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Graphical display of deformable objects has been extensively studied in computer
graphics. With the addition of haptic feedback, deformable objects gain a new
characteristic. Now, our models should not only estimate the direction and the amount of
deformation of each node but also the magnitude and direction of interaction forces that
will be reflected to the user via a haptic device. This tutorial note discusses the modeling
and programming principles of force-reflecting deformable objects.
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Applications:
•  Surgical simulators are currently being developed at many research centers and
companies to train doctors and residents with new surgical devices and techniques.
Conveying to the surgeon the touch and force sensations with the use of haptic interfaces
is an important component of a simulator. Force-reflecting deformable models in various
fidelities need to be developed to simulate the behavior of soft tissues when they are
manipulated with surgical instruments. The developed algorithms should deal directly
with geometry of anatomical organs, surface and compliance characteristics of tissues,
and the estimation of appropriate reaction forces to convey to the user a feeling of touch
and force sensations.
•  3D modeling of deformable objects using NURBS or FFD are well known concepts in
CAD. With the addition of force feedback, the interactions will be more intuitive and
physically based. For example, various constraints can be implemented naturally using
force feedback.
•  An animator can intuitively deform the body parts of a 3D character using a haptic
device. For example, an animator can use force cues to decide on how much the knee of a
3D character should be flexed at each time frame to make its locomotion more realistic.
•  Mechanistic interactions between the melted materials and the manufacturing tools can
be studied in virtual environments. For example, an extrusion process can be simulated to
better understand the behavior of materials under certain external loads.



Desired properties of force-reflecting 
deformable models

• reflect stable forces

• display smooth deformations

• handle various boundary conditions and constraints

• display “physically-based” behavior



Modeling of Deformable Objects

Physically-based? 

•Vertex-based
•Spline-based
•Particle-based
•Finite element based

X
X

X
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Characteristic

fast
smooth

easy to implement
comprehensive

Geometrically-based?

One way to categorize the deformation techniques is according to the approach followed
by the researchers to deform the surfaces: geometric or physically-based deformations. In
geometric deformations, the object or the surrounding space is deformed based purely on
geometric manipulations. In general, the user manipulates vertices or control points that
surround the 3D object to modify the shape of the object. On the other hand, physically-
based deformation techniques aim to model the physics involved in the motion and
dynamics of interactions. Models simulate physical behavior of objects under the affect
of external and internal forces. Geometric-based deformation techniques are faster, and
are relatively easier to implement. But they do not simulate the underlying mechanics of
deformations. Hence, the emphasis is on visual display and the goal is to make
deformations appear smoother to the end-user. Sophisticated physically based models,
although necessary for simulating the dynamics of realistic interactions, are not suitable
for fully interactive, real-time simulation of multiple objects in virtual environments due
to the current limitations in computational power.
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Spline-based :

∆ P = (BT B) -1 BT ∆Q

Qnew = B (P + ∆ P)

Vertex-based :

Depth = a0 + a2 (Radial Distance)2

Particle-based :

F = ma
Fspring

Fdamping

Fgravity

a (t + ∆t) = F/m
v (t + ∆t) = v(t) + ∆t a (t + ∆t)
p (t + ∆t) = p(t) + ∆t v (t + ∆t)

Modeling of Deformable Objects
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Geometric and physically-based deformation techniques can be sub-grouped as follows:

A.  Geometric-based Deformation Models
• Vertex-based: The vertices of the object are manipulated to display the visual

deformations.
• Spline-based: Instead of directly transforming the vertices of the object,

control points are assigned to a group of vertices and are manipulated to
achieve smoother deformations.

B.  Physically-based Deformation Models
• Particle-based: Particle systems consists of a set of point masses, connected

to each other through a network of springs and dampers, moving under the
influence of internal and external forces. In this model, each particle is
represented by its own mass, position, velocity, and acceleration.

• Finite Element based: The volume occupied by the object is divided into
finite elements, properties of each element is formulated and the elements are
assembled together to study the deformation states for the given loads.

For geomeric-based models, we assume that the user will define his/her own force
interaction model. The force model will depend on the deformation model. For
example, a set of linear/nonlinear springs can be considered between the home and



deformed positions of nodes to compute the direction and magnitude of the force
vector that will be reflected to the user. In physically-based modeling, the model
automatically computes the magnitude and direction of forces applied to each node.

• Vertex-based: A region of the object surface in the close vicinity of the collision
point (or the nearest surface point) can be locally deformed. In order to deform object,
we translate all of the vertices within a certain distance (called the radius of influence)
of the collision point, along the direction of the haptic stylus. For example, the
magnitude of translation can be determined using a simple second order polynomial.
The degree and the coefficients of the polynomial define the shape of the
deformations. For example, if a second degree polynomial with no linear deformation
term is assumed (a1 = 0 ), then the deformation function takes the following form

Depth= +a a Radial Distance0 2
2( )

where, a0 = AP  and a radius of influence2
2= −AP / ( ) . The vector AP  is constructed

from the coordinates of the stylus tip and the contact point.  The radial distance is the
distance of each neighboring vertex, within the radius of influence, to the collision point.

• Spline-Based: Sederberg and Parry (1986) suggested a free-form deformation (FFD)
technique for deforming the space that encloses the object. FFD enables the user to
interactively modify the object shape by repositioning the lattice of control points that
surround the 3D object. Any point within the lattice is defined as:
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or, in matrix form
Q BP= (*)

where, Pijk are the control points, andB u B v B wi j k( ), ( ), ( )  are known as the third degree

Bernstein polynomials or Bezier basis functions. Hsu et al. (1992) suggested a method for
direct manipulation of free-form surfaces. In this method, control points are moved such
that the resulting surface smoothly reaches its intended position by means of a least
squares solution. Assume that a single point of the 3D object is translated an amount of
∆Q  and moved to a new location (Q Q+ ∆ ), then Eq. (*) can be rewritten in the
following form:

( ) ( )Q Q B P P+ = +× × ×∆ ∆1 3 1 64 64 3 (**)



where, ∆Q  and ∆P  represent the changes in the position of object point and the control
points (recall from Eq. (5) that there are 64 control points). Eq. (**) reduces to:

∆ ∆Q B P1 3 1 64 64 3× × ×=
Now, the goal is to calculate the change in the control points for a given ∆Q . This can be
achieved through the use of pseudoinverse solution:

∆ ∆P B B B QT T= −( ) 1

Once the changes in the positions of control points are known, the deformed positions of
the object can be calculated from Q B P Pnew = +( )∆ .
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• Particle-Based:  Particle systems (also known as mass-spring models) consists of a
set of point masses, connected to each other through a network of springs and dampers,
moving under the influence of internal and external forces (see figure below).
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Each vertex (i.e. node) of the 3D object has a mass and is connected to its neighbors with
springs and dampers, moving under the influence of internal and external forces.



The total force applied on each particle can decomposed into spring, gravitational, and
dissipative forces.
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Then, the acceleration, velocity, and position of each particle can be updated using the
Euler integration method.
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Particle systems have been extensively used in computer graphics to simulate the
behavior of clothes and fluid flow. This technique is simple to implement since the
developer does not need to construct the equations of motion explicitly. Moreover, it is
physically-based since it can model the viscoelastic behavior of deformable objects.
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• FEM-Based: The finite element models come in various forms and the selected
model depends on the type of loading, element, and shape functions. We do not present a
model in here due to the limited space, but the following references are quite helpful in
developing finite element models for simulating deformable objects.
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Constraints
Examples:
• a node is fixed in 3D space
• a node is constrained to stay on a path
• curvature constraint
• constant volume

Implementation:
1) Particle-based models
a) Penalty
b) Lagrange multipliers
2) FEM

Constraints:
So far, we have discussed various modeling techniques for simulating force-reflecting
deformable objects. To control the deformations and to make the simulations more
realistic, constraints have to be implemented into models. Several types of contraints can
be mentioned:

• a node is fixed in 3D space
• a group of nodes has to follow a path
• curvature constraints has to be specified for modifying free form surfaces
• volume of the object has to be kept constant

1) Implementation of constraints to particle-based models:



Many techniques have been suggested to implement constraints. We briefly discuss only
two of them in here: (a) penalty methods and (b) Lagrange multipliers (Interested readers
may find the details of these techniques in the suggested references). In general, the
constrained force estimated through (a) penalty or (b) Lagrange multiplier technique is
added to the unconstrained force computed through equation (***). Then, the total force
( nedunconstraidconstrainetotal FFF += ) is inserted into Eq. (****) to update the accelaration,

velocity and position of each particle.

a) Penalty methods
Calculate the constrained force using the following formulation:

JGkGkF dsi
dconstraine )( �−−=

where, G(u) is your constraint function that has to be satisfied, u reperesents your nodal
displacements, sk  and dk  are spring and damping coefficients that can be adjusted to

satisfy constraints, and J is jacobian ( iuGJ ∂∂= / ). For example, if we want to fix a node

( thi node) in 3D space, we define G(u) as G(u) =iu . Then, )( idisi
dconstraine ukukF �−−= .

b) Lagrange multipliers
First, solve the following equation for λ and then insert the solution into λT

dconstraine jF =
to estimate the constrained force.

GkGkFJMuJJJM dsnedunconstrai
T

�

�
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where, M is the diagonal mass matrix, λ is a vector of Lagrange multipliers.
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2) Implementation of constraints to FEM:
Here, we include a pseudocode that describes how to implement simple boundary
conditions to your FEM. Interested readers may find the details of these techniques in
suggested references.

F = K.U (original equation)



FF = KK .U (create a copy of the original system)

for j = 1: nn_constrained % loop through constraints
id = bcdof(j); % get the degree of freedom for constraint
val = bcval(j); % get the constrained value
for i = 1: nn % loop through equations of system

FF(i) = FF(i) – val*KK(i,id);
KK(id,i) = 0;
KK(i,id) = 0;

end
KK(id,id) = 1;
FF(id) = val;

end

Once you obtained the modified matrices (KK and FF), solve the modified system for the
unknown nodal displacements ( FFKKU 1−= ). Then, insert the computed nodal
displacements into the original equation (F = KU) to find the applied forces at the nodes.
Note that the computations can be simplified if the interactions are point-based only.

Suggested Readings:
1. Huebner, K, Thornton, E., Byrom, T., 1995, “The finite element method for engineers”, John Wiley &

Sons, Inc.
2. Kwon, Y.W., Bang, H., 1997, “The finite element method using Matlab”, CRC Press.

Problems with Particle-Based Techniques

A) Add damping to
stabilize oscillations

B) Add constraints

stiffer
system

∆t # of iterations

C) Too many elements

D) Too few elements difficult to preserve volume

E) Non-homogeneous distribution of elements finer adjustment of spring and damper
coefficients 



Some of the problems associated with particle-based systems are listed below
• A damping term needs to be considered to bring the system into a global

equilibrium. Increasing damping makes the system stiffer. This is going to
force us to take shorter time steps to achieve stability.

• Adding multiple constraints leads to a stiffer system. We may need to reduce
the “elasticity” of the system to control the deformations. This is, again, going
to force us to take shorter time steps to achieve stability.

• Uneven distribution of vertices (nodes) of the 3D model may easily generate
unstable interaction forces and non-smooth graphical deformations.

• Note that explicit integration schemes are conditionally stable (see the work
done by Barraf and Witkin on implicit techniques, “Large steps in Cloth
animation”, SIGGRAPH’98)

The following solutions can be proposed for these problems:

• Taking variable time step to improve the stability
• Considering local deformations to reduce the stability problems
• Remeshing or automatic refinement to reduce the stability problems and to

make the deformations appear smoother

• Controlling deformation and/or force update rate )(
00 F

F
or

l

l ∆∆=β . For

example, if (β < βcritical) then set β = βcritical



Problems with FEM Techniques

A)Change in topology

B) Computationally very expensive to perform dynamic analysis

Re-meshing

C) Matrix singularities

D) Memory allocation

KUF = FKU 1−=

In general, finite element models are comphrensive and well suited for accurate
computation of deformations. However, it is difficult achive a real-time performance
using FEM. Moreover, the addition of haptic feedback increases the complexity of the
problem. To achive real-time rendering rates, 1−K  can be pre-computed and static
condensation (i.e. eliminating unwanted degrees of freedom) technique can be
implemented. However, the precomputation of1−K  is a problem if the topology of object
permenantly changes during the interaction. For example, if an object is sliced or cut, it
has to be remeshed and the stiffness matrix has to be updated. Moreover, taking the
inverse of the K matrix is not trouble free and singularities may occur. Finally, the entries
of the matrices need to be allocated wisely to save from the memory.



Programming tips to speed up your
computations

• Synchronize your haptic and graphic loops

Haptic
Database

Visual
Thread

Shared
Database

• Construct a multi-layered computing structure for displaying forces and displacements

• Construct a hierarchical data structure

Compute
Forces
200 Hz

Display
Forces
1 kHz

Display
Images
30 Hz

Extrapolate
Forces

Thread #1 Thread #2 Thread #3

Polyhedron
Polygon (Neighbors: Line, Vertex)

Line (Neighbors: Polygon, Vertex)

Vertex (Neighbors: Polygon, Line)

• Synchronize your haptic and graphic loops: Software integration of visual and
haptic modalities was achieved in an efficient manner by creating a hierarchical database
for geometrical properties of objects and by programming with multi-threading
techniques. In our simulations, visual and haptic servo loops were separated to achieve
faster rendering rates. When displaying visual images, it is known that the update rate
should be around 30 Hz to appear continuous. On the other hand, to create a satisfying
haptic display, the update rates for sending the force commands to the haptic interface
needs to be about 1000 Hz. In order to create a VE that satisfies both requirements and
optimally use the CPU power of a computer, the visual and the haptic servo loops need to
be separated. That is, we run two loops at the same time, with the graphic loop updated at
30 Hz and the haptic loop updated at 1000 Hz. Since there are two loops running at the
same time, there is always a chance a conflict occurs in accessing the shared memory.
For example, in the case of simulating deformable objects, changes in geometry require
frequent updates of visual and haptic databases in real-time. This will cause a problem if
one loop is writing data to the memory and the other loop is reading from there. In order
to avoid this situation, we need to synchronize the two loops. The easiest way to
synchronize two loops is to create a Boolean flag. When one loop wants to access the
shared data, it should check the flag first to see if the data is being accessed by the other
loop. If the flag indicates that the shared memory is not being used, the loop can access
the data and the flag is set to indicate that the shared memory is currently being used. If
the flag indicates that the data is being used by the other loop, the loop waits until the



other loop is done. When one loop finishes its operations with the shared memory, it sets
the flag back to normal to let other loop access the data.

•  Construct a multi-layered computational architecture: Although separating haptic and
graphic loops, using a client-server model as described in the previous paragraph, is
helpful in improving update rates, it may not be sufficient in certain situations. In a
typical client-server model for haptic rendering of 3D objects, haptic thread is usually
designated as the client and the model computations are performed in this thread.
However, physically-based modeling techniques for displaying forces and deformations
are computationally expensive and the haptic update rate may drop below the
requirement. For example, a real-time dynamic analysis of force-reflecting deformable
objects using finite-element techniques is quite difficult with the available computational
power. To overcome this difficulty, we suggest a layer between the “computation” and
the “display” modules. In this layer, forces can be extrapolated based on the previous
force values and their rate of change. Based on this approach, forces can be computed at
200 Hz using a finite element technique, extrapolated in between the computation cycles,
and displayed to the user at 1 kHz.

• Construct a data structure for primitive hierarchy: We use polygonal models in our
simulations. We separate each polyhedron into three types of primitives: vertices, lines
(i.e. edges), and polygons. In our database, each primitive has a pointer to its neighboring
primitives. The primitive hierarchy helps us to quickly access the neighbors of the
primitive when it is necessary. For example, when a simulated tool contacts a primitive of
an object in the current loop to modify its coordinates, we know that, in the next loop, the
model can only affect the primitives that are in the close neighborhood of the contacted
primitive. Neighborhood hirerchy is helpful in simulating force-reflecting deformable
objects. For example, forces due to inertial effects can be transferred to all nodes by
propagating radially through the neighboring primitives from the contact point.



Modeling tips to speed up your computations

• deforming your objects locally

• taking advantage of single point interactions

• condensing your matrices in FEM

• pre-computation of matrices, unit displacements, etc.

• transforming your coordinates to modal coordinates

• decoupling your force and deformation model

You may consider

Number of computations is significantly important in simulating force-reflecting
deformable objects in virtual environments. Most of the time, the developer needs to
reduce the # of computations or to make simplifications in the model in order to achieve
real-time rendering rates. Here, we suggest a few tips in this regard:

1) deforming your objects locally
r = |vertex[i].coord - Collision Point |;
if ( r < Rdeformation )
    vertex[i].frozen = yes;

2) taking advantage of single point interactions
 a) “if the force is applied to a single node” in FEM

ii FKU 1−=
where, “i” is the i-th column of 1−K  matrix and i-th entry of force vector.
b) “if the force is applied to a single node” in FFD model (refer to spline-based
modeling section)
For single point manipulation, the solution reduces to the following simple form
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where, bi ’s are the elements of the B matrix.

3) condensing your matrices in FEM
a) e.g.: construct your matrix using volume elements, but solve the equations for
surface elements
b) e.g.: eliminate unwanted degrees of freedom such as rotational dof.
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where, the subscript M denotes the masters and the subscript S denotes the slaves which
are to be eliminated.

4) pre-computation in FEM
a) compute K-1 in advance
b) compute displacements for a given unit force at each node and then apply

superposition

5) transforming your coordinates to modal coordinates (dynamic analysis)
If you would like to simulate the inertial properties of force-reflecting deformable
objects, it may be worthwhile to consider a modal analysis. In modal analysis, you
transfer your coordinates to modal coordinates to decouple your differential equations.
This will enable you to obtain the explicit form of the governing equation for each node.
Moreover, you can also reduce the dimension of the system by picking the most
significant modes and re-arranging your mass, damping, and stiffness matrices (i.e.
modal reduction).

a) transforming to modal coordinates (coupled diff. Eqs. -> uncoupled diff. Eqs.)
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Φ  is a modal matrix whose columns are eigenvectors of (KM 1− ) and 2Ω is a diagonal
matrix which stores the eigenvalues on its diagonals. Observe that ΦΦ BT is not a
diagonal matrix (i.e. we still have a system of uncoupled differential equations). Assume
that damping matrix is propotional to mass and stiffness matrices ( KMB βα += , where
α and β are constants. Then the equations take the following form:

FXXX TΦ=Ω+∆+ 2
��� (a set of uncoupled diff. eqs.)

where, )diag(2 i iζω=∆  and ζ is modal damping factor.

b) modal reduction (eliminate high frequency modes)
This technique involves the selection of dominant modes and elimination of high
frequency modes. To achieve this, the eigenvalues of the system are listed in incerasing
order, and then the columns of the φ matrix are rearranged according to this order to
construct a reduced order system. Note that the first six nodes of the eigen-matrix
represent the rigid body modes.

],....................,.........,,,,,[ 654321 nϕϕϕϕϕϕϕ=Φ
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6) loose coupling of force and displacement models:
One can loosely couple the deformation model with the force model to simulate the
nonlinear material characteristics of deformable objects. To implement this idea, the
information returned by the collision-detection module (collision point and depth of
penetration) can be independently used by “deformation” and “force” models. This
technique, for example, can be used to simulate the “nonlinear force” characteristics of
soft tissues. Since the developed tissue models for simulation purposes are usually linear,
nonlinear force-displacement characteristics of organs would not be simulated using these
models. However, a nonlinear force profile constructed using the experimental



measurements can be used to reflect nonlinear forces to the user while a smooth
deformation profile is displayed graphically using the FFD technique.

Collision
Detection

Force
Model

Haptic Display

Visual Display

Deformation
Model

Collision
Point

Force
Vector

Displacement
Vector

Position and
Orientation
of Stylus

The concept of loosely coupling force and displacement models. To implement this idea,
we independently use the collision point and depth of penetration in deformation and
force models following the detection of collision.


