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Potential Field Methods
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Potential Field Methods

Basic Idea:

• robot is represented by a point in C-space

• treat robot like particle under the influence of an artificial potential

field U

• U is constructed to reflect (locally) the structure of the free C-space (hence

called ’local’ methods)

• originally proposed by Khatib for on-line collision avoidance for a robot

with proximity sensors

Motion planning is an iterative process

1. compute the artificial force ~F (q) = −∇U(q) at current configuration

2. take a small step in the direction indicated by this force

3. repeat until reach goal configuration (or get stuck)

Note:

• major problem: local minima (most potential field methods are incomplete)

• advantages: speed

• RPP, a randomized potential field method proposed by Barraquand and

Latombe for path planning, can be applied to robots with many dof
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The Potential Field (translation only)

Assumption: A translates freely in W = IR2 or IR3 at fixed orientation (so

C =W)

The Potential Function: U : Cfree −→ IR1

• want robot to be attacted to goal and repelled from obstacles

– attractive potential Uatt(q) associated with qgoal

– repulsive potential Urep(q) associated with CB

– U(q) = Uatt(q) + Urep(q)

• U(q) must be differentiable for every q ∈ Cfree

The Field of Artificial Forces: ~F (q) = −∇U(q)

• ∇U(q) denotes gradient of U at q, i.e., ∇U(q) is a vector that ’points’ in

the direction of ’fastest change’ of U at configuration q

• e.g., if W = IR2, then q = (x, y) and
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• |∇U(q)| =
√
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∂y )2 is the magnitude of the rate of change

• ~F (q) = −∇Uatt(q)−∇Urep(q)
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The Attractive Potential

Basic Idea: Uatt(q) should increase as q moves away from qgoal (like

potential energy increases as you move away from earth’s surface)

Naive Idea: Uatt(q) is linear function of distance from q to qgoal

• Uatt(q) does increase as move away from qgoal

• but −∇Uatt has constant magnitude so it doesn’t help us get to the goal

Better Idea: Uatt(q) is a ’parabolic well’

• Uatt(q) = 1
2ξρ

2
goal(q), where

– ρgoal(q) = ‖q− qgoal‖, i.e., Euclidean distance

– ξ is some positive constant scaling factor

• unique minimum at qgoal, i.e., Uatt(qgoal) = 0

• Uatt(q) differentiable for all q

~Fatt(q) = −∇Uatt(q) = −∇
1

2
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goal(q)
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2
ξ∇ρ2

goal(q)

= −
1

2
ξ(2ρgoal(q))∇ρgoal(q)
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The Gradient ∇ρgoal(q)

Recall: ρgoal(q) = ‖q− qgoal‖ =
(

∑

i(xi − xgi
)2

)1/2
,

where q = (x1, . . . , xn) and qgoal = (xg1, . . . , xgn)

∇ρgoal(q) = ∇
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So, −∇ρgoal(q) is a unit vector directed toward qgoal from q

Thus, since −∇Uatt(q) = −1
2ξ(2ρgoal(q))∇ρgoal(q), we get:

~Fatt(q) = −∇Uatt(q) = −ξ(q− qgoal)

• ~Fatt(q) is a vector directed toward qgoal with magnitude linearly related to

the distance from q to qgoal

• ~Fatt(q) converges linearly to zero as q approaches qgoal – good for stability

• ~Fatt(q) grows without bound as q moves away from qgoal – not so good
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Conic Well Attractive Potential

Idea: Use a ’conic well’ to keep ~Fatt(q) bounded

• Uatt(q) = ξρgoal(q)

• ~Fatt(q) = −∇Uatt(q) = −ξ
(q−qgoal)

‖q−qgoal‖

• ~Fatt(q) is a unit vector (constant magnitude) directed towards qgoal every-

where except q = qgoal

• Uatt is singular at the goal – not stable (might cause oscillations)

Better (?) Idea: A hybrid method with parabolic and conic wells
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The Repulsive Potential

Basic Idea: A should be repelled from obstacles

• never want to let A ’hit’ an obstacle

• if A is far from obstacle, don’t want obstacle to affect A’s motion

One Choice for Urep:

Urep(q) =
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if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0

where

• ρ(q) is minimum distance from CB to q, i.e., ρ(q) = minq′∈CB ‖q− q′‖

• η is a positive scaling factor

• ρ0 is a positive constant – distance of influence

So, as q approaches CB, Urep(q) approaches ∞
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The Repulsive Force ~Frep(q) = −∇Urep(q) for convex CB

(unrealistic) Assumption: CB is a single convex region

~Frep(q) = −∇Urep(q)
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Let qc be unique configuration in CB closest to q, i.e., ρ(q) = ‖q− qc‖

Then, ∇ρ(q) is unit vector directed away from CB along the line passing

through qc and q

∇ρ(q) =
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The Repulsive Force for non-convex CB

If CB is not convex, ρ(q) is differentiable everywhere except for at configurations

q which have more than one closest point qc in CB

In general, the set of closest points qc to q is n− 1-dimensional (where n is the

dimension of C)

q
c2

qc1

q

Note: ~Frep(q) exists on both sides of this line, but points in different directions

(towards line) and could result in paths that oscillate

Usual Approach: Break CB (or B) into convex pieces

• associate repulsive field with each convex piece

• final repulsive field is the sum

• potential trouble that several small CBi may combine to generate a repulsive

force greater than would be produced by a single larger obstacle

– can weight fields according to size of CBi
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Notes on Repulsive Fields

on designing Urep

• can select different η and ρ0 for each obstacle region – ρ0 small for CBi close

to goal (or else repulsive force may keep us from ever reaching goal)

• if Urep(qgoal) 6= 0, then global minimum of U(q) is generally not at qgoal

on computing Urep

• pretty easy if CB is polygonal or polyhedral

• really hard for arbitrary shaped CB

• can try to break CB into convex pieces (not necessary polyhedral) – then

can use iterative, numerical methods to find closest boundary points
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Gradient Descent Potential Guided Planning

Using a potential field (attractive and repulsive) for path planning...

gradient descent planning

input: qinit, qgoal, U(q) = Uatt(q) + Urep(q), and ~F (q) = −∇U(q)

output: a path connecting qinit and qgoal

1. let q0 = qinit, i = 0

2. if qi 6= qgoal

then qi+1 = qi + δi
~F (q)

‖~F (q)‖
{take a step of size δi in direction ~F (q)}

else stop

3. set i = i + 1 and goto step 2

Notes/Difficulties/Issues:

• originally proposed and well-suited for on-line planning where obstacles are

’sensed’ during motion execution [Khatib 86], [Koditschek 89]

• also called ’Steepest Descent’ or ’Depth-First’ Planning

• local minima are a major problem – recognizing and escaping . . .

– heuristics for escaping [Donald 84, Donald 87]

• step size δi

– δi should be small enough so that no collision is possible when moving

along straight-line segment qi,qi+1 in C-space, e.g., set δi smaller than

minimum (current) distance to CB

– δi shouldn’t let us overshoot goal

• how to evaluate ρ(q) and ∇ρ(q) which appear in the equations for ~F (q),

i.e., in finding the closest point of CB to current configuration q




