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4 Potential Functions
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Figure4.11 Local minimum without concave obstacles. The robot moves away from the two
convex obstacles until it reaches a point where the gradient vanishes; at this point, the sum of
the attractive gradient and the repulsive gradient is zero.

the robot. At this point, the effect of the top and bottom arms keeps the robot halfway
between them and the goal continues to attract the robot. The robot reaches a point
where the effect of the obstacle’s base counteracts the attraction of the goal. In other
words, the robot has reached a ¢* where VU (g*) = 0 and g* is not the goal. Note,
this problem is not limited to concave obstacles as can be seen in figure 4.11. Local
minima present a significant drawback to the attractive/repulsive approach, and thus
the attractive/repulsive technique is not complete.

Barraquand and Latombe [37] developed search techniques other than gradient
descent to overcome the problem of local minima present when planning with potential
functions. Their planner, the Randomized Path Planner (RPP) [37], used a variety
of potential functions some of which were simplified expressions of the potentials
presented in this chapter. RPP followed the negative gradient of the specified potential
function and when stuck at a local minimum, it initiated a series of random walks.
Often the random walks allowed RPP to escape the local minimum and in that case,
the negative gradient to the goal was followed again.

Wave-Front Planner

The wave-front planner [38, 208] affords the simplest solution to the local minima
problem, but can only be implemented in spaces that are represented as grids. For the
sake of discussion, consider a two-dimensional space. Initially, the planner starts with
the standard binary grid of zeros corresponding to free space and ones to obstacles. The
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planner also knows the pixel locations of the start and goal. The goal pixel is labeled
with a two. In the first step, all zero-valued pixels neighboring the goal are labeled
with a three. Next, all zero-valued pixels adjacent to threes are labeled with four.
This procedure essentially grows a wave front from the goal where at each iteration,
all pixels on the wave front have the same path length, measured with respect to the
grid, to the goal. This procedure terminates when the wave front reaches the pixel
that contains the robot start location.

The planner then determines a path via gradient descent on the grid starting from
the start. Essentially, the planner determines the path one pixel at a time. Assume that
the value of the start pixel is 33. The next pixel in the path is any neighboring pixel
whose value is 32. There could be multiple choices; simply pick any one of the choices.
The next pixel is then one whose value is 31. Boundedness of the free space (and hence
the discretization) and continuity of the distance function ensure that construction
of the wave front guarantees that there will always be a neighboring pixel whose
value is one less than that of the current pixel and that this procedure forms a path in
the grid to the goal, i.e., to the pixel whose value is two.

Figure 4.12 contains six panels that demonstrate various stages of the wave-front
propagation using four-point connectivity. Note that all points on the wave front have
the same Manhattan distance to the goal. In the lower-left panel, note how the wave-
front seemingly collides on itself. We will see later that the point of initial collision
corresponds to a saddle point of the function that measures distance to the goal.
This point then propagates away from the start as well. The trace of this propagation
corresponds to a set of points that have two choices for shortest paths back to the goal,
either going around the top of the triangle or below it.

The wave-front planner essentially forms a potential function on the grid which
has one local minimum and thus is resolution complete. The planner also determines
the shortest path, but at the cost of coming dangerously close to obstacles. The major
drawback of this method is that the planner has to search the entire space for a path.

Finally, just like the brushfire method, the wave-front planner generalizes into
higher dimensions as well. Consider the three-dimensional case first. Just as a pixel
has four edges, a voxel (a three-dimensional pixel) has six faces. Therefore, the
analogy to four-point connectivity with pixels is six-point connectivity with voxels.
For a voxel with value i, if we assume six-point connectivity, then we assign i + 1 to
the surrounding six voxels that share a face with the current voxel. Likewise, if we
assume twenty-six-point connectivity (analogous to eight-point connectivity), then
we assign i + 1 to all surrounding voxels that share a face, edge or vertex. It should
be noted, however, implementation of the wavefront planner in higher dimensions
becomes computationally intractable.
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Figure 4.12 Propagation of the wave front using four-point connectivity (assume the start is
in the upper-right corner and the goal is the origin of the wave front).



