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ABSTRACT

We present a new framework for joint analysis of head gesture and
speech prosody patterns of a speaker towards automatic realistic syn-
thesis of head gestures from speech prosody. The proposed two-
stage analysis aims to “learn” both elementary prosody and head ges-
ture patterns for a particular speaker, as well as the correlations be-
tween these head gesture and prosody patterns from a training video
sequence. The resulting audio-visual mapping model is then em-
ployed to synthesize natural head gestures from arbitrary input test
speech given a head model for the speaker. Objective and subjective
evaluations indicate that the proposed synthesis by analysis scheme
provides natural looking head gestures for the speaker with any input
test speech.

Index Terms— Man-machine systems, multimedia systems, ges-
ture and prosody analysis, gesture synthesis

1. INTRODUCTION

State of the art visual speaker animation methods are capable of
generating synchronized lip movements automatically from speech
content; however, they lack automatic synthesis of speaker gestures
from speech. Head and face gestures are usually added manually by
artists, which is costly and often look unrealistic. Hence, learning
the correlation between gesture and speech patterns of a speaker to-
wards automatic realistic synthesis of speaker gestures from speech
remains as a challenging research problem.

There exists significant literature on speaker lip animation, that
is, rendering lip movements synchronized with the speech signal
[1, 2]. Despite exhibiting variations from person to person and in
time, head and body gestures are also correlated with speech. For
example, it has been observed that manual gestures are correlated
with prosody [3] and verbal content of the speech [4], whereas head
gestures are mostly correlated with the prosody [5,3]. In [6], we pre-
sented a preliminary demonstration of natural looking head and arm
gesture synthesis from speech using a manually determined audio-
visual mapping from speech to head and arm motions.

In this paper, we present a framework for joint analysis of head
gesture and speech prosody patterns towards automatic generation
of the audio-visual mapping from speech prosody to head gestures.
There are some open challenges involved in the joint analysis of head
gestures and prosody towards prosody-driven head gesture synthe-
sis: First, there does not exist a well-established set of elementary
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prosody and gesture patterns for gesture synthesis, unlike phonemes
and visemes in speech articulation. Second, prosody and gesture pat-
terns are speaker dependent, and may exhibit variations in time even
for the same speaker. Third, synchronicity of gesture and prosody
patterns may exhibit variations. We address these challenges by first
processing the head gesture and prosody features separately by a par-
allel HMM structure to learn and model the gestural and prosodic
elements (elementary patterns), respectively, over training data for
a particular speaker. We then employ a multi-stream parallel HMM
structure to find the jointly recurring gesture-prosody patterns and
the corresponding audio-to-visual mapping.

2. OVERVIEW OF THE PROPOSED SYSTEM AND
FEATURE EXTRACTION

A block diagram of the proposed system for prosody-driven head
gesture animation, which consists of analysis and synthesis parts, is
depicted in Fig. 1. The analysis part includes two feature extrac-
tion modules and two-stages of analysis. Feature extraction modules
compute the head gesture features f g and speech prosody features
f p, respectively, from training stereo video sequences of a speaker.
At the first stage analysis, individual feature streams are used to train
separate parallel HMM structures, which provide probabilistic mod-
els for temporal recurrent patterns in the corresponding modalities,
respectively. The segments corresponding to these patterns are de-
tected and labeled over the training video streams, where pattern la-
bels for prosody and gesture are denoted by lp and lg , respectively.
At the second stage, the labels of temporally segmented gesture and
prosody streams are used together to train a discrete multi-stream
parallel HMM to identify jointly recurring patterns. The resulting
joint HMM structure models the correlation between speech prosody
and head gestures. The synthesis part makes use of the joint HMM
to predict the gesture labels from the prosody labels computed for a
test input speech using the prosody HMM obtained by the first stage
analysis. The corresponding gesture features, i.e., head motion pa-
rameters, are synthesized using the gesture HMM obtained at the
first stage analysis and finally animated on a 3D head model.

2.1. Extraction of Head Gesture Features

We define the head gesture feature vector, f g
k, for frame k to include

the Euler angles associated with the 3D head rotation and their first
differences,

f g
k = [θk, φk, ψk,Δθk,Δφk,Δψk]

T
(1)

where θk, φk and ψk are the Euler angles of rotation, with respect
to a reference frame kr , around the x, y and z axes, respectively,
and Δθk, Δφk, Δψk denote their respective first differences. The
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Fig. 1. Overview of the proposed synthesis-by-analysis system.

reference frame kr can be selected as the first frame in which the
subject’s head is assumed to be at neutral position.
The set-up and algorithm for extraction of the feature vectors at

each frame can be summarized as follows: We use a rectified stereo
camera system with two identical cameras, and assume that the in-
trinsic camera parameters are known a priori. We first locate an
ellipse for the head region in the reference frame. For each frame k,
the 2D optical flow vectors are computed within the head region with
respect to the reference frame kr . Then, the 3D world coordinates
of the 2D image points within the head region are calculated using
disparity estimation and triangulation. Next, the rigid rotation and
translation matrices are computed based on the resulting 3D point
correspondences. Finally the Euler angles are extracted from the ro-
tation matrix. We also employ a Kalman filter for post-smoothing of
the estimated Euler angles.

2.2. Extraction of Prosody Features

The prosodic speech events can be described by the temporal vari-
ations of loudness/intensity and pitch as well as pauses between
phrases, phoneme durations, timing, and rhythm. Among these, the
most expressive one is the pitch, which is the rate of vocal-fold cy-
cling. In this study, pitch frequency, P , and speech intensity, I , are
considered as prosody features.
The pitch contour is extracted at a rate of 100 Hz from the speech

signal using the autocorrelation method. The mean of the pitch con-
tour is removed over the active utterances to emphasize local varia-
tions and later it is low pass filtered to reduce discontinuities. The
regions between utterances without a valid pitch are filled with zero
mean unit variance Gaussian noise. The intensity features are also
extracted over the active utterances. The squared sound intensities
are weighted with a 32 ms Kaiser-20 window, and the speech signal
intensity is calculated as the sum of these weighted samples. The
32 ms window is shifted by 10 ms for each frame to extract inten-
sity values at 100 Hz frame rate. The intensity features are also
mean removed over active utterances and between-utterance regions
are filled with zero mean unit variance Gaussian noise. Finally, the
pitch frequency, its derivative and the intensity are concatenated to
form the 3 dimensional prosody feature vector f p

k at frame k:

f p
k = [Pk ΔPk Ik]

T
(2)

3. HEAD GESTURE-PROSODY PATTERN ANALYSIS

We propose a two stage HMM-based unsupervised analysis frame-
work, where the first stage aims to separately extract elementary ges-
ture and prosody patterns for a speaker, and the second stage deter-
mines a correlation model between these head gesture and prosody
patterns.

3.1. Stage-I: Extraction of Elementary HeadGesture and Prosody
Patterns

The first stage analysis defines recurrent elementary head gesture
and prosody patterns separately using unsupervised temporal clus-
tering over individual feature streams. The gesture and prosody fea-
ture streamsF g andF p are separately used to train two HMM struc-
tures Λg and Λp, which capture recurrent head gesture segments ε

g

and prosody segments εp. For ease of notation, we use a generic
notation to represent the HMM structure which is identical for the
gesture and prosody streams. The HMM structure Λ, which is used
for unsupervised temporal segmentation, has M parallel branches
and N states as shown in Fig. 2. The states labeled as ss and se
are non emitting start and end states of the parallel HMM struc-
ture. The parallel HMM Λ is composed of M parallel left-to-right
HMMs, {λ1, λ2, . . . , λM}, where each λm is composed ofN states,
{sm,1, sm,2, . . . , sm,N}. The feature stream is a sequence of feature
vectors, F = {f 1, f 2, . . . , fT }, where f t denotes the feature vec-
tor at frame t. Unsupervised temporal segmentation using HMM
model Λ yields L number of segments ε = {ε1, ε2, . . . , εL}. The
l-th temporal segment is associated with the following sequence of
feature vectors,

εl = {f tl
, f tl+1, . . . , f tl+1−1} l = 1, 2, . . . , L (3)

where f t1
is the first feature vector f 1 and f tL+1−1 is the last fea-

ture vector fT .

s1,1

ss

s1,2 s1,N−1 s1,N

s2,1

sM,1 sM,2

s2,2 s2,N−1 s2,N

se

sM,NsM,N−1

Fig. 2. Parallel HMM structure

The segmentation of the feature stream is performed using Viterbi
decoding to maximize the probability of model match, which is the
probability of feature sequence given the trained parallel HMM,

P(F |Λ) = max
εl,ml

LY

l=1

P(εl|λml) (4)

where εl is the l-th temporal segment, which is modeled by the ml-
th branch of the parallel HMM Λ. One can show that λml is the best
match for the feature sequence εl, that is,

ml = argmax
m

P(εl|λm) (5)

Since, the temporal segment εl from frame tl to (tl+1−1) is associ-
ated with segment label ml, we define the sequence of frame labels
based on this association as,

�t = ml for t = tl, tl + 1, . . . , tl+1 − 1 (6)

where �t is the label of the t-th frame and we have a label sequence
� = {�1, �2, . . . , �T } corresponding to the feature sequence F . The
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first stage analysis extracts the frame label sequences �g and �p given
the head gesture and prosody feature streams F g and F p. While
mapping the gesture and prosody features to discrete frame labels,
the mismatch between the frame rates of gesture and prosody is elim-
inated by downsampling the frame rate of prosody label stream to the
rate of gesture label stream.

3.2. Stage-II: Joint Modeling of Prosody-Gesture Patterns

In the second stage, unsupervised segmentation of the joint gesture-
prosody label stream is performed to detect recurrent joint label pat-
terns. Note that, this task is similar to the task of stage I, except
in the second stage we have a multi-stream discrete observation se-
quence. For this task, the parallel HMM structure in Fig. 2 is used
with discrete multi-stream HMM branches. In multi-stream HMMs,
all streams share the same state transition structure however emis-
sion probabilities are determined independently for each stream.

The joint gesture-prosody frame label stream, denoted by �gp,
is defined such that for every frame k, �gpk = [�gk, �pk]

T . We repre-
sent the discrete multi-stream parallel HMM structure with Γgp and
its m-th branch with γgpm . The discrete HMM Γgp is trained over
the joint gesture-prosody frame label stream. Each branch γgpm , as-
sociated with a joint gesture-prosody temporal label pattern, is then
described with a state transition matrixAγ

gp
m
, a discrete observation

probability distribution Bγ
gp
m
and an initial state probability matrix

Πγ
gp
m
,

γgpm = (Aγ
gp
m
,Bγ

gp
m
,Πγ

gp
m
) (7)

The discrete observation probability distribution Bγ
gp
m
defines the

probability of observing a gesture-prosody frame label at state s and
frame k,

P (�gpk |s) = P (�gk|s)κgP (�pk|s)κp (8)

where the exponents, κg and κp, are the stream weights and they are
selected equal to each other as 1.

4. PROSODY-DRIVEN GESTURE SYNTHESIS

The proposed prosody-driven gesture synthesis system takes speech
as input and produces a sequence of head gesture features, i.e., Euler
angle vectors, which are naturally correlated with the input speech.
The detailed flow of the synthesis is described in the following.

i. The prosody features, F p, are extracted from the input speech
signal.

ii. Temporal segmentation of prosody feature sequence F p is
performed using the HMM model Λp, which is trained in the
stage I analysis to extract the temporal prosody segment se-
quence, εp, and the sequence of prosody frame labels, �p.

iii. The aim of this step is to predict the sequence of gesture
frame labels, �g , given the prosody frame labels �p. To this
effect, temporal segmentation of the prosody frame labels, �p

is performed using the HMM model Γp, which is extracted
by splitting the jointly trained gesture-prosody HMM model
Γgp. As a result of this temporal prosody label segmenta-
tion, a state sequence sp = {sp1, sp2, . . . , spK} associated with
�p = {�p1, �p2, . . . , �pK} is extracted. Then, the gesture frame
label sequence �g is predicted by maximizing the probability
of observing gesture label on the state sequence path sp over
the gesture HMM model Γg .

iv. This step computes the gesture segment sequence εg , con-
sisting of the Euler angle features, given the gesture frame

label sequence �g . First, we find the segment frame bound-
aries, {tl}Ll=1, by merging the same gesture frame labels in
the sequence �g . Then, the Euler angle features for the l-
th segment, εgl = {f g

tl
, f g

tl+1, . . . , f
g
tl+1−1}, are generated

from the HMM λg�tl
, which is the �tl -th branch of the parallel

HMM model Λg (computed in stage I).

v. As the final step of the gesture synthesis, the Euler angles are
smoothed using median filtering followed by a Gaussian low
pass filter to remove motion jerkiness. The median filtering is
performed over 11 visual frames and the Gaussian smoothing
is performed over 15 visual frames.

There are two main advantages of using HMMs for gesture syn-
thesis. The first is the random variations in the synthesized gesture
patterns for each segment. This variation yields more natural looking
synthesis results than using a fixed gesture dictionary, since humans
produce slightly varying gestures at different occasions for the same
semantics. The second advantage is generating gestures with varying
durations in accordance with prosody of the speaker.

5. EVALUATION AND RESULTS

We have conducted experiments using the MVGL-MASAL gesture-
speech database. The database includes four recordings of a sin-
gle subject telling stories in Turkish. Each story is approximately
7 minutes long and the total duration of the database is 27 min and
45 seconds. The audio-visual data is synchronously captured from
the stereo camera and sound card. The stereo video includes only
upper body gestures with 30 frames per second whereas the audio
is recorded with 16 kHz sampling rate and 16 bits per sample. The
database is partitioned into two parts such that three stories are used
for training of the models and one story is used for testing. For objec-
tive evaluation of the synthesis, the Euler angles extracted from the
test sequence are considered as the ground truth for the synthesized
head motion.
The head gesture and prosody correlation analysis includes un-

supervised temporal segmentation of the individual feature streams
as well as the joint gesture-prosody label stream. The parallel HMM
Λg is trained with features extracted from the training video using
Expectation-Maximization (EM) algorithm. The resulting HMM
structure provides a probabilistic cluster model for unsupervised seg-
mentation of head gestures into recurring elementary patterns. We
select the number of states in each branch of the head gesture HMM
Λg as NΛg = 10, corresponding to the minimum gesture pattern

duration of 10 frames ( 1
3
sec assuming 30 video frames/sec). We set

the number of gesture patternsMΛg to 5.
The speech prosody feature sequence is extracted from the audio

part of the training database. As defined in stage I, the HMM model
Λp is trained with prosodic features to obtain unsupervised tempo-
ral segmentation of the prosody stream. The prosody patterns are
expected to follow smooth pitch frequency movements over several
syllables. Considering the average syllable durations and smooth-
ness of the pitch contours, we set NΛp = 5 in each branch of the
prosody HMM model Λp. The number of prosody patternsMΛp is
set to 5.
In the second stage, the discrete multi-stream HMM structure

Γgp is trained using EM over the joint gesture-prosody pattern label
stream to perform unsupervised segmentation. The number of states
for each branch of Γgp is selected as NΓgp = 4 to model possible
label pair transitions. These four states model four different gesture-
prosody label pair combinations within a joint gesture-prosody label
pattern. The number of joint label patterns is set toMΓgp = 6.
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Table 1. The distance measures between the original and the two sets
of synthesized Euler angles: from the proposed Γgp and IOHMM
models

Model Γgp IOHMM

εe 12.518 13.287

εm 1.798 1.857

5.1. Synthesis Results

In this section, we present objective and subjective evaluations of
the prosody-driven head gesture synthesis process. The objective
evaluations compare the difference between original and synthesized
Euler angles. Furthermore, A-B comparison type subjective evalua-
tions are performed using the talking head avatar ofMomentum Inc.,
where the Euler angles that we deliver are used to drive head ges-
tures/motion of the speech-driven talking head animation.

We have also considered using an Input-Output Hidden Markov
Model (IOHMM) structure [1] for joint analysis of head gestures
and prosody. In that case, the IOHMM structure replaces the HMM
Γgp and builds gesture-prosody segment label mapping to predict the
gesture segment labels from the prosody. The states in the IOHMM
are fully connected and the number of states is selected to be same
to the number of states in the Γgp model, which is 24.

In our evaluations, the distance between the original and syn-
thesized Euler angles are measured using the Euclidian distance εe
and the Mahalanobis distance εm. The original Euler angles from
the visual part of the test database are extracted to be used as the
ground truth in the objective evaluations. Two sets of synthesized
Euler angles are generated using the audio part of the test database.
The first set is the proposed head gesture synthesis system based on
the Γgp model. The second set is generated with the same head ges-
ture synthesis system as defined in Section 4 by replacing the second
stage joint gesture-prosody correlation model Γgp by IOHMM. The
average distances are given in Table 1. Note that, all the three dis-
tance measures yield better distances for the proposed joint gesture-
prosody correlation model Γgp.

Subjective A-B comparisons are performed using the speech-
driven talking head animations to measure opinions on the natural-
ness of the synthesized head gestures. The subjects are asked to
evaluate the naturalness of the speech-driven synthesized head ges-
tures for an A-B test pair on a scale of (−2, −1, 0, 1, 2), where
the scale corresponds to (A much better, A better, no preference, B
better, B much better).

The whole test database is manually partitioned into meaningful
15 segments, where each segment is approximately 12 seconds. For
each evaluation 8 segments out of 15 are randomly selected. Three
sets of A-B comparison pairs, each including these 8 segments, are
considered for the speech-driven talking head animations using the
original and two sets of synthesized Euler angles. Furthermore, three
random startup A-B test pairs and another three test pairs with iden-
tical synthesis algorithms are also included to the subjective test set.
Hence, the total number of A-B pairs in a test is 30. Apart from the
three random start-up A-B pairs, all the pairs are randomized across
conditions and pairwise. The subjective tests are performed over
15 subjects. The average preference scores for the three compari-
son sets are presented in Table 2. The subjective A-B comparisons,
as expected, indicate a preference for the talking head animations
using original Euler angles. The animations that are derived with
the proposed joint gesture-prosody correlation model Γgp are pre-

Table 2. The Subjective A-B Comparison Results
A-B pair Preference Score

Original - Γgp -0.23

Original - IOHMM -0.83

Γgp - IOHMM -0.56

Identical pairs 0.04

ferred over the animations using IOHMM correlation model with
an average preference score of −0.63. Also note that, the prefer-
ence of the animations using the original Euler angles is stronger for
the IOHMM driven animations than the proposed Γgp driven anima-
tions. Samples of the audio-visual sequences for the prosody-driven
talking head animations are available online http://mvgl.ku.edu.tr.

6. CONCLUSIONS

We proposed a new two-stage joint head gesture and speech prosody
analysis framework to drive automatic realistic synthesis of head
gestures from speech prosody. The proposed two-stage analysis frame-
work offers the following advantages: i) Meaningful elementary ges-
ture and prosody patterns are defined for a speaker in the first stage.
ii) A mapping between these elementary prosody and head gesture
patterns is obtained with the unsupervised segmentation of joint gesture-
prosody label stream. iii) The HMM-based analysis and synthe-
sis yields flexibility in modeling structural and durational variations
within gestural and prosodic patterns. iv) Automatic generation of
the elementary gesture patterns produces natural looking prosody-
driven head gesture synthesis.
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