the dance figure at frame , and is used to keep track of
the best path retrieving the dance figure sequence. The path

decodes the resulting dance figure label sequence as
the desired output choreography. Note that the resulting dance
choreography is unique for the single best path synthesis sce-
nario since it is the Viterbi path along the lattice .
2) Likely Path Synthesis: In the second synthesis scenario,

we find a likely path along in which we follow one of the
likely partial paths in lieu of following the partial path that has
the highest partial likelihood score at each time frame. The likely
path synthesis is expected to create variations along the single
best path synthesis, which results in an enriched set of synthe-
sized choreography sequences with high likelihood scores.
We modify the recursion step of the Viterbi algorithm to de-

fine the likely path synthesis:
Recursion: For

(17)

(18)

(19)

where and are the figure indices with the top two partial
path scores and returns randomly one of the arguments
with uniform distribution. Note that corresponds to in
(14). The likely path scenario is expected to synthesize different
dance choreographies since it propagates randomly among top
two ranking transitions at each time frame. This intricately in-
troduces variation into the choreography synthesis process.
3) Exchangeable Path Synthesis: In this scenario, we find an

exchangeable path by letting the exchangeable figures model
replace and update the single best path. Unlike the likely path
synthesis, the exchangeable path scenario introduces random
variations to the single best path that respect one-to-many map-
pings from musical measures to dance figures as defined in .
The exchangeable path synthesis is implementedwith the fol-

lowing procedure:
1) Compute the single best path synthesis for a given mu-
sical measure sequence and set the measure segment
index .

2) The figure at measure segment is replaced with an-
other figure from its exchangeable figure group

(20)

where returns randomly one of the arguments
according to the distribution of acoustic scores

of the dance figures .

3) The rest of the figure sequence, , is updated
by determining a new single best path using the Viterbi
algorithm.

4) The steps 2) and 3) are repeated for measure segments
.

The exchangeable path synthesis yields an alternative path by
modifying the single best path in the context of the exchangeable
figures model. Its key difference from the likely path is that the
collectionof the candidatedancefigures that can replace a partic-
ular dance figure in the choreography, say , is constrained with
the dance figures for which the exchangeable figures model
yields 1.Hence, it is expected to introducemore acceptablevaria-
tions into the synthesized choreography than the likely path.

IV. ANIMATION MODELING

In this section, we address character animation of dance fig-
ures to visualize and evaluate the proposed choreography anal-
ysis and synthesis framework. First we define a dance figure
model, which captures the variations in the way particular dance
figures are performed, by modeling the motion trajectory of a
dance figure via an HMM. Then we define a character anima-
tion system, which generates a sequence of dance motion fea-
tures from a given sequence of dance figures, so as to animate
a 3-D character model.

A. Dance Figure Models ( )

The way a dancer performs a particular dance figure may ex-
hibit variations in time in a dance performance. Therefore, it is
important to model the temporal statistics of each dance figure to
capture the variations in the dance performance. Note that these
models will also capture the personalized dance figure patterns
of a dancer. We use the set of motion features to train an
HMM, , for each dance figure label to capture the dynamic
behavior of the dancing body. Since a dance figure contains typ-
ically a well-defined sequence of bodymovements, we employ a
left-to-right HMM structure (i.e., for , where
is the transition probability from state to state in ) to

model each dance figure. Emission distributions of motion pa-
rameters are modeled by a Gaussian density function with full
covariance matrix in each state of . We denote the collection
of dance figure models as , i.e., .

B. Character Animation

The synthesized choreography (i.e., ) specifies the
label sequence of dance figures to be performed with each mea-
sure segment whose duration is known beforehand in the pro-
posed framework. The body posture parameters corresponding
to each dance figure in the synthesized choreography
are then generated such that they fit to the statistical dance figure
models .
To generate body posture parameters using the dance figure

model for the dance figure , we first determine the number
of dance motion frames required for the given segment dura-
tion. Next, we distribute the required number of motion frames
among the states of the dance figure model according to

the expected state occupancy duration:

(21)
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Fig. 4. Plots compare a synthesized trajectory with two sample trajectories, as
well as with the mean trajectory for different motion features from different
dance figures in the database. The expected state durations, all associated with
the HMM structure trained for the same dance figures, are also displayed in
the plot with horizontal solid lines. The corresponding angular values of each
horizontal solid line are the means of the Gaussian distributions, associated with
the particular motion feature in each state of the HMM structure trained for the
given dance figure.

where is the expected duration in state , is the self-state-
transition probability for state (assuming ), and is
the number of states in .
In order to avoid generation of noisy parameters, we first in-

crease the time resolution of the dance motion by oversampling
the dance motion model. That is, we generate parameters for a
multiple of , say , where is an integer scale factor. Then,
wegenerate thebodymotionparameters along the statesof ac-
cording to the distribution of motion frames to these states,
using the corresponding Gaussian distribution at each state. To
reverse the effect of oversampling, we perform a downsampling
by that eventually yields smoother state transitions, andhence,
more realistic parameter generation that avoid motion jerkiness.
The dance figure models are trained over the first and

second differences of the Euler angles of the joints, which are
defined in Section II-B. Therefore, to obtain the final set of
body posture parameters for a dance figure , we simply need
to sum the generated first differences with the mean trajectory
associated with , i.e., . Each plot in Fig. 4 depicts a syn-
thesized trajectory against two sample trajectories for one of
the motion features from a dance figure in the database along
with the mean trajectory associated with the same motion fea-
ture from the same dance figure. The length of the horizontal
solid lines represent the expected state durations (in terms of the

Fig. 5. Distribution of dance figures to musical pieces is visualized using an
image plot. Columns of the plot represent the dance figures ( ) whereas the
rows represent the musical pieces ( ) in the database. Note that and are
dropped in the figure for clarity of the representation. Consequently, each cell
in the plot indicates how many times a particular dance figure is performed with
the corresponding musical piece. Cells with different gray values in a column
imply that the same dance figure can be accompanied with different musical
pieces. Similarly, cells with different gray values in a row imply that different
dance figures can be performed with the same musical piece.

number of frames), and the corresponding angular values rep-
resent the means of the Gaussian distributions, associated with
the particular motion feature in each state of the HMM struc-
ture trained for the particular dance figure. In these plots, the
two sample trajectories exemplify the temporal variations be-
tween different realizations of the same dance figure. Deriving
from the trained dance figure HMMs, the synthesized dance
figure trajectories mimic the underlying temporal dynamics of
a given dance figure. Hence, modeling the temporal variations
using HMMs for each dance figure allows us to synthesize more
realistic and personalized dance motion trajectories.
After repeating the described procedure for each dance figure

in the synthesized choreography, the body posture parameters
at the dance figure boundaries are smoothed via cubic interpo-
lation within a -neighborhood of each dance figure boundary
in order to generate smoother figure-to-figure transitions.
We note that the use of HMMs for dance figure synthesis pro-

vides us with the ability of introducing random variations in the
synthesized body motion patterns for each dance figure. These
variations make the synthesis results look more natural due to
the fact that humans perform slightly varying dance figures at
different times for the same dance performance.

V. EXPERIMENTS AND RESULTS

We investigate the effectiveness of our choreography analysis
and synthesis framework using the Turkish folk dance, Kasik.1

The Kasik database consists of 20 dance performances with 20
different musical pieces with a total duration of 36 min. There
are 31 different dance figures (i.e., ) and a total of 1258
musical measure segments (i.e., ). Fig. 5 shows the
distribution of dance figures to different musical pieces where
each column represents a dance figure label and each row rep-
resents a musical piece . Hence, entries with different colors
in a column indicate that the same figure can be performed with

1Kasikmeans spoon in English. The dance is named so, since the dancers clap
spoons while dancing.
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Fig. 6. Matrix plot demonstrates the assessment levels associated with any pair
of dance figures in the database. Assessment levels are indicated with different
colors. The pairs of dance figures that fall into assessment level in a row
correspond to the group of exchangeable dance figures for that particular dance
figure. For instance, by looking at the first row, one can say that the dance figure
is exchangeable with the dance figures , , , , and . In other words,

{ , , , , } is the group of exchangeable figures for , i.e., .

different melodic patterns whereas entries with different colors
in a row indicate that different dance figures can be performed
with the same melodic pattern. Therefore, Fig. 5 can be seen as
a means to provide evidence for our basic assumption that there
is a many-to-many relationship between dance figures and mu-
sical measures.
We follow a 5-fold cross-validation procedure in the experi-

mental evaluations.We train musical measure models with four-
fifths of the musical audio data in the analysis part and use these
musical measure models in the process of choreography estima-
tion for the remaining one-fifth of the musical audio data in the
synthesis part. We repeat this procedure five times, each time
using different parts of the musical audio data for training and
testing. This way, we synthesize a new dance choreography for
the entire musical audio data.

A. Objective Evaluation Results

We define the following four assessment levels to evaluate
each dance figure label in the synthesized figure sequence ,
compared to the respective figure label in the original dance
choreography , assigned by the expert:
• (Exact-match): is marked as if matches .
• (X-match): ismarked as if does notmatch , but
it is in ’s exchangeable figure group ; i.e., .

• (Song-match): is marked as if neither matches
nor is in ; but, and are performed within the

same musical piece; i.e., .
• (No-match): is marked as if it is not marked as
one of through .

Fig. 6 displays all assessment levels associated with any pos-
sible pairing of dance figures in a single matrix. Note that the
matrix in Fig. 6 defines a distancemetric on dance figure pairs by

TABLE I
AVERAGE PENALTY SCORES (APS) OF VARIOUS

CHOREOGRAPHY SYNTHESIS SCENARIOS

Fig. 7. Percentage of figures that fall into each assessment level for the pro-
posed five different synthesis scenarios.

mapping the four assessment levels through into penalty
scores from 0 to 3, respectively. Hence in this distance metric,
low penalty scores indicate desirable choreography synthesis re-
sults. Average penalty scores are reported to measure the “good-
ness” (coherence) of the resulting dance choreography.
Recall that we propose three alternative choreography

synthesis scenarios together with the two other reference chore-
ography synthesis techniques, as discussed in Section III-B.
The average penalty scores of these five choreography synthesis
scenarios are given in Table I. Furthermore, the distribution
of the number of figures that fall into each assessment level
for all synthesis scenarios are given in Fig. 7. The average
penalty scores for the reference acoustic-only and figure-only
choreography synthesis scenarios are 0.82 and 2.07, respec-
tively. The high average penalty score of the figure-only
choreography is mainly due to the randomness in this syn-
thesis technique. Hence, the unimodal learning phase of the
figure-only choreography synthesis, which takes into account
only the figure-to-figure transition probabilities, does not carry
sufficient information to automatically generate dance chore-
ographies which are similar to the training Kasik database. On
the other hand, the acoustic-only choreography, which employs
the musical measure models for synthesis, attains a lower
average penalty score. We also note that the average dance
figure recognition rate using the musical measure models
through five-fold cross validation is obtained as 49.05%. This
indicates that the musical measure models learn the correlation
between measures and figures. However, the acoustic-only
choreography synthesis that depends only on the correlation
of measures and figures fails to sustain motion continuity at
figure transition boundaries. This creates visually unacceptable
character animation for the acoustic-only choreography.
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The proposed single best path synthesis scenario refines the
acoustic-only choreographywith the inclusion of the figure tran-
sition model , which defines a bigram model for figure-to-
figure transitions. The average penalty score of the single best
path synthesis scenario is 0.56, which is the smallest average
penalty score among all scenarios. This is expected, since the
single best path synthesis generates the optimal Viterbi path
along the multimodal lattice structure . The likely path syn-
thesis introduces variation into the single best path synthesis.
The average penalty score of the likely path synthesis increases
to 0.91. This increase is an indication of the variation introduced
to the optimal Viterbi path. The exchangeable path synthesis
refines the likely path synthesis by introducing more accept-
able random variations to the single best path synthesis. Recall
that random variations of the exchangeable path synthesis de-
pend on the exchangeable figures model . The average penalty
score of the exchangeable path synthesis is 0.63, which is an im-
provement compared to the likely path synthesis.
In Fig. 7, we observe that among all the assessment levels,

the levels and are indicators of the diversity of alterna-
tive dance figure choreographies, rather than being an error in-
dicator, whereas the assessment levels and indicate an
error in the dance choreography synthesis process. In this con-
text, we observe that only 31% of the figure-only choreography
and only 83% of the acoustic-only choreography fall into the
first three assessment levels. On the other hand, using the map-
ping obtained by our framework increases this ratio to 94% and
92% for the single best path and the exchangeable path syn-
thesis scenarios, respectively. The percentage drops to 80% for
the likely path synthesis scenario, yet it is still a high percentage
of the entire dance sequence.

B. Subjective Evaluation Results

We performed a subjective A/B comparison test using
the music-driven dance animations to measure the opinions
of the audience on the coherence of the synthesized dance
choreographies with the accompanying music. During the test,
the subjects were asked to indicate their preference for each
given A/B test pair of synthesized dance animation segments
on a scale of ( ; ; 0; 1; 2), where the scale corresponds
to strongly prefer A, prefer A, no preference, prefer B, and
strongly prefer B, respectively. We compared dance animation
segments from five different choreographies, namely, original,
single best path, likely path, exchangeable path, and figure-only
choreographies. We, therefore, had ten possible pairings of
different dance choreographies, e.g., original versus single best
path, or likely path versus figure-only, etc. For each possible
pair of choreographies, we used short audio segments from
three different musical pieces from the Kasik database to
synthesize three A/B pairs of dance animation video clips for
the respective dance choreographies. This yielded us a total of
30 A/B pairs of dance animation segments. We also included
one A/B pair of dance animation segments for pairing each
choreography with itself, i.e., original versus original, etc.,
in order to test if the subjects were careful enough and show
almost no preference over five such possible self-pairings of
the aforementioned choreographies. As a result, we extracted
35 short segments from the audiovisual database, where each

TABLE II
SUBJECTIVE A/B PAIR COMPARISON TEST RESULTS

segment was approximately 15 s. We picked at most two
non-overlapping segments from each musical piece in order
to make a full coverage of the audiovisual database in the
subjective A/B comparison test.
The subjective tests are performed over 18 subjects. The

average preference scores for all comparison sets are presented
in Table II. Note that the rows and the columns of Table II,
respectively, correspond to A and B of the A/B pairs. Also,
the average preference scores that tend to favor B are given
in bold to ease the visual inspection. The first observation is
that the animations for the original choreography and for the
choreographies resulting from the proposed three synthesis
scenarios (i.e., single best path, likely path, and exchangeable
path choreographies) are preferred over the animations for the
figure-only choreography. We also note that the likely path
and exchangeable path choreography animations are strongly
preferred against the figure-only choreography animation. This
observation is an evidence of the fact that audience is generally
appealed by variations in the dance choreography as long as
the overall choreography is coherent with the accompanying
music. Hence we observe the likely path and the exchangeable
path synthesis as the most preferable scenarios in subjective
tests, and they manage to create alternative choreographies that
are coherent and appealing to the audience.

C. Discussion

The objective evaluations carried out using the assessment
levels in Section V-A indicate that the most successful chore-
ography synthesis scenarios are the single best path and the ex-
changeable path scenarios. We note that the exchangeable path
synthesis as well as the likely path can be seen as variations or
refinements of the single best path synthesis approach. On the
other hand, according to the subjective evaluations presented in
Section V-B, the most preferable scenarios are the likely path
and the exchangeable path. Hence the exchangeable path syn-
thesis, being among the top two according to both objective and
subjective evaluations, can be regarded as our best synthesis ap-
proach. Note also that the exchangeable path synthesis includes
all the statistical models defined in Section III.
The other two scenarios (acoustic-only and figure-only) are

mainly used to demonstrate the effectiveness of the musical
measure models and the figure transition model, hence they
both serve as reference synthesis methods. The acoustic-only
choreography however depends only on the correlations be-
tween measures and figures, and therefore fails to sustain mo-
tion continuity at figure-to-figure boundaries, which is indis-
pensable to create realistic animations. Hence we have chosen
the figure-only synthesis as the baseline method to compare
with our best result, i.e., with the exchangeable path synthesis,
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and prepared a demo video (submitted as supplemental mate-
rial) that compares side by side the animations resulting from
these two synthesis scenarios for twomusical pieces in theKasik
database.
We have also prepared another video which demonstrates

the likely path, the exchangeable path, and the single best path
synthesis results with respect to sample original dance perfor-
mances. The demo video starts with a long excerpt from the
original and the synthesized choreographies driven by a mu-
sical piece that is available in the Kasik database. The long
excerpt is followed by several short excerpts from the orig-
inal and the synthesized choreographies driven by the musical
pieces that are available in the Kasik database. The demo is
concluded with two long excerpts from the synthesized chore-
ographies driven by two musical pieces that are not available
in the Kasik database. Both demo videos are also available
online [41].

VI. CONCLUSIONS

We have described a novel framework for music-driven
dance choreography synthesis and animation. For this purpose,
we construct a many-to-many statistical mapping from musical
measures to dance figures based on the correlations between
dance figures and musical measures as well as the correlations
between successive dance figures in terms of figure-to-figure
transition probabilities. We then use this mapping to synthesize
a music-driven sequence of dance figure labels via a constraint
based dynamic programming procedure. With the help of
exchangeable figures notion, the proposed framework is able to
yield a variety of different dance figure sequences. These output
sequences of dance figures can be considered as alternative
dance choreographies that are in synchrony with the driving
music signal. The subjective evaluation tests indicate that the
resulting music-driven dance choreographies are plausible and
compelling to the audience. To further evaluate the synthesis
results, we have also devised an objective assessment scheme
that measures the “goodness” of a synthesized dance choreog-
raphy with respect to the original choreography.
Although we have demonstrated our framework on a folk

dance database, the proposed music-driven dance animation
method can also be applied to other dance genres such as
ballroom dances, Latin dances and hip hop, as long as the
dance performance is musical measure-based (i.e., the metric
orders in the course of music and dance structure coincide [1]),
and the dance database contains sufficient amount of data to
train the statistical models employed in our framework. One
possible source of problem in our current framework might be
due to the dance genres which do not have a well-defined set of
dance figures. Hip hop, which is in fact a highly measure-based
dance genre, is a good example of this. In such cases, figure
annotation may become a very tedious task due to possibly
very large variations in the way a particular movement (sup-
posedly a dance figure) is performed. More importantly, if the
dance genre does not have a well-defined set of dance figure,
the 3-D motion capture data needed to train the dance figure
models (described in Section IV-A) must be carefully prepared,
since otherwise joining up individual figures smoothly during

character animation can be very difficult and the continuum of
the synthesized dance motion may not be guaranteed.
The performance of the proposed framework strongly de-

pends on the quality, the complexity and the size of the audiovi-
sual dance database. For instance, higher-order -gram models
can be integrated in the presence of sufficient training data, to
better exploit the intrinsic dependencies of the dance figures.
Currently we employ only bigrams (with ) to model in-
trinsic dependencies of the dance figures. This choice of model
is mainly due to the scale of the choreography database that we
use in training. We also note that, in our experiments, the bi-
gram statistics proved to be sufficient for the current state of the
framework and for the particular Turkish folk dance genre, i.e.,
Kasik.
Our music-driven dance animation scheme currently supports

only the single dancer scenario; but the framework can be ex-
tended to handle multiple dancers as well by learning the corre-
lations between the movements of the dancers through the use
of additional statistical models, that would however increase
the complexity of the overall learning process. Having multiple
dancers will also increase the complexity of the animation since
then the spatial positioning of the dancers relative to each other
will also have to be taken into account.
The proposed framework currently requires expert input and

musical transcription prior to the audiovisual feature extraction
and modeling tasks. This tedious pre-processing can be elimi-
nated by introducing automatic measure/dance figure segmen-
tation capability into the framework. However, such automatic
segmentation techniques are not yet currently available in the
literature, and they seem to remain as open research areas in the
near future. In this study, HMM structures are used to model
the dance motion trajectories, since they can represent varia-
tions among different realizations of dance figures in person-
alized dance performances. However, one can consider other
methods such as style machines that will also represent stylistic
variations associated with dance figures.
We define a dance figure as the dance motion trajectory corre-

sponding to a single measure segment. The choice of measures
as elementary music primitives simplifies the task of statistical
modeling and allows us to use the powerful HMM framework
for music-to-dance mapping. However this choice can also be
seen as a limiting assumption that ignores higher levels of se-
mantics and correlations which might exist in a musical piece
such as chorus and verses. This current limitation of our frame-
work could be addressed by using, for example, hierarchical
statistical modeling tools and/or higher order -grams (with

). Yet, modeling higher levels of semantics remains as
an open challenge for further research.
The proposed framework can trigger interdisciplinary studies

with collaboration of dance artists, choreographers, and com-
puter scientists. Certainly, it has the potential of creating ap-
pealing applications, such as fast evaluation of dance chore-
ographies, dance tutoring, entertainment, and more importantly
digital preservation of folk dance heritage by safeguarding irre-
placeable information that tend to perish. As a final remark, we
think that the proposed framework can be modified to be used
for other multimodal applications such as speech-driven facial
expression or body gesture synthesis and animation.
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