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Appendix A: Finite-Element-M odeling

1. Construction of local element stiffness matrix:
If the thickness of the triangular element is assumed to be constant, the inplane stiffness matrix

([ke]) can be separated into two parts; one the matrix due to normal stresses ([k=]), and the other
due to shear stresses ([k"]) (Rao, 1989).
[kea] = [ies] + k]

The components of these matrices can be given in the explicit form as
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where,
X =X — X,

yu =Y _yj

and t is the thickness of the element, E is the Young’s modulus, A is the area of the triangle and, v
is the Poisson’s ratio. Young’s modulus determines the flexibility of the object, whereas the
Poisson’s ratio defines the relation between lateral strain and strain along the direction of loading
(Hence, smaller values of Poisson’s ratio indicates that the object will not stretch much under
tension.

Similarly, the bending stiffness matri{«(.,]) can be expressed as the multiplication of two matrices
(Rao, 1989);

[i] =[N [A[N7]

where,
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and A is a symmetric matrixail[j1= A jllil, i=1...9 j=1..,9) with elements described as

A1l =0

A2)[1 = A2][2] =0

A3 = Ai3[2] = A3 =0

A4 = A4I[2] = A3 = 0
A4|[4] = 2x,y,

A5I[1] = AS][2] = A5I[3) = AlS][4] = 0
ABIE] = %,y,(1- V)

A6I[1] = Al6][2] = Al6][3] = A6][5] = 0
A6][4] = 2v.y,

A6I[6] = 2x,y,

AN = ATI[2) = A3 = ATIIE] = 0
ATI[4] = 2x 7y,

ALTI[6] = 2vx.y,

ATIIT) = 3%,

ABI[1 = Aigl[2] = Al8l[3 =0

2
A8|[4] = 3782 (VX3 + (Y2 *Y3))
AEIS] = 20V Y068, + (3. + 1.)

ABITET = 2y, 00, + V(Y. + %)



ABIT =3 v 20y, + (3, +2y,)

A8][8] = é@yz{(S— 0)(X7Y,) + (2= V)Y, +2Y,)+ (3= 29)(y, + Y.y, + ¥,)}

A9 = A9I[2] = A[9][3] = AL9][3] = 0
A9N[4] = 2vx,Y, (Y, + Ys)
AON[6] = 2%y, (Y, * )

AT =S (Y)Y, +2,)

1, , 2 2
A[g][8] = E(Xa yz)(Yz +2y3) +VX3y2(y2 + Y.Ys + Y, )

A9 = 3%, Y, (Y, + Y, Ys + Ys)

2. Computer Implementation of Assembly of Overall Stiffness Matrix (Adapted from Rao,
1989)

If K is stored as a symmetric square matrix

initialize K (set the elements of the K matrix to zero)
for i = 1: number of triangles
forj= 1.3
ij = the index of the j-th node of the i-th triangle
fork=1:3
ik = the index of the k-th node of the i-th triangle
KiITiK = K]0k + K'[i1K]
end
end
end

K can aso be stored as a banded matrix to save from the memory space. If K is going to be stored
as a banded matrix, we need to know the band-width of the matrix to construct it. The band-width is
equal to the maximum difference between the numbered degrees of freedom of the structure plus
one.

initialize K (set the elements of the K matrix to zero)
for i = 1: number of triangles

forj= 1.3
ij = the index of the j-th node of the i-th triangle
fork=1:3
ik = the index of the k-th node of the i-th triangle
ikm=ik—i+1
if (ikm < 1)
continue;
else
Kijllikm] = K[ijJfikm] + K" [i][K]
end
end

end



3. Flow chart of thefinite element computations
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APPENDI X B: Numerical Integration Using Newmar k Procedure

Note that

* the damping matrix assumed to be linearly proportional with mass matrix in the original
equations, B=a M =diag(am,)

» the steps for “Direct Numerical Integration of Original System” (DNIOS) and the
“Numerical Integration of Reduced Modal System” (NIRMS) are slightly different from each
other. These differences were clearly marked in the algorithm below.

1. Pre-computation phase:

a)
b)

Construct stiffness and mass matrices: K andddg({m, )
Define the initial conditions:

Uo.Up,Ug (DNIOS)
Xo =®Uy, X =dU,, X = U, (NIRMS)
Calculate the constants of “Newmark” integration
aO:‘H—ZZAt al=a0 a2:i+a az =1

At At
a, =i2 ag =—a, ag = ag (At) a; =-1

At

a -4 a9 :ALZ 810 = ag



d)  Construct the modified stiffness matrix:

K =K +a,M (DNIOS)

K =K +a,l = diag(e? +a,) (NIRMS)
e)  Decompose the modified stiffness matrix using Cholesky decomposition (see Numerical
Recipies, Press et al.) (Only for DNIOS)

f) Compute the modal force vector (Only for NIRMS)
t+At f R - (q)R)T t+AtF

2. Real-time simulation phase (Computational steps for direct integration of equilibrium
equations)
Step 1: Construct modified force vector

F=UMF £ M (a,'U +a,'U +a5'U) (DNIOS)
fR:t+AtfR+altXR+a2tXR+a3t)'<.R (NIRMS)
Step 2: Compute modified displacements using

“Cholesky backsubstitution” (see Press et al, 1993) (DNIOS)

U
R /K (NIRMS)

X5 o

£
fR

Step 3: Compute accelerations, velocities, and displacements at time t + At

A =g,U +a;'U +ag'U +a,'U
A =Y +ag("U+U) (DNIOS)
t+AtU :tU +At IU +a9tu +a10t+AtU

t+AtXR:a4XR+a5tXR+a6tXR+a7t>'('R

t+At)'< R:tX R +a8(t>'(' R+t+At>'(' R)

. . . . (NIRMS)
t+Ath:th+At IxR+agth+alol+Ath
t+AtU - ((DR) t+AtX R
Step 4: Compute the forces that will be reflected to the user
AR =M AU +BYAU +K MU (DNIOS)
+At ¢ R _t+Aty, R t+Atyy R 2 t+Aty/ R
g er=tEXTra X402 FEXE here, 2 = diag(w?) (NIRMS)

t+AtF - (q) R) '[+A'[f R

Step 5: Goto Step 1.



