

Simple Gear Train Fine for transmitting torque between shafts in close proximity when m_v does not need to be too large Use third gear ("idler") only for directional reasons (not for gear reduction) The green shaft comes from the engine and the transmission when you push in the clutch peak, the engine and the transmission are disconnected so the engine and

- Gear Theory
 - Fundamental Law of Gearing
 - Involute profile
- Nomenclature
- Gear Trains
- Loading
- Stresses

Load Distri	bution I	Fact	or K _m across face	
	Table 11-16 Load Distributio Factors K _m	n		
	Eace W(dth in (mm)	ĸ	•	
	<2 (50)	1.6		
	6 (150)	1.7		
F: Face width	9 (250)	1.8		
9/n < E < 16/n	>20 (500)	2.0	_	
can use F = $12/p_d$ as a sta	arting point			
J K _v	K _m K _a	Ks	K _B K _I	

11-17 Application Factors K _a Ving Machine Uniform Moderate Shock Heavy S						
ving Machine Uniform Moderate Shock Heavy S	Factors Ka Driven Machine					
	Heavy Shock					
iform 1.00 1.25 1.75 or ectric motor, turbine)						
ht Shock 1.25 1.50 2.00 or ulticylinder engine)	2.00 or higher					
edium Shock 1.50 1.75 2.25 or ngle-cylinder engine)	higher					

Temperature & Factors	& Reliability	
K _T =1 if T see Equation 11.2	< 250°F 24 <i>a</i> if T > 250°F	I
Table 11-19 AGMA Factor K	R	
Table 11-19 AGMA Factor K Reliability %	R KR	
Table 11-19 AGMA Factor K Reliability % 90	R K _R 0.85	
Table 11-19 AGMA Factor K Reliability % 90 99	R KR 0.85 1.00	
Table 11-19 AGMA Factor K Reliability % 90 99 99.9	R KR 0.85 1.00 1.25	_

actic	· Co	offi	cion	+ (C	· 1		
asin		sider			p/ materia	ale	
Table 18-1	8 AGIRA	Elastic Co	etticient C _p	in Units	al (pri) ^{0,3}	115 ([W#2] ^{0.5}]	çe.
	1 ₆	Fp Gene Mallerial					
Plation Material	pie (MRa)	Steel	Malindale Jhom	Nodular Iton	Cash lion	Alveninem Destar	Tin Bronae
Steel	3086 (285)	2 300 (191)	2 180 (181)	2 160 (179)	2 100 (174)	1.950 (162)	1 900 (158)
Malleable	2566 (1.355)	2 188 (189)	2 093 (1745	2 020 (172)	2 020 (168)	1.908 (158)	1858 (154)
Nodular Iron	2466 (1.765)	2 160 (179)	2 670 (172)	2 050 (170)	2 000 (166)	1 880 (156)	1830 (152)
Castinon	2206 (7.525)	2 908 (174)	2.023 (168)	2 00/5 (166)	(1960)	1.853 (154)	1806 (148)
Aluminum Bronze	17.566 (1.265)	1 950 (162)	1 900 (158)	1 880 (156)	1 850 (154)	1750 (145)	1700 (141)
Tin Econom	6606 (2.1255	1902	1,850	1.890 (252)	1.000	8.200 07453	1.650

