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Abstract—The ability to generate appropriate verbal and non-
verbal backchannels by an agent during human-robot interac-
tion greatly enhances the interaction experience. Backchannels
are particularly important in applications like tutoring and
counseling, which require constant attention and engagement
of the user. We present here a method for training a robot
for backchannel generation during a human-robot interaction
within the reinforcement learning (RL) framework, with the
goal of maintaining high engagement level. Since online learning
by interaction with a human is highly time-consuming and
impractical, we take advantage of the recorded human-to-human
dataset and approach our problem as a batch reinforcement
learning problem. The dataset is utilized as a batch data acquired
by some behavior policy. We perform experiments with laughs as
a backchannel and train an agent with value-based techniques. In
particular, we demonstrate the effectiveness of recurrent layers
in the approximate value function for this problem, that boosts
the performance in partially observable environments. With off-
policy policy evaluation, it is shown that the RL agents are
expected to produce more engagement than an agent trained
from imitation learning.

Index Terms—human-robot interaction, engagement, partially
observable Markov decision process, batch reinforcement learn-
ing

I. INTRODUCTION

The development of social robots targets the design of
features that may allow communication and cooperation with
humans as naturally as possible. These may have diverse
applications like health care, education, quality of life, en-
tertainment and collaboration [1]. However, it can be quite
challenging to measure the quality of interaction with social
robots [2]. The ability to engage a user in the social task
is a characteristic of user experience [3], [4]. This feature is
particularly important for applications like tutoring [5], com-
panionship [6] and instructive agents [7]. Several definitions of
engagement exist in the literature, which have been described
in detail by Glas et al. [8]. Poggi describes engagement
as “the value that a participant in an interaction attributes
to the goal of being together with the other participant(s)
and of continuing the interaction” [9]. In direct face-to-face
scenarios, backchannels like non-verbal gestures (nods and
smiles), non-verbal vocalizations (mm, uh-huh, laughs) and
verbal expressions (yes, right) have been shown to play a
significant role in enhancing engagement of the user [10], [11].
In this paper, we focus on training an agent to enhance the

engagement of a user by generating appropriate backchannel
events during a human-robot conversation.

Generation of backchannels may be described as a sequen-
tial decision-making process during a dialog. These events
are triggered based on some history of the interaction and
they may impact the future course of the interaction. For
example, a conversation may conclude prematurely in front
of an unresponsive partner, while it may become very uncom-
fortable if the person in front laughs all the time. Though the
objective behind backchannel generation by a human is quite
complex, we chose to learn its optimization for increasing
engagement of a user. Being a sequential-decision making
problem, we propose to formulate it as a Markov decision
process (MDP) where a policy decides an action given the
current state in order to maximize some notion of reward. As
in many real-world problems, the complete state information
may not be available and instead, partial observations with
some distribution over the true state may only be extracted.
Therefore, we approach this problem as a partially observable
MDP and similar to the work proposed by Hausknecht et al.
[12], we use LSTM (long short-term memory) layers to embed
history into the learning process. The rewards are described
by the engagement measurement of the user and model-free
value-based reinforcement learning (RL) methods are used as
the optimization techniques to solve the partially observable
MDP.

Reinforcement learning techniques are generally imple-
mented as an online learning technique where the agent trains
as it interacts with the environment. However, in applications
where the agent is required to interact with a human, it will be
highly time-consuming, intensely tiring and will demand much
patience from the interacting person, especially when dealing
with initial randomized policy. There are numerous other real-
world applications that face similar problem like personalized
curriculum suggestion for a student [13], online advertisement
[14] and medical treatment recommendation systems [15]
where a bad policy may even be dangerous and illegal. To
avoid such tedious interactions with the environment, batch
RL techniques allow an agent to learn from a fixed dataset
without further interactions with the environment. The dataset
is gathered by a more controlled policy like a human. Inspired
by this key advantage of the batch RL and the availability of
recorded human-to-human datasets on dyadic interactions, we
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approach our training as a batch RL problem. We work with
the IEMOCAP (interactive emotional dyadic motion capture)
dataset [16] and process it to define and extract tuples of the
form < st, at, rt, st+1 >, which are required by batch RL.
Here st is the present state, at is action taken, rt is the reward
received and st+1 is the next state the environment transitions
to. It is important to note that the IEMOCAP dataset does
not represent optimal trajectories for maximizing engagement.
It was designed to cover a range of emotional behaviors.
Therefore, instead of learning to imitate the behavior policy,
the goal is to extract the best policy from the batch data. The
success of the training is determined by Bellman residuals and
the engagement expected from the learned policy.

II. BACKGROUND

A. Markov Decision Process

In general, the reinforcement learning formulates the op-
timization problem as a Markov decision process (MDP)
(S,A,P,R,γ) in which at each time step t, the environment
observes a state st ∈ S, the agent takes an action at ∈ A
and the scalar reward rt ∼ R(st, at) is generated by the
environment. Then the environment makes a transition to the
next state st+1 ∼ P(st, at). The discount factor γ ∈ [0, 1)
weighs the future rewards, determining the extent of temporal
data that is affected by the current action. The solution to any
MDP is a policy π(a|s) which maximizes the expectation of
sum of discounted rewards, i.e., the return.

In real-world environments, it is more common to receive
observations that partially reflect the true underlying states.
That is, the Markov property may rarely hold. Therefore,
learning from a partially observable MDP (POMDP) may
prove to be more beneficial since this formulation explicitly
acknowledges that there is a distribution of possible states
given an observation. Formally, a POMDP can be described as
the tuple (S,A,P,R,O,Ω, γ). Here, (S,A,P, γ) are defined
as earlier and additionally observation o ∈ Ω is generated from
the probability distribution o ∼ O(s).

B. Q-learning

Q-Learning [17] is a model-free off-policy algorithm for
estimating the long-term expected return of executing an action
from a given state. These estimated returns are known as Q-
values. A higher Q-value indicates an action a is judged to
yield better long-term results in a state s. Q-learning follows
the iterative process of fitting the Bellman control equation
[18] given by:

Q(st, at) = rt + γmax
a′

Q(st+1, a
′) (1)

So the loss function L is defined by the mean square of the
difference between right hand side and left hand side of the
Bellman control equation. Deep Q-learning models the Q-
values using neural networks, and hence the Q-function is
represented by parameters θ. The update equation is then given
as:

θi+1 = θi + α∇θL(θi) (2)

Vanilla Deep Q-Learning has no explicit mechanisms for
deciphering the underlying state of the POMDP and is only
effective if the observations are reflective of underlying system
states. In the general case, estimating a Q-value from an
observation can be arbitrarily bad since Q(o; a|θ) 6= Q(s; a|θ).
The deep recurrent Q-learning architecture by [12] shows that
adding recurrency allows the Q-network to better estimate the
underlying system state, narrowing the gap between Q(o; a|θ)
and Q(s; a|θ).

C. Batch Reinforcement Learning

Reinforcement learning (RL) algorithms generally fall into
the category of online algorithms. As the agent interacts with
the environment, it updates its policy towards high rewarding
actions. However, this also means that the agent forgets its
past experiences and cannot re-utilize the data from the state
regions that were visited earlier. Batch reinforcement methods
encourage first the collection of data and then learning of
the policy from this batch data in an offline manner. This
may be repeated several times but a pure batch reinforcement
learning method performs one step of data collection followed
by one step of offline learning. A more detailed survey on
batch reinforcement learning can be found in [19]. Experience
replay is a similar concept which initializes a fixed capacity
of a buffer and keeps pushing new samples into the buffer and
popping the old ones. Deep Q-network (DQN) [20] has shown
that sampling randomly from the buffer to make updates, and
hence breaking the sequential correlation between the samples,
improves performance on Atari games. Another advantage of
batch RL, that is of more interest to us, is that the batch
data may be collected by any behavior policy, that may
even be random. Several works exist on algorithms for batch
reinforcement learning. The fitted Q-iterations (FQI) [21] and
neural fitted Q-learning (NFQ) [22] are among the more
popular algorithms. The former uses a tree-based approach
to model a Q-network while later modeled the Q-network
with multi-layer perceptrons and fitting the Bellman optimality
equation.

III. RECENT WORK

A. Social Robots and RL

Reinforcement learning has shown much success in a variety
of domains and is a trending technique in the field of robotics.
Several works have shown its use in training of an agent for
behaviors similar to that of humans. The works by Qureshi et
al. [23] [24] presented an RL method for training an agent to
greet as humans with the sequential actions of wait, look, wave
and shake hand. They used multi-modal DQN and generated
rewards at every successful handshake. The robot was trained
for 14 days while it interacted with humans. In the work
by Mitsunaga et al. [25], RL is employed to adjust motion
speed, timing, interaction distances, and gaze in the context
of human-robot interaction (HRI). The reward is based on the
amount of movement of the subject and the time spent gazing
at the robot in one interaction. Recurrent neural networks
were used in combination with Q-learning by Lathuilière et
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al. [26] to find an optimal policy for robot gaze control in
HRI. The training was performed in a simulated environment.
In all these works, however, the agent either interacts with
the environment (humans) for several days or training is done
using simulators. We address the challenge where experience
on a real physical system may be tedious to obtain, expensive,
time-consuming and hard to simulate. We propose to use
human-to-human interaction datasets as a batch of off-policy
samples (trajectories) and use them in the context of offline
batch reinforcement learning.

B. Engagement in Interactions

Poggi [9] describes engagement as “the value that a par-
ticipant in an interaction attributes to the goal of being
together with the other participant(s) and of continuing the
interaction”. An agent trained to maintain the engagement of
a user is vital for several applications like companionship,
tutoring, and ambient assisting living. A survey by Clavel et
al. summarizes the issues regarding engagement in human-
agent interactions, emphasizing its importance and indicating
the growing interest of researchers in the field [27]. Verbal
and non-verbal backchannels like nods, head tilts, eye-gaze,
hmms etc. are an important aspect of engagement and have
been shown to promote engagement and interest levels of the
user [10], [11]. Researchers have mainly focused on rule-based
backchannel generation [28], [29] or data-driven unsupervised
methods [30]. In this work, we show how to formulate the
problem in a reinforcement learning framework and train
an agent to learn a policy for backchannel generation that
maximizes the engagement of the user.

One of the pioneering studies on the measurement of
engagement is the work by Rich et al. [31], where the authors
propose an engagement model for collaborative interactions
between human and computer. They define four types of
events as engagement indicators, referred to as connection
events (CEs), which include directed gaze, mutual facial gaze,
adjacency pair, and backchannels. Directed gaze event is
defined when both participants look at a nearby object related
to the interaction at the same time. The mutual facial gaze
occurs when there is face-to-face eye contact. Adjacency pair
indicates a successful event when turn taking occurs with
some minimal time gap. Finally, backchannels refer to the
generation of audio-visual feedback by a listener during the
speaker’s turn. In our work, we use these connection events
to quantify engagement and generate a single scalar value at
each time step to represent the rewards. An alternative option
may be to directly annotate the engagement levels in the
dataset. However, automatic detection of engagement allows
the refinement of the policy in the future by continuously
updating the policy as the agent interacts with humans.

IV. PROPOSED METHODOLOGY

As described earlier, we propose a method to train an
agent for the generation of backchannels that may maximize
engagement using datasets as batch data. We work with
the IEMOCAP (interactive emotional dyadic motion capture)

Fig. 1. Reinforcement learning formulation of speech driven backchannel
generation (not drawn to scale)

dataset [16] that consists of dyadic human-to-human conver-
sations on a range of scenarios. A total of 151 dialogues
were performed by 10 professional actors in pairs on scripted
and improvised scenes. In order to treat this as a batch data,
we assume that of the two actors, one represents a behavior
policy which takes the actions and the second actor behaves
as an environment that generates states and rewards. Thus the
IEMOCAP dataset may be viewed as a batch of trajectories
collected by the behavioral policy. In order to double the
training data, we also switch the roles of the actor as the
behavior policy and the environment. Thus in total, we have
302 sequential decision making trajectories.

A. Batch-RL Formulaion

Batch reinforcement learning algorithms work with tuples
of the form 〈st, at, rt, st+1〉 for t = 1 : T . At time t, st
is the state of the environment, at is the action taken by
the agent and rt is the reward. We extract these tuples at
a rate of 40 Hz from the dataset, hence a batch data of
approximately 3 million tuples is produced. But the first step
is to lay down the definitions of states, actions and rewards.
Though our framework is general for any backchannel event,
we perform experiments with laughs as a backchannel that
may enhance engagement. States, actions, and rewards are
defined as follows:
• State: The state of the environment is represented by

speech features extracted from past one second of data at
every 25 msec step. This produces state information at a
rate of 40 Hz.

• Action: Agent’s action is a binary variable, indicating
the absence or presence of laugh. Laughs of the actor
described as the behavioral policy are labeled at a rate of
40 Hz.

• Reward: The reward is a scalar quantity which comes
from the engagement measures of the user at every
time step. Engagement is calculated by determining the
number of connection events in a time window. It is
further elaborated below.

The states are defined using the mel-frequency cepstrum
coefficients (MFCCs) and prosody features extracted from
the speech signal of the environment. 13-dimensional MFCC
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features are computed using 40 milliseconds sliding Hamming
window at intervals of 25 milliseconds. The speech intensity,
pitch, and confidence-to-pitch with their first derivates make up
a 6-dimensional prosody feature, so a 19-dimensional feature
vector is formed when MFCCs and prosody are concatenated
as in [32]. Following this, feature summarization is performed
where a set of statistical quantities are computed that de-
scribe the short-term distribution of each feature over the
past one second. These quantities comprise eleven functions,
more specifically mean, standard deviation, skewness, kurtosis,
range, minimum, maximum, first quantile, third quantile, me-
dian quantile and inter-quartile range, which were successfully
used before by [33]. The dimension of each of these statistical
feature vectors is 11 times the dimension of the corresponding
feature vector. This makes the feature size of length 209. Fig. 1
shows the time windows used to extract states, rewards, and
actions in one tuple. The dataset is pre-processed and such
tuples are saved in a buffer.

Our measure of engagement is based on the method pro-
posed in [31], which is applicable to face-to-face collaborative
HCI scenarios. Similar to the description in Section III-B,
we use the connection events (CE) (1) mutual facial gaze,
(2) adjacency pair and (3) backchannels (that include laughs,
smiles, nods and head-shakes) to quantify engagement. In [31],
the directed gaze event is defined when the agent and the
participant look at a nearby object related to the interaction at
the same time. However, in our dataset, since we do not have
objects of interest at which both parties look at, we exclude it
in our definition. The extracted CEs are then used to calculate
a summarizing engagement metric called mean time between
connection events (MTBCE). MTBCE measures the frequency
of successful connection events that is for a given time interval
T, MTBCE is calculated by T / (no. of CEs in T). As MTBCE
is inversely proportional to engagement, similarly to [31], we
use pace = 1/MTBCE to quantify the engagement between a
participant and the robot. The pace measure is calculated over
a window of 15 seconds in our experiments.

B. Q Networks

We perform experiments with two different neural networks
and evaluate their relative performance. The first function
approximation network is modeled as a multi-layer perceptron
(MLP) to solve for a MDP where states follow the Markov
property. It consists of 209 inputs (state feature size), two
hidden layers with 100 and 25 neurons respectively and 2
outputs (Q-values for the two actions). For all the neurons
ReLU activation function is used. For the second neural
network, we introduce a LSTM layer to handle the problem as
a POMDP. The same MLP structure is used. Only its first fully
connected (FC) layer is replaced with a LSTM with identical
number of neurons (i.e. 100). We also experimented with an
LSTM replacing the second FC layer instead. However, since
it did perform as well, we include here only the results for the
case where the first FC layer is replaced.

V. EXPERIMENTS

For all our experiments the batch data is split into train and
test sets in the ratio 4:1, hence 5-fold training is performed.
It is split as leave one subject out (LOSO) and hence the
reported results are subject independent. In all the experiments,
the optimization is performed using Adam optimizer and
a discount factor of value 0.99 is used. We train the two
networks described in Section IV-B: multi-layer perceptron
(MLP) and fully connected LSTM (FC-LSTM). Following the
concept of experience replay and randomization proposed by
DQN [20], the batch data is shuffled prior to training of the
MLP network. In our second experiment, the introduction of
LSTM means the tuples cannot be randomized because the
network now requires sequential data input. However, if each
dialog is passed sequentially, the LSTM faces stability problem
due to the long lengths of the sequences and the randomization
proposed by DQN cannot be incorporated. We approach this
by selecting randomly a starting position in each dialog and
choose only the next L time steps to pass to the network.
We have tested with different sequence lengths L and found
L = 80 (2 seconds of data) to be stable while improving the
results.

We have also tested with a linear function approximation
network and found it to be unstable with diverging errors.
Another comparison we have performed is with a policy
learned from supervised learning. For supervised learning, we
use the identical MLP network with a softmax layer at the end
to produce probabilities of laugh and no laugh events. The loss
is defined by the cross-entropy loss function with laugh labels
as the true outputs. The value estimated by this policy is used
as a baseline.

VI. RESULTS

Evaluation of the resultant policy is a challenging problem
since the environment (i.e., the human participant) is not
readily available in our case. Although it is possible to conduct
experiments with human-robot interactions, it is desirable to
first understand the policy’s effectiveness using quantitative
measures. We use the Bellman residual and off-policy evalua-
tion (OPE) techniques to understand the effectiveness of each
policy

A. Bellman Residual

For a Q-value function approximation network Qθ, the
Bellman residual is defined as the difference between the two
sides of a Bellman control equation [34]. A smaller residual
error means that the learned policy is closer to the optimal
policy and is a true Q-function since it follows the Bellman
equation more closely. Similar to the work of [21], we compute
the Bellman residual, Br, over the entire batch data B as

Br =
1

|B|
∑
B

(Qθ(st, at)− [rt + γ ∗max
a∈A

Qθ(st+1, a)])2. (3)

Fig. 2 shows the training curves for the multi-layer per-
ceptron (MLP) and fully connected LSTM networks. Both
models converge to a stable point. However, the lower Bellman
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Fig. 2. Bellman residual vs training samples

residuals from the LSTM model show better optimality and
validity of its value function approximation network. For com-
parison purpose, we also present the effect of different lengths
of sequences used for LSTM training. Though truncation of
sequences to L samples may result in information loss from
history, longer sequences become harder to train with LSTMs.
The training curves for a length of past 2 seconds of data
versus past 6 seconds of data are presented here. Fig. 3 shows
the trend of Q-values estimated by each network, averaged
for the states present in the batch data. We observe that the
estimates are close to each other, with LSTM network with 2
seconds of history surpassing marginally.
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B. Off-policy Policy Evaluation (OPE)

Off-policy policy evaluation (OPE) is used to predict the
performance of policy with data only sampled by a behavior
policy [18]. In the last few years, many OPE techniques have
emerged because of its importance in cases where a new policy
cannot be tested directly with the environment [35], [36]. To
compare the values of policies returned by each technique, we
apply the step-wise weighted importance sampling (step-WIS)
estimator given as

V̂ πstep−WIS =
n∑
i=1

T−1∑
t=0

γt
ρ
(i)
t∑n

i=1 ρ
(i)
t

r
(i)
t , (4)

where n is the number of trajectories, T is the length of each
trajectory and γ is the discount factor. Then, the importance
weight ρ is defined as the ratio of the probability of the first
t+ 1 steps of a trajectory under π to the probability under a
behavior policy πb and is given as ρt =

∏t
i=0

π(ai|si)
πb(ai|si) . The

importance sampling approach to evaluation relies on using
the importance weights ρt to adjust for the difference between
the probability of a trajectory under the behaviour policy πb
and the probability under the evaluation policy π. Following
the discussion of the work in [37], the behavior policy πb
is estimated using approximate nearest neighbor [38]. Ideally
OPE needs to be computed over infinite lengths, but taking
into account the numerical limitations, we calculate them over
trajectories of length 200 samples with shifts at every sample.

The training process for each technique produces an optimal
Q-value function, which is used to implicitly define a policy.
The simplest method is to act greedily and produce a determin-
istic policy by selecting the action with the highest Q-value.
But since the OPE technique uses importance sampling and
requires probabilities to reweigh each trajectory, we assign
a high probability of 95% to the action suggested by the
greedy policy. Also, it is observed that each agent produces
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laughs much more frequently than the non-laughing event.
On the contrary, in the dataset the laugh events occur only
∼ 1.5%. In order to control the number of laughs, we use
the softmax function to convert Q-values to probabilities
and apply different thresholds to define a new deterministic
policy. The OPE is performed at different threshold values
(or amount of generated laughs) and similar to before a
95% probability is assigned to the suggested action. Fig. 4
shows the values estimated by WIS at different fraction of
laughs. The fully connected LSTM clearly outperforms MLP,
producing a maximum value of 30.7 versus 24.8, whereas the
batch data consists of an average value of 21.47. The policy
from supervised learning is also tested in a similar fashion.
Different thresholds are used to limit the number of laughs and
OPE is performed from the deterministic actions suggested by
the policy.

VII. CONCLUSION AND FUTURE WORK

This work has explored the effectiveness of recurrent layers
for teaching non-verbal communication to robots. We have
formulated the problem in a reinforcement learning framework
so as to explicitly maximize engagement. More specifically,
the batch Q-learning method presented in this paper aims
to find an optimal policy from recorded human-to-human
interactions, that generates backchannel events for an engaging
interaction. As discussed in Section I, engagement is an
important feature that may be used as a measure for the
quality of interaction. It has been shown in various studies that
the correct generation of backchannels during an interaction
engages a user more effectively towards the task. In this work,
we measure the engagement of an interaction by using cues
like eye contact, non-verbal gestures and turn taking frequency
[31]. Our experiments have focused on generating laughs as
the backchannel event, but this work may easily be extended
to other backchannel events such as nods and smiles. One
primary goal of this work is to show that the knowledge of true
state in a real-world problem may not be available and needs
to be formulated as a partially observable Markov decision
process. To this end, we have demonstrated the effectiveness
of recurrent Q-learning by using measures such as Bellman
residual, off-policy policy evaluation and mean Q-values. As
future work, we will evaluate the effectiveness of our method
with experiments in a human-robot interaction setting, where
engagement will be monitored in real-time and backchannel
events will be generated with the optimal policy learned from
batch data. Furthermore, our future research direction will
involve experiments with richer definitions of state incorporat-
ing features like visual landmarks, bodily gestures, emotional
content and word embedding.
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