Potential Field Methods

Acknowledgement: Parts of these course notes are based on notes from courses given by Jean-Claude Latombe at Stanford University (and Chapter 7 in his text Robot Motion Planning, Kluwer, 1991), O. Burçhan Bayazıt at Washington University in St. Louis. Seth Hutchinson at the University of Illinois at Urbana-Champaign, and Leo Joskowicz at Hebrew University.

Potential Field Methods

Basic Idea:

- robot is represented by a point in C-space
- ullet treat robot like particle under the influence of an **artificial potential** field ${f U}$
- **U** is constructed to reflect (locally) the structure of the free C-space (hence called 'local' methods)
- originally proposed by Khatib for on-line collision avoidance for a robot with proximity sensors

Motion planning is an iterative process

- 1. compute the artificial force $\vec{F}(\mathbf{q}) = -\nabla \mathbf{U}(\mathbf{q})$ at current configuration
- 2. take a small step in the direction indicated by this force
- 3. repeat until reach goal configuration (or get stuck)

Note:

- major problem: local minima (most potential field methods are incomplete)
- advantages: speed
- RPP, a randomized potential field method proposed by Barraquand and Latombe for path planning, can be applied to robots with many dof

The Potential Field (translation only)

Assumption: \mathcal{A} translates freely in $\mathcal{W} = \mathbb{R}^2$ or \mathbb{R}^3 at fixed orientation (so $\mathcal{C} = \mathcal{W}$)

<u>The Potential Function</u>: $\mathbf{U}:\mathcal{C}_{free}\longrightarrow\mathbb{R}^1$

- want robot to be *attacted* to goal and *repelled* from obstacles
 - attractive potential $U_{att}(\mathbf{q})$ associated with \mathbf{q}_{qoal}
 - repulsive potential $U_{rep}(\mathbf{q})$ associated with \mathcal{CB}
 - $-\mathbf{\,U}(\mathbf{q})=\mathbf{\,U}_{\mathit{att}}(\mathbf{q})+\mathbf{\,U}_{\mathit{rep}}(\mathbf{q})$
- $\mathbf{U}(\mathbf{q})$ must be differentiable for every $\mathbf{q} \in \mathcal{C}_{free}$

The Field of Artificial Forces: $\vec{F}(\mathbf{q}) = -\nabla \mathbf{U}(\mathbf{q})$

- $\nabla \mathbf{U}(\mathbf{q})$ denotes gradient of \mathbf{U} at \mathbf{q} , i.e., $\nabla \mathbf{U}(\mathbf{q})$ is a vector that 'points' in the direction of 'fastest change' of \mathbf{U} at configuration \mathbf{q}
- e.g., if $\mathcal{W} = \mathbb{R}^2$, then $\mathbf{q} = (x, y)$ and

$$abla \mathbf{U}(\mathbf{q}) = egin{bmatrix} rac{\partial \mathbf{U}}{\partial x} \ rac{\partial \mathbf{U}}{\partial y} \end{bmatrix}$$

- $|\nabla \mathbf{U}(\mathbf{q})| = \sqrt{(\frac{\partial \mathbf{U}}{\partial x})^2 + (\frac{\partial \mathbf{U}}{\partial y})^2}$ is the magnitude of the rate of change
- $\vec{F}(\mathbf{q}) = -\nabla \mathbf{U}_{att}(\mathbf{q}) \nabla \mathbf{U}_{rep}(\mathbf{q})$

The Attractive Potential

Basic Idea: $U_{att}(\mathbf{q})$ should increase as \mathbf{q} moves away from \mathbf{q}_{goal} (like potential energy increases as you move away from earth's surface)

Naive Idea: $\mathbf{U}_{att}(\mathbf{q})$ is linear function of distance from \mathbf{q} to \mathbf{q}_{goal}

- $\mathbf{U}_{att}(\mathbf{q})$ does increase as move away from \mathbf{q}_{goal}
- ullet but $-\nabla \mathbf{U}_{att}$ has constant magnitude so it doesn't help us get to the goal

Better Idea: $\mathbf{U}_{att}(\mathbf{q})$ is a 'parabolic well'

- $\mathbf{U}_{att}(\mathbf{q}) = \frac{1}{2}\xi \rho_{qoal}^2(\mathbf{q})$, where
 - $-\rho_{goal}(\mathbf{q}) = \|\mathbf{q} \mathbf{q}_{goal}\|, \text{ i.e., Euclidean distance}$
 - $-\xi$ is some positive constant scaling factor
- unique minimum at \mathbf{q}_{goal} , i.e., $\mathbf{U}_{att}(\mathbf{q}_{goal}) = 0$
- $\mathbf{U}_{att}(\mathbf{q})$ differentiable for all \mathbf{q}

$$\vec{F}_{att}(\mathbf{q}) = -\nabla \mathbf{U}_{att}(\mathbf{q}) = -\nabla \frac{1}{2} \xi \rho_{goal}^2(\mathbf{q})$$

$$= -\frac{1}{2} \xi \nabla \rho_{goal}^2(\mathbf{q})$$

$$= -\frac{1}{2} \xi (2\rho_{goal}(\mathbf{q})) \nabla \rho_{goal}(\mathbf{q})$$

The Gradient $\nabla \rho_{qoal}(\mathbf{q})$

Recall: $\rho_{qoal}(\mathbf{q}) = \|\mathbf{q} - \mathbf{q}_{qoal}\| = (\Sigma_i (x_i - x_{q_i})^2)^{1/2}$ where $\mathbf{q} = (x_1, ..., x_n)$ and $\mathbf{q}_{goal} = (x_{g_1}, ..., x_{g_n})$

$$\nabla \rho_{goal}(\mathbf{q}) = \nabla \left(\sum_{i} (x_{i} - x_{g_{i}})^{2}\right)^{1/2}$$

$$= \frac{1}{2} \left(\sum_{i} (x_{i} - x_{g_{i}})^{2}\right)^{-1/2} \nabla \left(\sum_{i} (x_{i} - x_{g_{i}})^{2}\right)$$

$$= \frac{1}{2} \left(\sum_{i} (x_{i} - x_{g_{i}})^{2}\right)^{-1/2} (2(x_{1} - x_{g_{1}}), \dots, 2(x_{n} - x_{g_{n}}))$$

$$= \frac{(x_{1}, \dots, x_{n}) - (x_{g_{1}}, \dots, x_{g_{n}})}{(\sum_{i} (x_{i} - x_{g_{i}})^{2})^{1/2}}$$

$$= \frac{\mathbf{q} - \mathbf{q}_{goal}}{\|\mathbf{q} - \mathbf{q}_{goal}\|} = \frac{\mathbf{q} - \mathbf{q}_{goal}}{\rho_{goal}(\mathbf{q})}$$

So, $-\nabla \rho_{goal}(\mathbf{q})$ is a unit vector directed toward \mathbf{q}_{goal} from \mathbf{q}

Thus, since $-\nabla \mathbf{U}_{att}(\mathbf{q}) = -\frac{1}{2}\xi(2\rho_{goal}(\mathbf{q}))\nabla\rho_{goal}(\mathbf{q})$, we get:

$$\vec{F}_{att}(\mathbf{q}) = -\nabla \mathbf{U}_{att}(\mathbf{q}) = -\xi(\mathbf{q} - \mathbf{q}_{goal})$$

- $\vec{F}_{att}(\mathbf{q})$ is a vector directed toward \mathbf{q}_{goal} with magnitude linearly related to the distance from \mathbf{q} to \mathbf{q}_{qoal}
- $\vec{F}_{att}(\mathbf{q})$ converges linearly to zero as \mathbf{q} approaches \mathbf{q}_{goal} good for stability
- $\vec{F}_{att}(\mathbf{q})$ grows without bound as \mathbf{q} moves away from \mathbf{q}_{goal} not so good

Conic Well Attractive Potential

Idea: Use a 'conic well' to keep $\vec{F}_{att}(\mathbf{q})$ bounded

- $\mathbf{U}_{att}(\mathbf{q}) = \xi \rho_{goal}(\mathbf{q})$
- $\vec{F}_{att}(\mathbf{q}) = -\nabla \mathbf{U}_{att}(\mathbf{q}) = -\xi \frac{(\mathbf{q} \mathbf{q}_{goal})}{\|\mathbf{q} \mathbf{q}_{goal}\|}$
- $\vec{F}_{att}(\mathbf{q})$ is a unit vector (constant magnitude) directed towards \mathbf{q}_{goal} everywhere except $\mathbf{q} = \mathbf{q}_{goal}$
- \bullet \mathbf{U}_{att} is singular at the goal not stable (might cause oscillations)

Better (?) Idea: A hybrid method with parabolic and conic wells

$$\mathbf{U}_{att}(\mathbf{q}) = \begin{cases} \frac{1}{2} \xi \rho_{goal}^2(\mathbf{q}) & \text{if } \rho_{goal}(\mathbf{q}) \le d \\ d\xi \rho_{goal}(\mathbf{q}) & \text{if } \rho_{goal}(\mathbf{q}) > d \end{cases}$$

and

$$\vec{F}_{att}(\mathbf{q}) = \begin{cases} -\xi(\mathbf{q} - \mathbf{q}_{goal}) & \text{if } ||\mathbf{q} - \mathbf{q}_{goal}|| \le d \\ -d\xi \frac{(\mathbf{q} - \mathbf{q}_{goal})}{||\mathbf{q} - \mathbf{q}_{goal}||} & \text{if } ||\mathbf{q} - \mathbf{q}_{goal}|| > d \end{cases}$$

The Repulsive Potential

Basic Idea: \mathcal{A} should be repelled from obstacles

- \bullet never want to let \mathcal{A} 'hit' an obstacle
- \bullet if \mathcal{A} is far from obstacle, don't want obstacle to affect \mathcal{A} 's motion

One Choice for \mathbf{U}_{rep} :

$$\mathbf{U}_{rep}(\mathbf{q}) = \begin{cases} \frac{1}{2} \eta \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0} \right) & \text{if } \rho(\mathbf{q}) \leq \rho_0 \\ 0 & \text{if } \rho(\mathbf{q}) > \rho_0 \end{cases}$$

where

- $\rho(\mathbf{q})$ is minimum distance from \mathcal{CB} to \mathbf{q} , i.e., $\rho(\mathbf{q}) = \min_{\mathbf{q}' \in \mathcal{CB}} \|\mathbf{q} \mathbf{q}'\|$
- η is a positive scaling factor
- ρ_0 is a positive constant distance of influence

So, as \mathbf{q} approaches \mathcal{CB} , $\mathbf{U}_{rep}(\mathbf{q})$ approaches ∞

The Repulsive Force $\vec{F}_{rep}(\mathbf{q}) = -\nabla \mathbf{U}_{rep}(\mathbf{q})$ for convex \mathcal{CB}

(unrealistic) Assumption: CB is a single convex region

$$\vec{F}_{rep}(\mathbf{q}) = -\nabla \mathbf{U}_{rep}(\mathbf{q})$$

$$= -\nabla \left(\frac{1}{2}\eta \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0}\right)^2\right)$$

$$= -\frac{1}{2}\eta \nabla \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0}\right)^2$$

$$= -\eta \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0}\right) \nabla \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0}\right)$$

$$= -\eta \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0}\right) (-1) \left(\frac{1}{\rho^2(\mathbf{q})}\right) \nabla \rho(\mathbf{q})$$

$$= \eta \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0}\right) \left(\frac{1}{\rho^2(\mathbf{q})}\right) \nabla \rho(\mathbf{q})$$

Let \mathbf{q}_c be unique configuration in \mathcal{CB} closest to \mathbf{q} , i.e., $\rho(\mathbf{q}) = \|\mathbf{q} - \mathbf{q}_c\|$

Then, $\nabla \rho(\mathbf{q})$ is unit vector directed away from \mathcal{CB} along the line passing through \mathbf{q}_c and \mathbf{q}

$$\nabla \rho(\mathbf{q}) = \frac{\mathbf{q} - \mathbf{q}_c}{\|\mathbf{q} - \mathbf{q}_c\|}$$

SO

$$\vec{F}_{rep}(\mathbf{q}) = \eta \left(\frac{1}{\rho(\mathbf{q})} - \frac{1}{\rho_0} \right) \left(\frac{1}{\rho^2(\mathbf{q})} \right) \frac{\mathbf{q} - \mathbf{q}_c}{\|\mathbf{q} - \mathbf{q}_c\|}$$

The Repulsive Force for non-convex CB

If \mathcal{CB} is not convex, $\rho(\mathbf{q})$ is differentiable everywhere except for at configurations \mathbf{q} which have more than one closest point \mathbf{q}_c in \mathcal{CB}

In general, the set of closest points \mathbf{q}_c to \mathbf{q} is n-1-dimensional (where n is the dimension of \mathcal{C})

Note: $\vec{F}_{rep}(\mathbf{q})$ exists on both sides of this line, but points in different directions (towards line) and could result in paths that oscillate

Usual Approach: Break \mathcal{CB} (or \mathcal{B}) into convex pieces

- associate repulsive field with each convex piece
- final repulsive field is the sum
- potential trouble that several small \mathcal{CB}_i may combine to generate a repulsive force greater than would be produced by a single larger obstacle
 - can weight fields according to size of \mathcal{CB}_i

Notes on Repulsive Fields

on designing \mathbf{U}_{rep}

- can select different η and ρ_0 for each obstacle region ρ_0 small for \mathcal{CB}_i close to goal (or else repulsive force may keep us from ever reaching goal)
- if $\mathbf{U}_{rep}(\mathbf{q}_{goal}) \neq 0$, then global minimum of $\mathbf{U}(\mathbf{q})$ is generally not at \mathbf{q}_{goal}

on computing \mathbf{U}_{rep}

- ullet pretty easy if \mathcal{CB} is polygonal or polyhedral
- ullet really hard for arbitrary shaped \mathcal{CB}
- ullet can try to break \mathcal{CB} into convex pieces (not necessary polyhedral) then can use iterative, numerical methods to find closest boundary points

Gradient Descent Potential Guided Planning

Using a potential field (attractive and repulsive) for path planning...

GRADIENT DESCENT PLANNING

input: \mathbf{q}_{init} , \mathbf{q}_{goal} , $\mathbf{U}(\mathbf{q}) = \mathbf{U}_{att}(\mathbf{q}) + \mathbf{U}_{rep}(\mathbf{q})$, and $\vec{F}(\mathbf{q}) = -\nabla \mathbf{U}(\mathbf{q})$ output: a path connecting \mathbf{q}_{init} and \mathbf{q}_{goal}

- 1. let $\mathbf{q}_0 = \mathbf{q}_{init}, i = 0$
- 2. if $\mathbf{q}_i \neq \mathbf{q}_{goal}$ then $\mathbf{q}_{i+1} = \mathbf{q}_i + \delta_i \frac{\vec{F}(\mathbf{q})}{\|\vec{F}(\mathbf{q})\|}$ {take a step of size δ_i in direction $\vec{F}(\mathbf{q})$ } else stop
- 3. set i = i + 1 and goto step 2

Notes/Difficulties/Issues:

- originally proposed and well-suited for on-line planning where obstacles are 'sensed' during motion execution [Khatib 86], [Koditschek 89]
- also called 'Steepest Descent' or 'Depth-First' Planning
- <u>local minima</u> are a major problem recognizing and escaping . . .
 - heuristics for escaping [Donald 84, Donald 87]
- step size δ_i
 - $-\delta_i$ should be small enough so that no collision is possible when moving along straight-line segment \mathbf{q}_i , \mathbf{q}_{i+1} in C-space, e.g., set δ_i smaller than minimum (current) distance to \mathcal{CB}
 - $-\delta_i$ shouldn't let us overshoot goal
- how to evaluate $\rho(\mathbf{q})$ and $\nabla \rho(\mathbf{q})$ which appear in the equations for $\vec{F}(\mathbf{q})$, i.e., in finding the closest point of \mathcal{CB} to current configuration \mathbf{q}