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Potential Field Methods

Acknowledgement: Parts of these course notes are based on notes from courses given by
Jean-Claude Latombe at Stanford University (and Chapter 7 in his text Robot Motion
Planning, Kluwer, 1991), O. Bur¢chan Bayazit at Washington University in St. Louis.
Seth Hutchinson at the University of Illinois at Urbana-Champaign, and Leo Joskowicz

at Hebrew University.
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Potential Field Methods

Basic Idea:
e robot is represented by a point in C-space

e treat robot like particle under the influence of an artificial potential
field U

e U is constructed to reflect (locally) the structure of the free C-space (hence
called "local” methods)

e originally proposed by Khatib for on-line collision avoidance for a robot
with proximity sensors

Motion planning is an iterative process

1. compute the artificial force F(q) = —VU(q) at current configuration
2. take a small step in the direction indicated by this force

3. repeat until reach goal configuration (or get stuck)

Note:
e major problem: local minima (most potential field methods are incomplete)
e advantages: speed

e RPP, a randomized potential field method proposed by Barraquand and
Latombe for path planning, can be applied to robots with many dof
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The Potential Field (translation only)

Assumption: A translates freely in W = R? or R? at fixed orientation (so

C=W)

The Potential Function: U : Ctpee — R!

e want robot to be attacted to goal and repelled from obstacles
— attractive potential U,;(q) associated with qgq
— repulsive potential U,.,(q) associated with CB
—U(q) = Ua(q) + Urep(q)

e U(q) must be differentiable for every q € Cyec

The Field of Artificial Forces: ﬁ(q) = —VU(q)

e VU(q) denotes gradient of U at q, i.e., VU(q) is a vector that "points’ in
the direction of 'fastest change’” of U at configuration q

e c.g. if W=1TR? then q = (z,y) and
ou
Ox

VU(q) = -
i

e |VU(q)| = \/(%—5)2 + (3—2)2 is the magnitude of the rate of change

° ﬁ(q) = —VU,uu(q) — VU,(q)
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The Attractive Potential

Basic Idea: U,(q) should increase as q moves away from qg., (like
potential energy increases as you move away from earth’s surface)

Naive Idea: Uyy(q) is linear function of distance from q to qgea
e U,(q) does increase as move away from qgoq

e but —V U, has constant magnitude so it doesn’t help us get to the goal

Better Idea: U 4(q) is a 'parabolic well’

® Uatt(q) - %gpzoal(q)a where
— Pgoal(q) = ||d — Qgoat|, i-€., Euclidean distance

— £ is some positive constant scaling factor
e unique minimum at qgear, i-€., Ugst(Qgoar) = 0

e U, (q) differentiable for all q

S 1
Fui(q) = =VUuu(q) = —V2§P§oal(Q)

1
= —§€Vp§,oaz(q)

1

= —5€(204001(0)) V Pgoar(@)
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The Gradient Vp,..(q)

1/2
Recall: pgoai(d) = ||d — Qgoat|| = (3 (i — xgi)z) / ;
where q = (ZCl, R ,an) and Qgoal = (xgp ) xgn)

1/2
Visald) = V (S~ 2, )

_ (:Clv 75'771) (:CQN"'?xgn)
(il — zg,)2)"?
9 — Ygoal 9 = Ygoal
la — dgoat| Pgoat(Q)

S0, =V pgoai(q) is a unit vector directed toward qgeq from g

Thus, since —VU4(q) = —%€(2pgoal(q))Vpgoag(q), we get:

ﬁatt(q) = —VUatt(Q) = _f(q — ngal)

° ﬁatt(q) is a vector directed toward qg.q with magnitude linearly related to
the distance from q to qgea

!

e F,u(q) converges linearly to zero as q approaches qgeq — good for stability

° ﬁatt(q) grows without bound as q moves away from qg . — not so good
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Conic Well Attractive Potential

Idea: Use a ’conic well” to keep ﬁatt(q) bounded

® Uatt(Q) - fpgoal<q)
o Frui(q) = —VUu(q) = —& 4 daont!

“q qgoal”

—

a¢(Q) is a unit vector (constant magnitude) directed towards qgeq every-
where except q = qgoal

e U, is singular at the goal — not stable (might cause oscillations)

Better (?7) Idea: A hybrid method with parabolic and conic wells

%gpgoal(q> if pgoal(q) S d
Uuu(q) =
dfﬂgoal(Q) if pgoal(Q) > d

and

_f(q - qgoal) if Hq - qgoal” S d

—

Fonl(q) = e
g goal

la—dgoall

if ||a — Qgoat|| > d
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The Repulsive Potential

Basic Idea: A should be repelled from obstacles
e never want to let A ’hit’” an obstacle

e if A is far from obstacle, don’t want obstacle to affect A’s motion

One Choice for U,:

W — =) if pla) < po
U,ep(a) =
0 if p(a) > py

where
e p(q) is minimum distance from CB to q, i.e., p(q) = mingecp||a — d'||
e 1) is a positive scaling factor
® g is a positive constant — distance of influence

So, as q approaches CB, U,.,(q) approaches oo
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The Repulsive Force F,.,(q) = —VU,.,(q) for convex CB

(unrealistic) Assumption: CB is a single convexr region

—

Frp(d) = =VUrg(q)

=1 ) o
= 1o o 0 g ) 7@

f@ 1po 1 p*(q)
= 105~ ) () vt

Let q. be unique configuration in CB closest to q, i.e., p(q) = ||g — q.||

Then, Vp(q) is unit vector directed away from CB along the line passing
through q. and q

q—dqc

Vp(q) = T
P =g T g

S{0)

—

oot =11~ ) () Tz
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The Repulsive Force for non-convex CB

If CB is not convex, p(q) is differentiable everywhere except for at configurations
q which have more than one closest point q. in CB

In general, the set of closest points q. to q is n — 1-dimensional (where n is the
dimension of C)

Note: F;ep(q) exists on both sides of this line, but points in different directions
(towards line) and could result in paths that oscillate

Usual Approach: Break CB (or B) into convex pieces
e associate repulsive field with each convex piece
e final repulsive field is the sum

e potential trouble that several small CB; may combine to generate a repulsive
force greater than would be produced by a single larger obstacle
— can weight fields according to size of CB;
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Notes on Repulsive Fields

on designing U,

e can sclect different n and pg for each obstacle region — pg small for CB; close
to goal (or else repulsive force may keep us from ever reaching goal)

o if U,.,(qgoar) 7 0, then global minimum of U(q) is generally not at qgeq

on computing U,

e pretty easy if CB is polygonal or polyhedral
e rcally hard for arbitrary shaped CB

e can try to break CB into convex pieces (not necessary polyhedral) — then
can use iterative, numerical methods to find closest boundary points
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Gradient Descent Potential Guided Planning

Using a potential field (attractive and repulsive) for path planning...

GRADIENT DESCENT PLANNING
input: qiit, Qgoar, U(Q) = Uan(q) + U,ey(q), and F(q) = —VU(q)
output: a path connecting qnir and qgoa

L. let 9o = Qipit, 1 =0

2. if q; 7é Agoal B
then qi1 = q; + 6752

F Q] {take a step of size §; in direction F(q)}

else stop

3. set 1 =14 1 and goto step 2

Notes/Difficulties/Issues:

e originally proposed and well-suited for on-line planning where obstacles are
'sensed’ during motion execution [Khatib 86|, [Koditschek 89]

e also called "Steepest Descent’ or 'Depth-First” Planning

e Jocal minima are a major problem — recognizing and escaping .. .
— heuristics for escaping [Donald 84, Donald 87]

e step size 9;

— ¢, should be small enough so that no collision is possible when moving
along straight-line segment q;, q; 1 in C-space, e.g., set ¢; smaller than
minimum (current) distance to CB

— 0; shouldn’t let us overshoot goal

e how to evaluate p(q) and Vp(q) which appear in the equations for F (q),
i.e., in finding the closest point of CB to current configuration q





