Introduction to Haptic Rendering

Cagatay Basdogan, Ph.D

JPL - Virtual Environments Laboratory California Institute of Technology (http://eis.jpl.nasa.gov/~basdogan)

Haptic (adj.): related to the sense of touch.

Graphical Rendering:

process of displaying synthetically generated 2D/3D visual stimuli to the user

Haptic Rendering:

process of displaying synthetically generated 2D/3D haptic stimuli to the user

Haptic Interface: device for touch interactions in real and virtual worlds

Applications

Haptic Feedback for Molecular Simulation

Haptic Feedback for Medical Simulation and Training

Applications

Haptic Feedback for Collaborative Engineering Design

Haptic Visualization haptic display collected data 0.5 0

Tangible Interfaces

- buttons
- dials
- slider bars
- folders
- layers
- force fields

Haptic User Interface (HUI)

Haptic Feedback for Crew Training

The Power of Touch:

A little evidence can tell you the whole story!

Human vs Machine Haptics:

Machine Haptics:

Types of Haptic Devices

keyboard, trackball, mice, etc.

Types of Haptic Devices

Grounded

combined

Integration of Vision and Touch

HUMAN OPERATOR

Haptic Rendering with a Force Display

Types of Haptic Interactions with 3D Objects:

more computation

Haptic Rendering Of 3D Geometric Primitives

(point-object interaction)

void calculate_force (Vector &force)
{
 float X, Y, Z, distance;
 float R = 20.0;

X = HIP[0]; Y = HIP[1]; Z = HIP[2];distance = sqrt(X*X + Y*Y + Z*Z);

if(distance < R) //collision check
{
 force[0] = X/distance * (R-distance);
 force[1] = Y/distance * (R-distance);
 force[2] = Z/distance * (R-distance);</pre>

Haptic Rendering of 3D Objects

(point-object interaction)

Modeling Choices for 3D Object Representation

(point-object interaction)

Representation of a 3D Polyhedron

Open Inventor/VRML file

Key Components of the Rendering Algorithm

1) Bounding-box hierarchy

3) Local coherence

2) Contact history

Haptic Rendering of Polygonal Surfaces

Haptic Display of Surface Details

- Haptic smoothing of object surfaces
- Rendering of haptic textures
- Haptic rendering of surfaces with friction

Common Principle: Perturbation of force vector !

Force Shading

ref: Phong Shading

$$\vec{N}_s = \frac{\sum_{i=1}^{3} A_i \cdot \vec{N}_i}{\sum_{i=1}^{3} A_i}$$

Friction

ref: Mechanics books

<u>Texture</u> ref: Bump Mapping

$$\nabla h = \frac{\partial h}{\partial x}\hat{i} + \frac{\partial h}{\partial y}\hat{j} + \frac{\partial h}{\partial z}\hat{k}$$

h(x,y,z) : texture field

Haptic Texturing

procedural

Force-Reflecting Deformable Models:

Real-time FEM

Haptic Sculpting Free-form Deformation

Animation/Ergonomics

Web-based haptics for product design and purchase

Rigid Body Dynamics:

Method (c) is computationally better than (b) !

Recording and Playing-back Haptic Stimuli:

Virtual Prototyping with Haptic Feedback

Problems in Engineering Design:

<u>A few problems with current systems</u>:
automated systems can not duplicate the knowledge and intelligence of an experienced designer.
limits the ability of design engineers to experiment with different design configurations.
design process is slow, sequential, and non-intuitive.
testing the functionality/ergonomics of a product is costly and requires many iterations

Benefits of Touch Feedback in Engineering Design:

Path planning
 Assembly sequence
 Digital Prototyping
 Functionality & Maintenance
 Ergonomics

areas where haptic feedback can contribute significantly to design process !

However, haptic feedback can be used for

- finding the insertion/removal paths of objects
- precision mating
- planning the sequence of assembling products
- guiding/constraining the user during digital sculpting
- improving depth perception and resolving visual ambiguities
- testing the functionality of products in virtual worlds
- designing user friendly interfaces