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Real-time simulation of deformable objects using finite element models is a challenge in medical
simulation. We present two efficient methods for simulating real-time behavior of a dynamically
deformable 3D object modeled by finite element equations. The first method is based on modal
analysis, which utilizes the most significant vibration modes of the object to compute the
deformation field in real-time for applied forces. The second method uses the spectral Lanczos
decomposition to obtain the explicit solutions of the finite element equations that govern the
dynamics of deformations. Both methods rely on modeling approximations, but generate
solutions that are computationally faster than the ones obtained through direct numerical
integration techniques. In both methods, the errors introduced through approximations were
insignificant compare to the computational advantage gained for achieving real-time update rates.

1. Physically-based modeling of deformable objects for medical simulation
Simulation of soft tissue behavior in real-time is a challenging problem. Once the contact between an
instrument and tissue is determined, the problem centers on tool-tissue interactions. This involves a
realistic haptic feedback to the user and a realistic graphical display of tissue behavior depending on
what surgical task (e.g. suturing, grasping, cutting, etc.) the user chooses to perform on the tissue.
This is a nontrivial problem which calls for prudence in the application of mechanistic and computer
graphics techniques in an endeavor to create a make-believe world that is realistic enough to mimic
reality but efficient enough to be executable in real time. Soft-tissue mechanics is complicated not
only due to non-linearities, rate and time dependence in material behavior, but also because the
tissues are layered and non-homogeneous. The finite element methods (FEM), though they demand
more CPU time and memory, seem promising in integrating tissue characteristics into the organ
models. Although mechanics community has developed sophisticated tissue models based on FEM,
their integration with medical simulators has been difficult due to real-time requirements. Simulating
the real-time deformable dynamics of a 3D object using FEM is increasingly more difficult as the
total number of nodes/degrees of freedom (dof) increase. With the addition of haptic displays, this has
been even more challenging since a haptic loop typically requires a much higher update rate than a
visual loop for stable force interactions. Although fast finite element models have been developed for
medical applications (Bro-Nielsen and Cotin, 1996; Berkley et al., 2000), less attention has been paid
to displaying time dependent deformations of large size models in real-time. This paper introduces
two numerically fast techniques for real-time simulation of dynamically deformable (i.e. time-
dependent deformations) 3D objects modeled by FEM: (a) Modal analysis (Basdogan, 1999;
Basdogan et al., 2000) and (b) spectral Lanczos Decomposition.

2. Our Finite Element Model



The finite element formulation: The 3D models of organs used in our simulations were constructed
from discrete triangular surface elements interconnected to each other through nodal points. The
coordinates of vertices (nodal points), the polygon indexing, and the connectivity of vertices were
derived from the geometric model of each organ. In order to analyze the deformations of the organs
under various loading conditions, we considered a combination of membrane and bending elements in
our finite element model. This facilitated the continuity in the formulation and enabled us to compute
the displacements of nodal points in X, Y, Z directions for both inplane and bending loads. For each
node of the triangular element subjected to inplane loads, the displacements in the local x and y
directions were taken as the degrees of freedom. The resulting system equations were expressed in
local coordinate system as
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where, m represents the membrane action. Similarly, for each node of the triangular element
subjected to bending loads, the displacement in local direction and rotations about the local x and y
axes were considered. The relation between the vertex displacements and forces were written as
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where, b represents the bending action. In order to obtain the local stiffness matrix for each triangular
element, the inplane and bending stiffness matrices were combined. Since 6 degrees of freedom were
assumed for each of the vertices, the resulting combined local stiffness matrix ( [ ]k e ) became 18x18

for each triangular element.

Transformations: The stiffness matrix derived in the previous section utilizes a system of local
coordinates. However, the geometric model of each organ was generated based on the global
coordinate system. In order to apply the computations described in the previous section, a
transformation from the global coordinates to local coordinate system was required (Zienkiewicz,
1990). It was also necessary to transform the results back to the global reference frame to display the
deformations following the solution of finite element equations. The new positions of each nodal
point for a given force were computed using system equations in the local coordinate system. Then,
these new coordinates were transformed to the global coordinate system in order to update the
graphics.

Assembly of Element Stiffness Matrices: The element stiffness matrices ( eK ) were put together to
construct the overall stiffness matrix (K). This process can be symbolically written as
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where, p represents the number of triangles (Rao, 1988).

Implementation of Boundary Conditions: In order to obtain a unique solution for finite element
equations, at least one boundary condition must be supplied. The boundary conditions modify the
stiffness matrix K and make it nonsingular. There are multiple ways of implementing boundary
conditions (Huebner et al., 1995). The easiest way to implement the boundary conditions is to modify
the diagonal elements of the K matrix and the rows of the force vector F at which the boundary
conditions will be applied. In our model, at least one end of the organ was always fixed, which
implied zero displacements for the associated fixed nodes. To implement this boundary condition,



diagonal elements of the K matrix and the rows of the F vector associated with those fixed nodes
were multiplied by a large number. This procedure makes the unmodified terms of K very small
compared to the modified ones.

Eliminating the Rotational Degrees of Freedom (Condensation): The global stiffness matrix was
assembled as a symmetric square matrix and its length was six times the number of nodes of the
object (recall that we defined 6-dof, 3 translations and 3 rotations, for each node of the object).
Although the rotational dof were necessary for the continuity of the solution, their computation was
not required for our simulations. Since our main interest was to obtain the translational displacements
of each node, the overall stiffness matrix K was condensed such that the rotational dof were
eliminated from the formulation. In addition, the condensation of K matrix automatically reduced the
number of computations to half, which was helpful for achieving real-time rendering rates. To
condense the K matrix, we first partitioned the displacement and load vectors of the static problem as
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(Eq. 4)

where, subscripts t and r represent the translational and rotational dof respectively. Then, we set the
forces acting on the rotational degrees of freedom to zero, and condensed the stiffness matrix as

rtrrtrttcondensed KKKKK 1)( −−= (Eq. 5)

The condensed stiffness matrix was a full square matrix and its length was three times the number of
nodes of the object.

3. Modal Analysis Method
The dynamic equilibrium equations for a deformable body modeled by FEM can be written as

FKUUBUM =++ &&& (Eq. 6)

where, M and B represent the mass and the damping matrices respectively. Once the equations of
motion for deformable body are derived, the solution is typically obtained using numerical
techniques. The real-time display of FEM becomes increasingly more difficult as the number of
elements is increased. However, a particular choice of the mass and damping matrices reduces the
number of computations significantly. If the mass matrix is assumed to be diagonal (mass is
concentrated at the nodes) and the damping matrix is assumed to be linearly proportional with the
mass matrix ( MB α= ), the equations are greatly simplified. A further modeling simplification can be
implemented if we assume that high frequency vibration modes contribute very little to the
computation of deformations and forces. If dynamic equilibrium equations are transformed into a
more effective form, known as modal analysis, fast real-time solutions can be obtained with very
reasonable accuracy. Pentland and Williams (1989) demonstrated the implementation of this
technique in graphical animation of 3D objects. In modal analysis, global coordinates are transferred
to modal coordinates to decouple the differential equations. Then, one can either obtain the explicit
solution for each decoupled equation as a function of time or integrate the set of decoupled equations
in time to obtain the displacements and forces. Moreover, we can also reduce the dimension of the
system, as well as the number of computations, by picking the most significant vibration modes of the
object and re-arranging the mass, damping, and stiffness matrices. This procedure is also known as
modal reduction.



3.1. Modal Transformation
We defined the following transformation to transform our differential system into a modal system:

11 )()( nxnxnnx tXtU Φ= (Eq. 7)

where, Φ is the modal matrix, U and X represent the original and modal coordinates respectively. The
modal matrix was obtained by solving the eigen problem for free undamped equilibrium equations:

φωφ MK 2= (Eq. 8)

where,ω and φ represent the eigenvalues (i.e. vibration frequencies) and eigenvectors (i.e. mode

shapes) of the matrix ( KM 1− ) respectively. The modal matrix was constructed by first sorting the
frequencies in ascending order and then placing the corresponding eigenvectors into the modal matrix
in column-wise format ( nωωωω ≤≤≤≤ ...0 321 , ],...,,,[ 321 nφφφφ=Φ ). Finally, a set of decoupled
differential equations (i.e. modal system) was obtained using the modal matrix and the transformation
defined by Eq. 7:
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where, n is the degrees of freedom (dof) of the system, iii ζωα 2= , and Ff T
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damping and force respectively. Note that ζ is known as the damping ratio or modal damping factor.

3.2. Modal Reduction
Once the equations for modal system are derived, the explicit solutions can be obtained using the
Duhamel integral (see Bathe 1996). Alternatively, one can use numerical integration techniques to
obtain the modal solution. At this stage, we can also implement the modal reduction approach to
significantly reduce the number of computations. For a deformable body under external loading, the
high frequency modes do not significantly contribute to the displacements. Hence, the final, deformed
shape of the object can be approximated by “r” number of low frequency modes. To implement the
modal reduction, we picked the most significant vibration modes of the object (i.e. the first “r”
columns of the modal matrix). As a result, our differential system was reduced to “r” number of
equations, which were solved using the Newmark numerical integration technique:
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where, the superscript R represents the reduced system. We then transferred the modal solutions back
to the original coordinate frame using the following transformation:
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3.3. Numerical Integration
Numerical integration techniques are typically used to solve the differential equations that arise from
finite element models. Various integration schemes based on finite difference techniques have been
suggested in the literature for the dynamic analysis of FEM (Bittnar and Sejnoha, 1996; Bathe 1996).
In surgical simulation, real-time performance and the stability of solutions for various loading, initial,
and boundary conditions are equally important. For example, the central difference method appears to
be fast and simple to implement, but the solutions become unstable if the integration step (t∆ ) is



greater than ( π/nT ), where nT is the shortest period of vibration. Bathe (1996) suggests Newmark
numerical integration procedure due to its favorable stability and accuracy characteristics. Using the
Newmark method, we first formulated the displacement and velocity of each reduced modal
coordinate at tt ∆+  as
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where, η  and δ are parameters that can be determined to obtain integration accuracy and stability
(solutions become unconditionally stable for 4/1=η and 2/1=δ ). Then, the equilibrium equation for

each reduced modal coordinate was formulated at tt ∆+  as
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Finally, we substituted the displacement and velocity formulations into the equilibrium equation
derived for tt ∆+  and obtained a system that looks quite similar to the static analysis:

KUF ˆˆˆ = (Eq. 15)

where, KUF ˆ,ˆ,ˆ are modified force and displacement vectors and modified stiffness matrix.

4. The Spectral Lanczos Decomposition Method (SLDM)
Druskin and Knizhnerman (1994) have recently introduced a new technique, called Spectral
Lanczos Decomposition method (SLDM), to solve the Maxwell’s diffusion equations for multiple
frequencies with negligible additional computation. Zunoubi et al. (1998) have demonstrated the
efficiency of this technique by studying the resonant frequencies of various microwave cavities.
We have followed their approach with some modifications to find the explicit solutions of our
finite element equations. In order to solve the finite element equations using the SLDM, we first
rearrange the terms of the finite element equations as:
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where, 2/12/1 −−=′ KMMK , UME 2/1=′ , FMF 2/1−=′ . If we transfer the equations to
Laplace domain and assume that the applied force is constant for a short period of time with a

magnitude of oF , we obtain ))(/()( 2 KsIssFsE o ′++=′ α . Using the separation of variables:
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where, KFA o ′= / , KFB o ′−= /  and KFC o ′−= /)(α .  Then, if we apply the inverse

Laplace transform, we obtain:



(Eq. 18)

Now, if K ′  matrix is approximated as a diagonal matrix, we can easily obtain the time domain
solutions. To achieve our goal, we implement the classical Lanczos scheme (Datta, 1994) with
complete reorthogonalization using Householder transformations (Golub, 1996). For this purpose,
we first compute the tridiagonal Ritz approximation (T) of the matrix K ′ :

TQKQT =′ (Eq. 19)

where, ],,,[ 21 MqqqQ K=  is an orthogonal matrix (The vectors Mqqq ,,, 21 K are called

Lancsoz vectors), M is the size of the square K ′matrix (also the number of equations) and T is
the tridiagonal matrix which is determined using the complete reorthogonalization Lanczos
scheme that relies on repetitive Householder transformations (Golub, 1996). If we define the Λ
and V are the eigen-values and -vectors of the matrix T , one can then write matrix T as:

TVVT Λ= (Eq. 20)

where, ],,,[ 21 Mdiag λλλ L=Λ . Finally, )(tE ′ can be approximated as:
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where, Te )0,,0,0,1(1 L= is a unit vector.

4.1. Superposition
After obtaining the explicit solutions of the finite element equations, we generate, an “impedance
map” of the 3D object. This involves the pre-computation of displacement fields (i.e. a look-up
table) by applying unit loads along each nodal degrees of freedom, while assuring the positive
definiteness of the structure. Such a look-up table can be pre-computed well ahead of the actual
interactions. We used this look-up table in conjunction with the “superposition” technique to
calculate the deformations of the object for applied loads. The superposition approach calculates
the response of the complete system by superimposing (i.e., adding together) the individual
responses of the nodes. To calculate the response of a certain node, only the responses of
neighboring nodes were used (i.e. define a radius of influence and consider the contribution of
nodes which are within the radius of influence). The superposition approach provides a solution,
which is an approximation to the exact solution, but this approximation is reasonably accurate
(please note that we use a linear finite element model for simulating the behavior of tissues and
this approximation will not work well with a nonlinear model).

5. Discussion
In this study, a modal analysis and the Spectral Lanczos Decomposition method were proposed to
simulate the dynamic deformations of a 3D object modeled using finite elements. Although the
proposed methods can simulate the real-time dynamics of a deformable object, our finite element
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model only approximates the characteristics of living tissues with a certain degree due to the
stringent requirements of real-time simulation. However, we should point out that both methods
are computationally faster than the direct numerical integration methods. For example, we have
observed that the direct numerical integration of the original differential system results in O( 2n )
floating point operations (flops) where n is the degrees of freedom or the number of nodes of the
object. However, the solutions generated using modal analysis lead to O( nn log ) flops.
Therefore, the real-time simulation of finite element models using the direct integration
techniques will be increasingly more difficult as n increases. While the proposed modal approach
enables to compute real-time solutions numerically, the SLDM can easily return the explicit
solutions of the finite element equations for various frequencies. The SLDM, when combined
with the superposition technique, is very efficient in simulating real-time deformations of objects.
A pre-computed “impedance map” of an object using the SLDM enables us to estimate the
deformation field of the object easily at the contact point during the real-time interactions.
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