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Minimum-Distortion Isometric Shape
Correspondence Using EM Algorithm

Yusuf Sahillioglu and Yilcel Yemez

Abstract—We present a purely isometric method that establishes 3D correspondence between two (nearly) isometric shapes. Our
method evenly samples high-curvature vertices from the given mesh representations, and then seeks an injective mapping from one
vertex set to the other that minimizes the isometric distortion. We formulate the problem of shape correspondence as combinatorial
optimization over the domain of all possible mappings, which then reduces in a probabilistic setting to a log-likelihood maximization
problem that we solve via the Expectation-Maximization (EM) algorithm. The EM algorithm is initialized in the spectral domain by

transforming the sampled vertices via classical Multidimensional Scaling (MDS). Minimization of the isometric distortion, and hence
maximization of the log-likelihood function, is then achieved in the original 3D euclidean space, for each iteration of the EM algorithm,
in two steps: by first using bipartite perfect matching, and then a greedy optimization algorithm. The optimal mapping obtained at

convergence can be one-to-one or many-to-one upon choice. We demonstrate the performance of our method on various isometric (or
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nearly isometric) pairs of shapes for some of which the ground-truth correspondence is available.

Index Terms—3D isometric shape correspondence, multidimensional scaling, spectral embedding, isometric distortion, greedy

optimization, bipartite perfect matching, EM algorithm

1 INTRODUCTION

HREE-DIMENSIONAL shape correspondence methods aim to

find a mapping between the surface points of two given
shapes or, more generally, they seek two given shapes for
pairs of surface points that are similar or semantically
equivalent [1]. Shape correspondence is a fundamental
problem in both computer vision and computer graphics,
with numerous applications such as mesh morphing [2],
mesh parameterization [3], deformation transfer [4], shape
registration [5], shape matching [6], [7], analysis of sequential
meshes [8], and statistical shape modeling [9]. In this paper,
we address the problem of establishing correspondence
between isometric (or nearly isometric) shapes. Isometric
shapes appear in various contexts such as different poses of
an articulated object, models of a mesh sequence represent-
ing the motion of a human actor, or two shapes representing
different but semantically similar objects (e.g., two different
humans or animals).

If two shapes are perfectly isometric, then there exists an
isometry, i.e., a distance-preserving mapping, between these
shapes such that the geodesic distance between any two
points on one shape is exactly the same as the geodesic
distance between their correspondences on the other. How-
ever, two digital shapes are hardly ever perfectly isometric,
even for different poses of a rigid object, due to imperfections
of the modeling process and/or geometry discretization
errors. Hence, the goal of isometric correspondence methods
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existing in the literature is rather to find a mapping that
minimizes the amount of deviation from isometry. A
common strategy to achieve this is to embed shapes into a
different (e.g., spectral) domain where geodesic distances
are replaced with euclidean distances so that isometric
distortion can be efficiently measured and optimized in the
embedding space [7], [10], [11], [12], [13], [14], [15], [16].
However, since the euclidean embedding process itself
introduces a distortion [17], deviations from isometry can
be measured only approximately in the embedding space.
Hence, all these methods mentioned above produce approx-
imate and/or ambiguous solutions, and thus have room for
improvement. To remove the approximation error, Bronstein
etal. [18] propose embedding one shape into the surface of the
other by using generalized multidimensional scaling
(GMDS), which, however, requires minimization of a non-
convex function that is difficult and expensive to optimize.
The main contribution of our paper is a novel shape
correspondence method that minimizes the isometric distor-
tion directly in the 3D euclidean space, i.e., in the domain
where isometry is originally defined, with a computationally
efficient algorithm.

2 RELATED WORK

Isometry is an important clue for shape correspondence; not
only since most real-world deformations are isometric, but
also because semantically similar shapes have similar metric
structures. There are different ways of exploiting isometry
for shape correspondence. One way is to minimize the
deviation from isometry, indirectly in some embedding
space, where euclidean distances approximate geodesic
distances. Euclidean embedding, in the context of shape
analysis, can be achieved by using various techniques such
as classical MDS (Multidimensional Scaling) [10], [11], [16],
least-squares MDS [7], [13], and spectral analysis of the
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graph Laplacian [14] or of the Laplace-Beltrami operator
[19]. Some recent methods propose using embeddings such
as the heat kernel [20] and the canonical diffusion embed-
ding [21], which are invariant under isometric deformations,
but which are not euclidean in the multidimensional scaling
sense. Another three recent examples, which can be applied
to only shapes with genus zero, are based on the M&bius
transformation, which is used for conformal embedding of
the given shapes into a canonical coordinate frame on the
complex plane where deviations from isometry are approxi-
mated based on mutually closest points [15], [22], [23]. A
problem common to these embedding-based techniques is
that they all produce approximate and/or ambiguous
solutions since they can measure deviations from isometry
only approximately in the embedding space. In order to
eliminate the approximation error, Bronstein et al. [24]
propose embedding one of the shapes to be matched into the
surface of the other via the generalized MDS, which requires
minimization of a nonconvex stress function. To optimize
this function, they use an iterative gradient-type algorithm,
which, however, results in two major drawbacks. First, in
order to avoid convergence to local minima, they employ a
coarse-to-fine (multiresolution) optimization strategy [18],
which may in turn yield artificial symmetric flips in the
computed correspondences due to initial coarse sampling.
Second, since the algorithm is based on gradient descent, it
produces subvertex matchings which do not necessarily
coincide with the initial sampling, yielding clustered
correspondence samples.

The embedding process brings in distortion but reduces
the correspondence problem to an alignment or point-to-
point matching problem which is easier to solve. Jain and
Zhang [10], for example, employ the TPS-RPM (Thin-Plate
SplineRobust Point Matching) algorithm of [25] for nonrigid
alignment of the embedded points. Other examples are the
Hungarian algorithm employed in [13] and [16], high-order
graph matching in [22], graph-matching based on dual
decomposition in [26], Mobius voting scheme in [15],
unsupervised point clustering in [14], EM-algorithm in
[11] and [14], nearest point matching in [20], and association
graphs in [21].

Isometric correspondence methods may incorporate
local shape information into their schemes. In [15], for
example, Gaussian curvature is used to find an initial set of
feature points upon which the rest of the correspondence
algorithm relies, whereas in [22], the extrinsic curvature and
orientation information (also including texture if available)
is used to augment the intrinsic global shape (isometric)
information. Some methods rely mainly on local shape
similarity, using descriptors such as spherical harmonics as
in [27], histogram of oriented gradients as in [8], mean
curvature as in [28], and shape contexts as in [29]. Local
shape similarity is an important clue for shape correspon-
dence, especially in the case of nonisometric deformations,
but otherwise it is considered as less reliable than global
shape information such as isometry. The methods which
rely only on local geometric information may not perform
well when the shapes to be matched exhibit large variations
in their local geometry, or may easily confuse surface parts
when there are many points that are locally similar. Hence,
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some feature-based correspondence search algorithms also
include a pruning procedure that takes into account
isometric clues by enforcing geodesic consistency [28],
[30], [31], [32]. In a recent work, Wang et al. [33] define an
objective function in terms of local diffusion information as
well as global isometric distortion that also accounts for
shape variability in a probabilistic setting. They formulate
the correspondence problem as a graph labeling problem
and then solve it by graph matching based on the dual
decomposition technique proposed in [26]. Although this is
a nice mathematical formulation, the optimization process
is computationally very demanding.

Another distinction between shape correspondence
methods is whether they target sparse or dense correspon-
dence. Most embedding-based methods naturally support
dense correspondence but the computational load is usually
a limiting factor. There also exist methods which primarily
aim to find a small number of feature correspondences [30],
[31], [21]. These methods regard the sparse correspondence
problem as the main challenge since, based on a sufficient
number of reliable landmarks, cross-parameterization [3] or
some other form of interpolation technique can always be
applied to obtain a dense correspondence [2]. However, in
this coarse-to-fine approach, to decide on the degree of
sparsity that would lead to a robust dense correspondence
is always a problematic issue. A particular example of
sparse correspondence methods is the deformation-driven
approach of [30]. In this method, shape extremities are first
determined based on the average squared geodesic distance
field. Then, an optimal correspondence is sought between
these extremities via combinatorial tree traversal by prun-
ing the search space according to some criteria based on
local shape similarity and geodesic consistency. For each
candidate correspondence set, the source shape is deformed
to the target based on these small number of landmarks
(anchor points), and the correspondence with the smallest
distortion gives the best matching. Another similar defor-
mation-driven method is presented also in [31]. Both
methods can handle large deformations, but their computa-
tional cost is very high due to the repeated deformation
process that they involve.

In this paper, we present a purely isometric method that
finds an optimal correspondence between two shapes. We
first evenly sample high-curvature vertices from the given
shapes and then seek a minimum-distortion mapping from
one vertex set to the other. Hence, our correspondence
method can be regarded as sparse, though the density of the
mapping can be increased as desired by adjusting the
sampling rate. Since the mapping is sought between two
evenly sampled vertex sets, it becomes possible to for-
mulate minimization of the isometric distortion as a
combinatorial optimization problem over the domain of
all possible mappings. The resulting optimization problem
can then be efficiently solved in the original 3D euclidean
space as free of embedding errors by using an expectation-
maximization (EM) algorithm that we initialize in the
spectral domain. In fact, our method can also be used to
further improve the performance of any isometric corre-
spondence method existing in the literature. A preliminary
version of our method was presented in [16], which we
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substantially improve in this paper mainly by solving the
combinatorial optimization problem in a probabilistic
setting via EM algorithm. We also note that we have very
recently proposed a dense shape correspondence method
[34] that minimizes the isometric distortion via combinator-
ial matching in a coarse-to-fine fashion. Since the goal of
[34] is to achieve a dense correspondence, i.e., a matching
between all vertices of two given high resolution meshes,
the focus is rather on computational efficiency, and hence
the method is less accurate than the one we present in this
paper in achieving sparse correspondence. Moreover, the
dense correspondence method in [34] suffers from sym-
metric flips due to initial coarse sampling like the multi-
resolution GMDS method [18].

3 PROBLEM FORMULATION AND OVERVIEW

We address the problem of 3D shape correspondence
between two (nearly) isometric shapes. We assume that
each shape is represented by a manifold surface mesh of
sufficiently high resolution on which geodesic distances can
easily be computed. We designate one of the shapes as
source and the other as target. Let S and T denote the two
sets of points sampled uniformly on the source and the
target, respectively. Since the points are evenly sampled
over mesh representations, we refer to them as base vertices
(Section 4). The problem then reduces to searching for an
optimal mapping from the base vertex set S to 7. Note that
one can find more than one optimal correspondence for
symmetrical objects. We require the optimal correspon-
dence (mapping) to have two properties: 1) to be as
complete and one-to-one as possible (note that |S| = |T|
only in the case of perfect isometry) and 2) to minimize the
deviation from isometry, i.e., the isometric distortion
function defined below:

Z diso(s'ivtj)7 (1)

1
Diso(g) - @ (sz,t/>6§

where § denotes the set of correspondence pairs between S
and T, and

1
diso (81, 1) = §—1 Z

(‘\l-/m)é§
(Sspstm) (s t)

l9(sis0) = 9(tjstm)l, (2

where ¢(.,.) is the geodesic distance between two base
vertices or, more generally, between two points on a given
surface. Hence, diw(si,t;) is the contribution of the
individual correspondence (s;,t;) to the overall isometric
distortion. Both dis, and D;, take values in the interval [0, 1]
since the function g is normalized with respect to the
maximum geodesic distance over the surface. Note that (1)
can be seen as a variant of the generalized stress function
defined in [24] that we compute between evenly sampled
base vertices. Given S and 7, finding the optimal
correspondence §* that minimizes the isometric distortion
is actually a combinatorial problem, which we solve in a
probabilistic framework using the EM algorithm (Section 5).
We assume that the probability of a base vertex s; being in
correspondence with ¢; can be defined in terms of isometric
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Fig. 1. Overall isometric shape correspondence scheme.

distortion. Given these probabilities, the optimal correspon-
dence can be estimated by maximizing a likelihood
function. The probability values, and hence the EM
algorithm, are initialized based on the euclidean distances
between the vertices embedded into spectral domain
through classical MDS (Section 6). Maximization of the
likelihood function, and hence minimization of the iso-
metric distortion given in (1), is then achieved in the
original 3D euclidean space for each iteration of the EM
algorithm in two steps: by first using a bipartite graph
matching algorithm (Section 7.1), and then a greedy
optimization technique (Section 7.2), both with polynomial
time complexity (Section 8). Note that neither the number of
vertices of the original source and target meshes nor |S| and
|T| need to be exactly equal. The block diagram of the
overall shape correspondence scheme is given in Fig. 1. We
demonstrate the performance of our method with experi-
ments in Section 9, where we also compare our algorithm
with two state-of-the-art techniques: the spectral method of
Jain and Zhang [10] and the GMDS of Bronstein et al. [24].

4 SAMPLING

The sampling of base vertices should be as consistent as
possible between source and target meshes. To achieve this
goal, we sample each mesh separately, but impose a
uniformity constraint and favor the vertices which are
geometrically salient. Our sampling algorithm is as follows:
We initially compute the Gaussian curvature at each vertex
of the original mesh [35]. We then sort the vertices into a list
in descending order with respect to their curvature values
and select the top vertex of the list as the first base vertex.
We launch the Dijkstra’s shortest paths algorithm from this
vertex and mark all the vertices lying within a distance r.
The next base vertex is then picked as the first unmarked
vertex in the list. When this is repeated until no unmarked
vertex is left, we obtain a sampling of the surface where the
base vertices are at least at distance r apart from each other.

The sampling algorithm described above is the same as
the one proposed by Hilaga et. al in [6] except that the next
base vertex is selected arbitrarily from unmarked vertices in
[6], whereas we select it as the unmarked vertex with the
highest curvature. Hence, our algorithm places the base
vertices on local maxima of the Gaussian curvature and
thereby generates a more consistent sampling on two
shapes, which eventually improves the correspondence
performance and yields more intuitive matchings. As
verified in our experiments, this vertex sampling heuristic,
as we call it the curvature-oriented evenly spaced (COES)
sampling, provides a good start for our algorithm. The
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resolution of the sampling, and hence the density of the
ultimate correspondence, can easily be set thanks to the
intuitive parameter r, the sampling distance, as we will
refer to it. Although COES sampling algorithm cannot in
general guarantee the same sampling on two shapes, the
parameter r can be set to a sufficiently small value so that
all critical vertices of the given meshes (for typical shapes)
are included by the sampling process. Moreover, the
sampling distance r puts an upper bound to the isometric
distortion of the optimal correspondence §* that minimizes
(1). One such upper bound is given by Dis,(§*) < r in the
case of perfect isometry.

We note that there exist in the literature several other
techniques for uniform mesh sampling such as the farthest
point sampling technique [36], which is commonly em-
ployed by shape correspondence algorithms such as in [15]
and [24]. Our COES algorithm is, rather, built upon the
sampling method of [6] since it provides us with a
convenient framework to develop an efficient saliency-
based uniform sampling algorithm.

5 EM FRAMEWORK

Minimization of the isometric distortion in (1) can be
formulated in a probabilistic setting as the following log-
likelihood maximization problem

§" = argm§axlogP(§\X, Q), (3)

where X = (5, T) is the observed data, i.e., the base vertices,
and Q is the matrix with entries ¢;;, each representing the
probability of source base vertex s; being in correspondence
with target ¢; such that }_ ¢;; = 1. Note that since we seek
an (almost) complete correspondence, we require every s; €
S to be matched with exactly one ¢; € T

The likelihood maximization problem given in (3) can be
solved by using the EM algorithm [37]. Let §® and QW
denote the estimates for § and Q at iteration k. Starting from
an initial estimate Q, the EM algorithm alternately
recomputes the expected value of Q and the estimate §*)
through the following E-step (for Expectation) and M-step
(for Maximization)"

e E-step: QY = B(Q|x, 5%,

e M-step: §¥) = arg maxg log P(5lx, Q"),
until convergence.

We assume that, for each base vertex s;, the probability of
correspondence with ¢; can be modeled as a function of the
resulting isometric distortion via the following Gibbs
distribution:

s = Pltjls) = e Pt (4)
2

where 3 is a fixed positive factor that determines the
sharpness of the distribution and 7; is a normalizing
constant to be chosen such that the constraint 3, g;; = 1 is
satisfied for all 7. The term diy(s;,t;) is the isometric
distortion due to the correspondence of s; with ¢; (see (2)),
and its expected value at iteration k£ can be estimated by
averaging over all the correspondence pairs in §*~1:
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Fig. 2. EM algorithm.

k -
A (sity) = Bldio(si, )X, §5)
1
= Gy X o) —ettal ()
(a8
(sptm)#(si:t)
which can then be used to compute qg‘) in E-step:
k . 1 a® s p).
ql(j) = E(q;|X, g1y = — A (sits) (6)

T,

Hence in M-step (assuming statistical independence for
assignments of s;), we have

§(k‘) = arg max log H qff), (7)
(SMTJ>€§

and, substituting (6), we get

' 1 0
§" = argmax y log— — 3 d. o (si,t5). 8
) logz =6 3 da(sat). ()
(s,‘t,)6§
Here the first summation is constant, and hence can be
ignored. Since the second term is always negative, using (5),
the maximization in (8) becomes equivalent to the following

minimization problem:

(sit)€8
o1 1
= argmén@ Z W lg(si, 81) — g(tj, tm)]-
(5utj)€§ (sl.tm)e§“'71)

(ptm)A(si )
9)

Hence, starting from an initial estimate Q*), or equivalently
{di(fg(shtj)}, the EM algorithm repeatedly computes (2)
based on §* Y and minimizes the overall isometric
distortion (1) to generate §) (see Fig. 2). The EM algorithm
is expected to converge to a local minimum [37], as also
verified by our experiments presented in Section 9.

6 INITIALIZATION

In this section, we describe how we initialize the EM
algorithm, that is, how we obtain good initial estimates for
the entries of the probabilitgf matrix Q or, equivalently, for
the isometric distortions {d‘ )(si, t;)} defined in the previous
section.

6.1 Spectral Embedding

We start by computing the geodesic distances between all
pairs of bases by running the Dijkstra shortest paths

1S0
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algorithm from each base vertex. These pairwise distances,
when exposed to an exponential kernel, form a geodesic
affinity matrix, 4;; = exp(—g*(i, j)/20?), for each of the base
vertex sets S and T, with g(.,.) being the geodesic distance
between two points on a given surface. We set the kernel
width o to be half of the maximum geodesic distance over
the surface. Note that computation of the geodesic affinity
matrix does not bring any additional load to our overall
correspondence algorithm due to the Dijkstra framework
that is already prepared for the COES sampling procedure.

Based on the computed geodesic affinity matrices, we
transform each of the base vertex sets into an M-dimen-
sional spectral domain by means of the classical MDS
algorithm to gain invariance against rigid transformations
as well as shape bending. The classical MDS, introduced by
Gower [38], essentially uses the M leading eigenvectors of
the affinity matrix to obtain spectral embedding. We scale
each of these eigenvectors with the square root of the
corresponding eigenvalue (ignoring the first eigenvector
since it becomes constant due to normalization) as
suggested in [10]. The scaled eigenvectors provide us with
an M-dimensional spectral embedding of the base vertices,
which we will denote by S and 7, respectively, for the
source and the target.

6.2 Alignment

The geodesic distances between base vertices in the original
3D space approximately correspond to L, distances between
their M-dimensional embeddings in the spectral domain.
Although the same transformation is applied to both shapes,
due to arbitrary sign flips of eigenvectors, a disambiguation
process is required which tests the 2" different possible
embeddings for the best alignment. We measure the
alignment of each such embedding S,,L with a fixed 7' by
means of the cost C,, = Z‘b’”l(H 8im — till5), i-e., the sum of
L, distances between mutually closest points in the spectral
domain, where each term in the summation is the distance
between some §; ,, and the target {; which is closest to it. The
embedding $,, producing the minimum cost C,, aligns best
with 7. This alignment operation is visualized in Fig. 3 for
M = 3.

6.3 Isometric Distortion
For each possible (s;,t;) pair, the isometric distortion
diso(si,t;) in (2) can be approximated by the Lg distance
between the embedded coordinates §; and tj, which
provides us with the initial estimate that we seek:

d0(si,t)) = |13 —

150

fj”?' (10)

7 OPTIMIZATION

In this section, we describe the M-step of our EM algorithm,
which involves minimization of the isometric distortion as
given in (9). We solve this optimization problem in two
steps. We first find a one-to-one mapping from S to T"which
is close to the global optimum via bipartite perfect
matching, and then in the second step, we refine it locally
via a greedy optimization algorithm that relaxes the
injectivity constraint and thereby generates a many-to-one
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Fig. 3. Two shapes along with their spectral embeddings (left), the
alignments obtained using an arbitrary configuration of the eigenvectors
(left box), and using the best aligned embedding (right box). The boxes
display two different views for visual convenience.

mapping. Both optimization steps are carried out in the
original 3D euclidean space.

7.1 Bipartite Graph Matching

At each iteration k of the EM algorithm, we create a
complete bipartite graph G on which the minimum-weight
perfect matching is sought. The base vertices S and T form
the disjoint vertex sets of G which is made complete by
connecting every vertex of one set to every vertex of the
other with edges weighted by w;; = dfso(e,,, tj), specifying
the isometric cost of matching s; with ¢;. Since the
cardinalities of the disjoint sets must match for a perfect
matching, if |S| # |T|, we introduce virtual vertices with
connector edges of co weights. Note that the numbers of
base vertices are almost equal for a given pair of isometric
shapes but need not be exactly the same due to possible
deviations from isometry. Hence, at the end of the
optimization process, some base vertices in 7' may be left
unassigned (we designate source and target so that
|S| < |T]). We employ the efficient Blossom V algorithm
[39] to solve the bipartite graph matching problem, hence
the minimization in (9). Bipartite perfect matching results in
a one-to-one (but not necessarlly onto) mapping from S to
T, which we denote by §0 .

7.2 Greedy Optimization

The greedy optimization starts with the one-to-one map-
pmg found via bipartite perfect matching of the first step,
§ = §0 , and iteratively improves § by relaxing the injectiv-
ity constraint imposed on it. The algorithm traverses the
current § and each time replaces the current pair (s;,t;) with
some (s;,t,) provided that this replacement decreases the
isometric distortion. The accumulation of these greedy
decisions, each of which considers a local improvement,
eventually leads to a local optimum on D, as we retraverse
§ until convergence, i.e., until Djy, no longer improves.

For replacement of (s;,¢;), the algorithm considers a
small set of candidates ¢,,. Th1s candidate set, denoted by
T', is formed by the target base vertices (plus their base
neighbors) that have been matched with the base vertices in
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Fig. 4. lllustration of a local improvement by the greedy algorithm.
Suppose each base vertex (filled circles) has four neighbors (empty
circles) and (s;, t,,) is the ground-truth correspondence. When (s;,¢;) € §
is in process, the target base vertices matched with the base nelghbors
of s; (pointed to by the dashed arrows) are tested (the base neighbors of
these targets are also tested, though this is not illustrated in the figure).
Since the target base t, with minimum distortion is different than ¢; in
this case, the correspondence pair (s;,t;) is replaced with (s2 ,) after
checking dis (s;,t,) versus diy(s;,t;). Note that the palr (sf,t,) is also
considered next for its possible replacement with (sf,¢;), though this is
not illustrated in the figure.

the closed neighborhood of s;. For each such t,,, dis(Si;tm)
is computed, and (s;,t;) is replaced with the pair (s;,t,),
yielding the minimum distortion, provided also that this
replacement brings in some improvement over the current
one, i.e., if di(si,t,) < dw(sl,t]). In addition to this
potential replacement concerning s;, we also consider the
current match s; of the selected ¢, by replacing (s;", t,,) with
(sf, ;) if diso(s7,tj) < diso(s], ts). Note that the function di,
is evaluated each time using the current correspondence list
§. The greedy optimization algorithm is illustrated on an
example in Fig. 4 and given in pseudocode in Fig. 5.

The greedy algorithm relies on the assumption that the
initial correspondence found in the first step is reasonably
good, which is so thanks to the spectral matching that
serves as a good starting point. This assumes that for most
of the samples on the source shape, at least a base neighbor
is initially matched close to its optimum on the target. For
the remaining samples for which this assumption does not
hold, EM iterations are expected to resolve the problem as
described next.

7.3 EM lterations

At each iteration k of the EM algorithm, the M-step first
generates a one-to-one mappmg from S to T via brpartrte
perfect matching. This mapping, that we denote by §0 ,
then iteratively refined by the greedy algor1thm so as to
produce a many-to-one mapping, denoted by §"%. At the

step of the next iteration, the bipartite matching process
uses § to compute estimates for isometric distortion via
(5), and thereby generates a one-to-one mapping §**!) in a
globally consistent manner. The final output of the EM
algorithm at convergence, §", can hence be one-to-one or
many-to-one upon choice, depending on at which step the
algorithm is stopped. We will provide experimental results
for both cases in Section 9.

8 COMPUTATIONAL COMPLEXITY

Let V denote the number of vertices in the original mesh
(source or target, whichever has more vertices) and N the
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Input: §8k), one-to-one
Output: §), many-to-one
§=1§;"
For each pair (si,t;) € §
Get‘C{/mdldateTargets(si7 t;)
minD =00
For each t,,, € T”
If diso(si, tm) < minD
tn =tm
minD = diso(si: tTIL)
If diso(5i7t71) < diso(si,t]’)
(Si,tn) replaces (s, t;) in §
Let s; be the match of tn, i€, (st tn) €§
If diso( ) < dlSO( i 7tn)
(sf,t /‘) replaces (57 ,tn) in §
Until convergence (until Dis, no longer improves)

50 =35

GetCandidateTargets(Pair (s;,t;) € §)
T =0
For each s, € W (s;) where W (s;) is the closed
base neighborhood of s;
T =T J{W(ty) | (sp,tr) € §}
Return 7’

Fig. 5. The greedy optimization algorithm.

number of base vertices sampled on the target (N = [T,
recalling that |S| <|T|). The COES sampling process
involves curvature-based sorting with O(V'log V') complex-
ity, followed by the actual base vertex sampling procedure
in again O(V'log V') time since the shortcut Dijkstra shortest
paths for each base sum up to one single Dijkstra algorithm
spanning V vertices. The geodesic affinity matrix is
computed in O(NVlogV) time. The eigenanalysis for
embedding into M-dimensional spectral domain is O(N?),
followed by O(2MN?) operations for alignment, where
M < 6. As for the EM algorithm, the greedy optimization
demands O(N?) time since the computation of di, can be
performed in linear time for each pair in §. The bipartite
matching part of the M-step employs the Blossom V
algorithm with O(N?log N) complexity for a given N x N
cost matrix which is created in the E-step by computing a
dis, value for each entry in linear time. The EM framework
hence demands O(N?®) work per iteration until D,
converges, which takes no more than five iterations in our
experiments. Under the valid assumption of N <V, the
overall complexity is then given as O(NV log V'), which can
be regarded as quite efficient when the other methods in the
shape correspondence literature are considered. For exam-
ple, this is almost equivalent to the computational complex-
ity of the method presented in [10], but better than GMDS
[24] with O(V?logV) complexity, than the method in [15]
with O(N*log N + V?logV) complexity, and than the
method in [30], which involves combinatorial tree traversals
and repeated shape deformations.

9 EXPERIMENTS

9.1 Data Sets

We have conducted experiments on four different types of
datasets. The first consists of two mesh sequences, Jumping
Man [40] and Dancing Man [41], both originally reconstructed
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Fig. 6. Two correspondence results on a pair of meshes from the Horse
Gallop sequence, with N =10 (top) and with N =10 (bottom). The
horse has two critical vertices on the tips of the ears, sampled alternately
on the source and on the target for N = 10. Hence, it is impossible to
obtain the ground-truth left-to-left (or right-to-right) ear match at this
resolution. The region painted (in red) on each shape represents
the surface patch with radius » around the sampled (blue) base vertex.
The mismatch problem is resolved when the number of base vertices to
be matched is increased to N = 40.

from real scenes and each representing the real motion of a
human actor. The second data set is the Horse Gallop, which is
a computer generated synthetical mesh sequence [4].
The original meshes of these sequences are all uniform and
given at high resolution with fixed connectivity; hence we
have the ground-truth dense correspondences in all three
cases. The third data set is the Ballerina from the 3D
segmentation benchmark [42], which contains five different
poses of the same human model, each represented with a
mesh model of arbitrary connectivity. The last data set is the
Nonrigid World shape database [18], which contains various
animal and human mesh models with different poses, where
each object has approximately 3K vertices with arbitrary
connectivity.

9.2 Evaluation Metrics

We measure the performance of our shape correspondence
scheme in terms of deviation from ground truth as well as
isometric distortion. To quantify isometric distortion, we
use the average distortion measure Dj, defined in (1), and
also a maximum distortion measure that we denote by dfm:
d;(so = max diso(si:tj)a (11)

(s,,t7)6§

where diy, is the isometric distortion function given in (2).
Similarly, we compute average and maximum ground-truth

correspondence errors, respectively, by (whenever the
ground-truth correspondence is available)

1
Dgrd:@ Z g(tiatj)7 (12)
(Siatj>€§
and
dly(si,t;) = max_g(t;,t), (13)

(siitj)e
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TABLE 1
One-to-One Mapping Performance for Varying Number N
of Base Vertices on Horse Gallop Sequence

¥ iy [Pl

40 1.997/,4.297" 1.347',3.137"
80 | 0.581/,2.92+ | 0.56r,1.850"
160 | 0.467",2.11r" | 0.427r",1.287/
320 | 0.387,1.137" | 0.317,0.84r'

r’ denotes the sampling distance for N = 80.

where each (s;,t;) stands for a ground-truth correspon-
dence pair.

9.3 Parameter Setting

The correspondence that we find between the sampled base
vertices can be regarded as sparse, which can though be
expanded to a dense correspondence via cross-parametriza-
tion or some other form of interpolation techniques [2].
However, it is always an issue to decide on the optimal
sampling that would render the dense matching phase as
efficient and robust as possible. The related sampling
distance parameter r of our algorithm is the only parameter
that we set manually. Our current strategy to set this
parameter is to select a sufficiently small value so that all
the critical vertices of a given mesh for typical shapes are
included by our COES sampling procedure.

In Fig. 6, we demonstrate, on a pair of shapes from the
Horse Gallop sequence, a degenerate case when the number
of base vertices is significantly low, e.g., N =10. The
problems due to such degenerate cases are usually fixed by
increasing the base resolution, e.g., to N = 40, hence by a
decrement on the sampling distance r. The smaller the
parameter r, the less the deviation from the ground truth
during base vertex sampling, and hence the more accurate
the correspondence obtained, as also verified by the
quantitative results given in Table 1. In the table, we
observe that the isometric distortion and the correspon-
dence error both decrease as the sampling distance gets
smaller, at the expense of some execution time: 1.5, 2.1, 4.0,
and 10.5 seconds for N ~ 40, 80, 160, and 320, respectively,
(recall the O(NV'log V) complexity of our algorithm).

9.4 Results

We display some visual examples from the computed
correspondences through Figs. 7, 8, 9, 10, 11, and 12, and
provide quantitative results in Tables 1 and 2. In all our
experiments, the dimension of the spectral domain is set to
be K = 6, and the number of base vertices is about 80 unless
stated otherwise.

In Fig. 7, we display one-to-one matching results on a
shape pair from the Horse Gallop sequence for varying
resolutions and hence for varying N. We observe that, while
the obtained correspondences satisfactorily match the
ground truth at all resolution levels, the matching precision
increases as the number N of base vertices increases. In
Figs. 8 and 9, we provide the visual correspondence results
obtained on sample shape pairs, respectively, from the
Dancing Man and Ballerina sequences. Fig. 10 displays the
correspondence results across two mesh sequences, i.e., on
two shapes representing two different humans, which are
hence only nearly isometric. We observe that the one-to-one
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Fig. 7. (From top to bottom) Correspondence results on Horse Gallop
with N = 40, 80, 160, 320, where each row displays the shape pair from
two different views. Bold green and red lines indicate the worst matches
with respect to ground-truth error and isometric distortion, respectively.
Note that the two worst matches coincide for N = 160, where red
overwrites green. (Left) All available correspondence pairs, each
indicated with a line segment drawn between two spheres of the same
color at both ends, (right) best-10 matches with respect to isometric
distortion and 10 matches for top-10 vertices of the curvature-sorted
vertex list, highlighted in cyan and blue, respectively (cyan may
overwrite blue). This whole color representation scheme applies
to the subsequent figures as well.

Fig. 8. The final one-to-one mappings obtained for two different shape
pairs from Dancing Man.

mapping obtained is very accurate despite the missing head
of the Jumping Man. In all these figures, two base vertices
with the same color indicate a correspondence pair, whereas
the worst matchings with respect to isometric distortion and
ground-truth correspondence error (whenever available) are
highlighted with bold red and green lines, respectively. Note
also that some target bases may not be drawn in the figures if
not matched with any source base vertex.
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Fig. 9. The final one-to-one mappings obtained for two different Ballerina
pairs (top row). Note that V & 80 base vertices include all high-curvature
points of a hand, which are then accurately matched (bottom row, left
pair shown in zoom). Observe how the initial mismatches on the fingers
(§(()O , middle row) are healed by our EM-based optimization framework
(85, bottom row).

Fig. 10. The final one-to-one mapping obtained for a Jumping Man-
Dancing Man hybrid pair, displayed from two different views.

Fig. 11. (Left) The initial one-to-one mapping §((]°), (middle) the final one-
to-one mapping §;, and (right) the final many-to-one mapping §*, for an
isometric (top) and a nearly isometric pair of shapes (bottom). Some
base vertices from the source shapes for which the final correspon-
dences improve significantly as compared to the initial are each marked
with a red circle.
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Fig. 12. (Top) The initial one-to-one mapping §((]0) and (bottom) the final
many-to-one mapping §" obtained for a Jumping Man-Ballerina hybrid
pair, displayed from two different views.

In Fig. 11, we demonstrate the outputs obtained at
different stages of our correspondence algorithm on a
Jumping Man pair and on a hybrid Jumping Man-Dancing
Man pair. For each pair, we display the initial one-to-one
mapping §(()0> (the output of the first bipartite matching
process), the final one-to-one mapping §; (the output of the
last bipartite matching process at convergence), and the
final many-to-one mapping §” (the output of the last greedy
optimization process at convergence). Note the improve-
ments obtained through the different stages of the
correspondence algorithm. Fig. 12 demonstrates these
improvements on a particular example, i.e.,, on a Baller-
ina-Jumping Man hybrid pair which contains local but
severe nonisometries due to the fingers of the Ballerina
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shape (note that the Jumping Man model does not have any
fingers). Hence the Ballerina shape has more base vertices
sampled on the hands as compared to the Jumping Man,
and since the initial one-to-one mapping forces every
source base vertex to match a different target base, the
result severely deviates from the ground truth. Our final
many-to-one mapping however correctly assigns all base
vertices of the fingers to the single base vertex sampled on
the corresponding hand of the Jumping Man.

Table 2 provides, on different datasets, the values that
the performance measures take at different stages of our
algorithm, for §(()0), §y, and §" (see also Fig. 11). The average-
based performance measures, Dyq and Dj,, and the
maximum-based measures, d;rd and djso, are each computed
over 10 different runs of the algorithm on 10 different pairs,
except for one pair for Dog-Wolf from the Nonrigid World
database and five pairs for Ballerina. Each run matches two
spatially apart poses of the articulated object in the
corresponding sequence. We note that, in some cases,
especially at low resolution matchings when N is small, the
spectral alignment procedure (Section 6.2) may fail to
resolve the sign ambiguities of the eigenvectors due to the
symmetries in the object shapes. The results given in Table 2
exclude such cases in order not to artificially burst the
ground-truth correspondence errors. All the performance
measures are provided as a factor of the sampling distance r
for better interpretation of the errors.

The results given in Table 2 can also be assessed by
considering the input quality, i.e., the isometric deviations
inherent in the original data sets. To this effect, we have
measured the isometric distortion within and across our test
sequences by computing a Dj, value, given the manual
match of 10 critical vertices on each shape pair, and
obtained the following distortion values (from the most
isometric to the least): 0.030 for Jumping Man, 0.034 for
Ballerina, 0.036 for Dancing Man, 0.039 for Horse Gallop,
0.046 for Jumping-Dancing pair, 0.047 for Jumping Man-
Ballerina pair, and 0.060 for the Dog-Wolf pair. Each of
these values can be interpreted as the isometric distortion of
the semantical mapping that can be established between the
corresponding shapes, i.e., as a measure of how isometric
the given shapes to be matched are. In Table 2, we observe
that the isometric distortion inherent in a dataset puts
roughly an upper bound to the performance; hence a lower
bound to the D;, value can be achieved by our method. We

TABLE 2
Quantitative Performance Analysis of Our Shape Correspondence Method in Comparison with the Spectral Method of [10]

Initial one-to-one, (()0) Final one-to-one, §; Final many-to-one, §* Many-to-one of [10]

Pair Dgra, d;rd Diso, djso Degra; d;rd Diso, d;rso Degrds d;rd Diso, diTso Degras d;rd Diso, djso

Horse Gallop 0.73r,7.71r | 0.647,2.75r | 0.587,2.92r | 0.56r,1.85r | 0.35r,2.17r | 0.29r,0.87r | 0.55r,2.17r | 0.50r, 1.49r
Jumping Man 0.577,2.45r | 0.497,0.91r | 0.52r,2.45r | 0.28r,0.54r | 0.40r,1.92r | 0.24r,0.47r | 0.52r,3.98r | 0.38r,0.68r
Dancing Man 0.58r,7.48r | 0.48r,2.55r | 0.44r,1.88r | 0.287,0.82r | 0.38r,1.22r | 0.237,0.60r | 0.44r,1.41r | 0.27r,0.77r
Ballerina n/a 0.507,1.46r | n/a 0.43r,1.02r | n/a 0.267,0.63r | n/a 0.467,1.257
Jumping-Dancing | n/a 0.517,1.03r | n/a 0.467r,1.12r | n/a 0.37r,0.59r | n/a 0.47r,1.03r
Jumping-Ballerina | n/a 1.057,3.32r | n/a 0.67r,2.00r | n/a 0.46r,1.14r | n/a 0.64r,1.507
Dog-Wolf n/a 0.73r,2.387 | n/a 0.697,1.62r | n/a 0.517,0.79r | n/a 0.657,1.207

The best (lowest) performance values on each row are given in bold. In all cases the sampling distance r is approximately 0.07 (the maximum
geodesic distance on the mesh is taken as 1.0), which yields about N = 80 base vertices.
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Fig. 13. The many-to-one mappings on the Dog-Wolf hybrid pair from the
Nonrigid World database (bottom) and on a Ballerina pair (top); obtained
with our method (right) and with the spectral method of [10] (left).

see that, for each data set, our one-to-one mapping
performance achieves a Djy, value which is close to this
bound, and even exceeds it in the many-to-one setting.

The execution time of our implementation is mainly
dominated by the number of vertices in the original meshes
due to geodesic distance computation. On a 6 GB 2.53 GHz
64-bit workstation, the overall algorithm takes, for N =~ 80
base vertices, 2.1, 5.6, 8.0, 2.0, 6.0, 3.5, and 1.5 seconds,
respectively, on Horse Gallop (V =9K), Jumping Man
(V =16K), Dancing Man (V = 20K), Ballerina (V = 6K),
Jumping Man-Dancing Man pair (V' = 20K), Jumping Man-
Ballerina pair (V = 16K), and Dog-Wolf pair (V = 3.4K).
We note that the portion of the execution time that belongs
to geodesic computation varies between 77 and 90 percent
on different data sets. This suggests that our shape
correspondence method can be made even more efficient
by using faster geodesics computation algorithms such as
the one in [43].

9.4.1 Comparison with [10]

The spectral method of Jain and Zhang [10] is one of the
state-of-the-art techniques for embedding-based nonrigid
shape correspondence. The method generates as output a
many-to-one mapping from source to target. In Fig. 13, we
compare our many-to-one mapping results with the many-
to-one mappings obtained via this spectral method on two
distinct cases: on an isometric shape pair from the Ballerina
sequence and on the nonisometric Dog-Wolf pair from the
Nonrigid World database, which contains two shapes with
similar structure but distorted isometry. We observe that
our method outperforms the spectral method significantly
in both cases, the worst matchings being significantly better
as well as the correspondences being generally more
accurate. While our method correctly matches all the shape
extremities, the tips of the left ears on the Dog-Wolf pair are
not, for example, correctly matched with the spectral
method. We have obtained the results of the spectral
method by using the Matlab code made publicly available
by the Jain and Zhang [10]. In the comparison tests, we have
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run their code on the same sets of base vertices (about 80)
and the same geodesic affinity matrices that we have used
for our algorithm.

The last column of Table 2 presents the average and
maximum-based performance measures for the spectral
method in comparison to ours. These measures are com-
puted over the shape pairs for which none of the two
methods results in a symmetric flip. We observe that our
many-to-one mapping §* outperforms the results of the
spectral method significantly in all settings for all data sets.
Another interesting observation is that our one-to-one
mapping §; is performance-wise almost on a par (even
slightly better in some occasions) with the many-to-one
output of the spectral method.

We note that, although the complexity of the spectral
method as presented in [10] is O(V?logV) against our
O(NVlogV) complexity, it can be reduced to O(NVlogV)
by using the Nystrdm method, which, however, intro-
duces further approximation to the euclidean embedding
process [44].

9.4.2 Comparison with GMDS

We have conducted experiments on the Nonrigid World
shape database to compare our method with the GMDS
method of [24]. For GMDS, we have used the publicly
available Matlab code, which uses multiresolution optimi-
zation [18]. The part of the Nonrigid World database that
we have used contains mesh models of 9 cats, 11 dogs,
3 wolves, 17 horses, 24 female figures, and 2 different male
figures containing 15 and 20 poses, respectively. We have
excluded some shape classes from the experiments; the
gorillas having disconnected shape components, the shark,
which has only one mesh model in its class, and the lions,
on which the Matlab code for GMDS has crashed.

We have evaluated the performances in three different
categories: 1) within human models, 2) within animal
models, and 3) across human models. In the experiments
belonging to the first and second categories, for each model
we pick a random model from the same class and then
compute the correspondence in between, e.g., we match
each dog to another dog. In the third category, for each
human object, we pick a random model from each different
human class and then compute the correspondence. We
note that both methods can result in symmetric flips,
though the symmetry problem with the GMDS method is
more severe due to the coarse initialization step, which is
based on only eight samples in the available implementa-
tion. In our experiments, while our method matched about
40 percent of the shape pairs over the three categories as
free of symmetric flip errors, this ratio was only 27 percent
in the case of GMDS. We note that almost all the shapes in
the Nonrigid World database have intrinsic symmetries
(though not perfect), and the number of symmetric flips
tend to decrease with our method as we increase the
number of samples, which was about 80 in these experi-
ments. In the comparison tests, we included only the pairs
that could be matched as free of symmetry problems by
both methods.

Like the spectral method, the GMDS method generates
as output a many-to-one mapping from the source shape to
the target. Hence, also in this case, for comparison we have
used our many-to-one mapping results. The GMDS method
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TABLE 3
Quantitative Performance of Our Shape Correspondence
Method in Comparison with the GMDS Method on the

Nonrigid World Data Set

Many-to-one
(GMDS)

Many-to-one
(our method)

Category

Dism dT

iso

Diso: dT

iso

Across humans

0.6257,1.701r

0.407r,1.158r

Within humans

0.314r,1.139r

0.379r, 0.885r

Within animals

0.3587,1.0367

0.4057,1.231r

has its own sampling procedure, and the publicly available
code can be set so as to generate the same number of
vertices that our method produces. Thus, in our experi-
ments for comparison with GMDS, the sampled vertices on
a given mesh are different but the same in number.

We present the quantitative results of the comparison
tests in Table 3. We observe that our method significantly
outperforms GMDS across humans category, and is on a par
with it for the isometric categories (recall also that the
complexity of GMDS is O(V? log V) against our O(NV log V)
complexity). Note that the ground-truth correspondence
information is not available with the Nonrigid World
database. We have excluded across animal models as a
fourth possible category from our experiments for compar-
ison with GMDS since in that case some shape pairs to be
matched would have severe global nonisometries that both
methods, which are essentially isometric, would fail to
handle. The three categories that we have experimented on
correspond to (nearly) isometric instances of the correspon-
dence problem with the following isometric distortion
values: 0.035 for across humans, 0.028 for within humans,
and 0.030 for within animals (or equivalently, 0.500r, 0.400r,
and 0.428r, respectively, where r = 0.07). Recall however
that the Dog-Wolf pair for which we have presented visual
and quantitative results in Section 9.4.1 is from the Nonrigid
World database.

We visually demonstrate the comparison tests on three
examples in Fig. 14. In the figure, we see that the vertices
matched with GMDS are not as evenly distributed as they are
in our case, resulting in clustered correspondences. Note, for
instance, in the top row, that the samples clustered on the
inner part of the left leg of one model have been matched to
the samples clustered on the outer part of the left leg of the
other model. This is mainly due to the fact that the GMDS
algorithm is a gradient-based iterative optimization process
that produces subvertex matchings which do not necessarily
coincide with the initial sampling. We also note that, while
computing the resulting isometric distortion value for a
GMDS output, we round subvertex coordinates to their
nearest vertices on the surface mesh. The effect of this
rounding process to the computed distortion values is,
however, negligible since the mesh models in the Nonrigid
World database are almost uniform and at relatively high
resolution. We also observe from the visual comparison that
our method can match the salient points of a shape more
successfully than GMDS (e.g., ear tips of the cats), thanks to
our saliency-based sampling.
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Fig. 14. Many-to-one mappings obtained with GMDS (left) and with our
method (right) for sample pairs selected from across humans (top),
within humans (middle), and within animals (bottom) categories of the
Nonrigid World dataset. Our worst match between the cat models (red
line) falls inside the skull and hence is not visible. The vertices matched
with our method are always uniformly distributed and at prominent
regions such as finger or ear tips, unlike GMDS matches. Note that the
correspondences tend to get clustered with GMDS in all three cases.

10 CONCLUSION

We have proposed an isometric shape correspondence
method that minimizes the isometric distortion in the
original 3D euclidean space by using EM algorithm. We
have conducted experiments on various data sets, and our
findings can be summarized as follows:

e Our method performs well not only on isometric
shapes, but also on pairs of shapes which are nearly
isometric, such as mesh representations of two
different humans or animals, i.e., for shapes of the
objects which are different but semantically and/or
structurally similar.

e The COES sampling algorithm that we propose
solves the joint sampling problem by evenly sam-
pling high-curvature vertices from both shapes
using a sufficiently small sampling distance.

e  When the shapes to be matched are given in terms of
evenly sampled surface points (base vertices), any
isometric correspondence technique in the literature
can be used to initialize our EM-based method. In
that sense, our method can be used to further
improve the results of any embedding-based iso-
metric method, such as [10], that possibly suffers
from approximations and/or ambiguities in the
embedding domain.

e Our method generates two optimal mappings at a
time from one shape to the other, one injective and
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the other many-to-one, the former having generally
higher isometric distortion than the latter, espe-
cially in the presence of severe nonisometries
between the shapes.

e Our method is computationally very efficient and
can be made even more efficient by using faster
algorithms for computation of geodesic distances.

e Our method can be applied to any pair of
isometric shapes with arbitrary genus. However,
it cannot handle the deformations which include
topological changes that would modify geodesic
distances drastically.

One limiting factor for our method is that it has been
designed to work on isometric shapes, though the experi-
ments show that our algorithm works well also for nearly
isometric shapes. Yet, our algorithm may not produce good
correspondence results when two shapes contain severe
global nonisometries such as some of the hybrid animal
shape pairs in the Nonrigid World database. Another
limitation of our method is due to the problem of symmetric
correspondences, which is inherent in all isometry-based
correspondence methods. Hence, if two shapes to be
matched include intrinsic symmetries, then our method
may fail to find the correct matching and result in
symmetric flips. To resolve the symmetry problem, explicit
symmetry information is needed and one can resort to
methods that can detect global intrinsic symmetries such as
[19], [45]. We finally note that, as future work, we plan to
extend our method to handle partially isometric shapes.
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