
SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 477–502

FAST METHODS FOR ESTIMATING THE DISTANCE TO
UNCONTROLLABILITY∗

M. GU† , E. MENGI‡ , M. L. OVERTON‡ , J. XIA† , AND J. ZHU†

Abstract. The distance to uncontrollability for a linear control system is the distance (in the
2-norm) to the nearest uncontrollable system. We present an algorithm based on methods of Gu and
Burke–Lewis–Overton that estimates the distance to uncontrollability to any prescribed accuracy.
The new method requires O(n4) operations on average, which is an improvement over previous
methods which have complexity O(n6), where n is the order of the system. Numerical experiments
indicate that the new method is reliable in practice.

Key words. distance to uncontrollability, complex controllability radius, trisection, real eigen-
value extraction, shifted inverse iteration, shift-and-invert Arnoldi, Sylvester equation, Kronecker
product

AMS subject classifications. 65F15, 93B05, 65K10

DOI. 10.1137/05063060X

1. Introduction. Given A ∈ C
n×n, B ∈ C

n×m, the linear control system

ẋ = Ax + Bu(1.1)

is controllable if for every pair of states x0, xf ∈ C
n there exists a continuous control

function u(t) to steer the initial state x0 to the final state xf within finite time.
Equivalently, according to a well-known result by Kalman [8], the system (1.1) is
controllable if the matrix [A− λI B] has full row rank for all λ ∈ C.

To measure the conditioning of (1.1), the distance to uncontrollability was intro-
duced in [12] as

τ(A,B) = min{‖ΔA ΔB‖ : (A + ΔA,B + ΔB) is uncontrollable},(1.2)

which was later shown to be equivalent to [4, 5]

τ(A,B) = min
λ∈C

σn([A− λI B]),(1.3)

where ‖ · ‖ denotes the 2-norm or Frobenius norm1 and σn([A− λI B]) denotes the
nth largest singular value of the n × (n + m) matrix [A − λI B]. This is a global
nonsmooth optimization problem in two real variables α and β, the real and imaginary
parts of λ. But note that σn([A − λI B]) is not convex and may have many local
minima, so standard optimization methods, which are guaranteed only to converge to
a local minimum, will not yield reliable results in general.

∗Received by the editors May 3, 2005; accepted for publication (in revised form) by N. Mastronardi
December 21, 2005; published electronically June 21, 2006.

http://www.siam.org/journals/simax/28-2/63060.html
†Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720

(mgu@math.berkeley.edu, jxia@math.berkeley.edu, zhujiang@math.berkeley.edu). The research of
these
authors was supported in part by the National Science Foundation grant DMS-0412049.

‡Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (mengi@
cs.nyu.edu, overton@cs.nyu.edu). The research of these authors was supported in part by the Na-
tional Science Foundation grant CCR-0204388.

1The definitions of τ(A,B) in terms of the Frobenius norm and the 2-norm are equivalent.

477

478 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

Gu [6] proposed a bisection method which can correctly estimate τ(A,B) within a
factor of 2 in time polynomial in n. Throughout the paper, when we refer to operation
counts we assume that the computation of the eigenvalues of a matrix or pencil is an
atomic operation whose cost is cubic in the dimension. Burke, Lewis, and Overton
[3] suggested a trisection variant to retrieve the distance to uncontrollability to any
desired accuracy. The methods in these two papers are based on a simultaneous
comparison of two estimates δ1 > δ2 with τ(A,B). More precisely, Gu derived a
scheme that returns one of the inequalities

τ(A,B) ≤ δ1(1.4)

and

τ(A,B) > δ2.(1.5)

Even if both of the inequalities are satisfied, Gu’s scheme returns information about
only one of the inequalities. Gu’s method depends on the extraction of the real
eigenvalues of a pencil of size 2n2 × 2n2 and the imaginary eigenvalues of matrices of
size 2n×2n. Computationally the verification scheme is dominated by the extraction
of the real eigenvalues of the generalized problem of size 2n2 × 2n2, which requires
O(n6) operations if the standard QZ algorithm is used.

In this paper we present an alternative verification scheme for comparisons (1.4)
and (1.5). In the new verification scheme we still need to find real eigenvalues of
2n2×2n2 matrices, so there is no asymptotic gain over Gu’s verification scheme when
we use the QR algorithm. Nevertheless, we show that the inverse of these 2n2 × 2n2

matrices shifted by a real number times the identity can be multiplied onto a vector
efficiently by solving a Sylvester equation of size 2n with a cost of O(n3). Therefore,
given a real number as the shift, by applying shifted inverse iteration or a shift-and-
invert preconditioned Arnoldi method, the closest eigenvalue to the real number can
be obtained by performing O(n3) operations. Motivated by the fact that we need
only real eigenvalues, we provide two alternative ways to scan the real axis to find
the desired eigenvalues. Both of the approaches require an upper bound on the norm
of the input matrix (of size 2n2 × 2n2) as a parameter. For one of the approaches,
which is based on a “divide and conquer” idea, choosing this parameter arbitrarily
large does not affect the efficiency of the algorithm much. The efficiency of the other
approach, which we name “adaptive progress,” depends not only on this parameter
significantly but also on another parameter that bounds the distance between the
closest pair of eigenvalues from below. For the divide and conquer approach, we
prove that extracting all of the real eigenvalues requires O(n4) operations on average
and O(n5) operations in the worst case. For the adaptive progress approach such
neat results are not immediate because of the dependence of the performance of the
algorithm on the parameters. In practice we observe that the divide and conquer
approach is the more efficient and more reliable method.

In section 2 we will review the trisection method for estimating τ(A,B) and Gu’s
scheme for verifying which one of (1.4) and (1.5) holds. In section 3 we present
our modified eigenvalue problem for the same purpose and fast methods based on
the shifted inverse iteration or shift-and-invert Arnoldi for solving it. Specifically,
to extract all of the real eigenvalues, we discuss two search strategies: an adaptive
progress approach and a divide and conquer approach. The effectiveness and reliability
of the methods are demonstrated by the numerical examples in section 4.

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 479

2. Trisection and Gu’s verification scheme.

2.1. Bisection and trisection. The problem of computing the distance to un-
controllability is equivalent to the minimization of σn([A − λI B]) over the entire
complex plane. Gu [6] proposed the first polynomial-time estimation scheme. Burke,
Lewis, and Overton [3] later suggested a trisection version to retrieve the distance to
uncontrollability to an arbitrary accuracy. Given two real numbers δ1 > δ2, at each
iteration both of the algorithms alter an upper bound or a lower bound depending on
which of the inequalities (1.4) and (1.5) holds. This test is based on the following the-
orem [6], which is a consequence of the fact that singular values are well-conditioned
(in the absolute sense).

Theorem 2.1 (see Gu [6]). Assume that δ > τ(A,B). Given an η ∈ [0, 2(δ −
τ(A,B))], there exist at least two pairs of real numbers α and β such that

δ ∈ σ ([A− (α + βi)I,B]) and δ ∈ σ ([A− (α + η + βi)I,B]) ,(2.1)

where σ(·) denotes the set of singular values of its argument.
We shall describe two alternative ways of verifying the existence of a pair α and β

satisfying (2.1) for a given δ and η in subsections 2.2 and 3.1. Suppose we set δ1 = δ
and δ2 = δ−η/2. The theorem above implies that when no pair satisfying (2.1) exists
the inequality η > 2(δ − τ(A,B)) is satisfied, so condition (1.5) holds. On the other
hand, when a pair exists, then by definition (1.3) we can conclude (1.4).

Gu’s bisection algorithm (Algorithm 1) keeps only an upper bound on the distance
to uncontrollability. It refines the upper bound until condition (1.5) is satisfied. Notice
that in Algorithm 1, δ = η = δ1. At termination the distance to uncontrollability lies
within factor of 2 of δ1, with δ1/2 < τ(A,B) ≤ 2δ1.

Algorithm 1 Gu’s bisection estimation algorithm

Call: δ1 ← Bisection(A,B).
Input: A ∈ C

n×n and B ∈ C
n×m with m ≤ n.

Output: A scalar δ1 satisfying δ1/2 < τ(A,B) ≤ 2δ1.

1. Initialize the estimate as δ1 ← σn([A B])/2.
repeat
δ2 ← δ1

2 .
Apply Gu’s test.
if (1.4) is verified then
δ1 ← δ2.
done ← FALSE.

else
% Otherwise (1.5) is verified.
done ← TRUE.

end if
until done = TRUE

2. Return δ1.

To obtain the distance to uncontrollability with better accuracy, Burke, Lewis,
and Overton [3] proposed a trisection variant. The trisection algorithm (Algorithm 2)
bounds τ(A,B) by an interval [l, u] and reduces the length of this interval by a factor
of 2

3 at each iteration. Thus it can compute τ(A,B) to any desired accuracy in O(n6)
operations which is the cost of Gu’s test, as described next.

480 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

Algorithm 2 Trisection variant of Algorithm 1

Call: [l, u] ← Trisection(A,B,ε).
Input: A ∈ C

n×n, B ∈ C
n×m with m ≤ n, and a tolerance ε > 0.

Output: Scalars l and u satisfying l < τ(A,B) ≤ u and u− l < ε.

1. Initialize the lower bound as l ← 0 and the upper bound as u ← σn([A B]).
repeat
δ1 ← l + 2

3 (u− l)

δ2 ← l + 1
3 (u− l)

Apply Gu’s test.
if (1.4) is verified then
u ← δ1.

else
% Otherwise (1.5) is verified.
l ← δ2.

end if
until u− l < ε

2. Return l and u.

2.2. Gu’s verification scheme. By means of Gu’s test we can numerically
verify whether a real pair of solutions to (2.1) exists. Equation (2.1) in Theorem 2.1
implies that there exist nonzero vectors

(
x
y

)
, z,

(
x
ŷ

)
, and ẑ such that

(A− (α + βi)I B)

(
x
y

)
= δz,

(
A∗ − (α− βi)I

B∗

)
z = δ

(
x
y

)
,(2.2a)

(A− (α + η + βi)I B)

(
x̂
ŷ

)
= δẑ,

(
A∗ − (α + η − βi)I

B∗

)
ẑ = δ

(
x̂
ŷ

)
.(2.2b)

These equations can be rewritten as⎛
⎝ −δI A− αI B

A∗ − αI −δI 0
B∗ 0 −δI

⎞
⎠

⎛
⎝ z

x
y

⎞
⎠ = βi

⎛
⎝ 0 I 0

−I 0 0
0 0 0

⎞
⎠

⎛
⎝ z

x
y

⎞
⎠(2.3a)

and

⎛
⎝ −δI A− (α + η)I B

A∗ − (α + η)I −δI 0
B∗ 0 −δI

⎞
⎠

⎛
⎝ ẑ

x̂
ŷ

⎞
⎠ = βi

⎛
⎝ 0 I 0

−I 0 0
0 0 0

⎞
⎠

⎛
⎝ ẑ

x̂
ŷ

⎞
⎠.

(2.3b)

Furthermore using the QR factorization(
B
−δI

)
=

(
Q11 Q12

Q21 Q22

)(
R
0

)
(2.4)

these problems can be reduced to standard eigenvalue problems of size 2n× 2n, i.e.,
the eigenvalues of the pencils in (2.3a) and in (2.3b) are the same as the eigenvalues
of the matrices (

A− αI BQ22 − δQ12

δQ−1
12 −Q−1

12 (A∗ − αI)Q12

)
(2.5a)

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 481

and (
A− (α + η)I BQ22 − δQ12

δQ−1
12 −Q−1

12 (A∗ − (α + η)I)Q12

)
,(2.5b)

respectively. In order for (2.1) to have at least one real solution (α, β), these two
matrices must share a common pure imaginary eigenvalue βi. This requires a 2n2×2n2

generalized eigenvalue problem to have a real eigenvalue α (see [6]). For a given δ and
η, we check whether the latter generalized eigenvalue problem has any real eigenvalue
α. If it does, then we check the existence of a real eigenvalue α for which the matrices
(2.5a) and (2.5b) share a common pure imaginary eigenvalue βi. There exists a pair
of α and β satisfying (2.1) if and only if this process succeeds.

3. Modified fast verification scheme. It turns out that Gu’s verification
scheme can be simplified. In this modified scheme the 2n2 × 2n2 generalized eigen-
value problems whose real eigenvalues are sought in Gu’s scheme are replaced by
2n2 × 2n2 standard eigenvalue problems, and the 2n× 2n standard eigenvalue prob-
lems (2.5a) and (2.5b) whose imaginary eigenvalues are sought are replaced by new
2n × 2n standard eigenvalue problems that do not require the computation of QR
factorizations.

The simplification of the problem of size 2n2 × 2n2 is significant, as the inverse of
the new matrix of size 2n2×2n2 (whose real eigenvalues are sought) times a vector can
be computed in a cheap manner by solving a Sylvester equation of size 2n×2n with a
cost of O(n3). As a consequence the closest eigenvalue to a given complex point can be
computed efficiently by applying shifted inverse iteration or shift-and-invert Arnoldi.
We discuss how this idea can be extended to extract all of the real eigenvalues with
an average cost of O(n4) and a worst case cost of O(n5), reducing the running time
of each iteration of the bisection or the trisection algorithm asymptotically.

3.1. New generalized eigenvalue problem. According to (2.2a)

y =
1

δ
B∗z

and the two equations in (2.2a) can be rewritten as(
B̂ A− αI

A∗ − αI −δI

)(
z
x

)
= βi

(
I

−I

)(
z
x

)
,

where B̂ = BB∗

δ − δI. That is

H(α)

(
z
x

)
=

(
−(A∗ − αI) δI

B̂ A− αI

)(
z
x

)
= βi

(
z
x

)
.(3.1a)

Similarly

H(α + η)

(
ẑ
x̂

)
=

(
−(A∗ − (α + η)I) δI

B̂ A− (α + η)I

)(
ẑ
x̂

)
= βi

(
ẑ
x̂

)
.(3.1b)

Both of the eigenvalue problems above are Hamiltonian, i.e., JH(α) and JH(α + η)
are Hermitian where

J =

(
0 I
−I 0

)
(3.2)

482 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

with n×n blocks. The Hamiltonian property implies that the matrices H(α+ η) and
−H(α+ η)∗ have the same set of eigenvalues. For H(α) and H(α+ η) or equivalently
H(α) and −H(α + η)∗ to share a common pure eigenvalue βi, the following matrix
equation

(
−(A∗ − αI) δI

B̂ A− αI

)
X + X

(
−(A∗ − (α + η)I) δI

B̂ A− (α + η)I

)∗

= 0(3.3)

or equivalently

(
−A∗ δI

B̂ A

)
X + X

(
−(A− ηI) B̂

δI A∗ − ηI

)
= α

((
−I 0
0 I

)
X + X

(
−I 0
0 I

))(3.4)

must have a nonzero solution X ∈ C
2n×2n. Partition X =

(X11 X12

X21 X22

)
, and let

vec(X) denote the vector formed by stacking the column vectors of X. We will use
the following properties of Kronecker products:

vec(AX) = (I ⊗A)vec(X), vec(XA) = (AT ⊗ I)vec(X).

Now we can rewrite (3.4) as

⎛
⎜⎜⎝
−A∗

1 −AT
2 δI δI 0

BT
2 −A∗

1 + Ā2 0 δI
B1 0 A1 −AT

2 δI
0 B1 BT

2 A1 + Ā2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

vec(X11)
vec(X12)
vec(X21)
vec(X22)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−2αvec(X11)

0
0

2αvec(X22)

⎞
⎟⎟⎠,

(3.5)

where A1 = I ⊗A, A2 = (A− ηI) ⊗ I, B1 = I ⊗ B̂, B2 = B̂ ⊗ I, and Ā2 denotes the
matrix obtained by taking the complex conjugate of A2 entrywise.

The (1, 2), (2, 1) entries of both sides of (3.4) lead to

(
BT

2 δI −A∗
1 + Ā2 0

B1 δI 0 A1 −AT
2

)⎛
⎜⎜⎝

vec(X11)
vec(X22)
vec(X12)
vec(X21)

⎞
⎟⎟⎠ = 0.

We then have

(
vec(X12)
vec(X21)

)
= −

(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1 (
BT

2 δI
B1 δI

)(
vec(X11)
vec(X22)

)
(3.6)

under the assumption that A does not have two eigenvalues that differ by η, in which
case the matrix A1−AT

2 is invertible and therefore the inverted matrix in (3.6) exists.
This assumption is generically satisfied in practice (numerical troubles that occur
when η is small are discussed in section 5). On the other hand the (1, 1), (2, 2) entries

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 483

of both sides of (3.4) give

(
−A∗

1 −AT
2 0 δI δI

0 A1 + Ā2 B1 BT
2

)⎛
⎜⎜⎝

vec(X11)
vec(X22)
vec(X12)
vec(X21)

⎞
⎟⎟⎠

= 2α

(
−I 0 0 0
0 I 0 0

)⎛
⎜⎜⎝

vec(X11)
vec(X22)
vec(X12)
vec(X21)

⎞
⎟⎟⎠,

which can be simplified with (3.6) to

[(
−A∗

1 −AT
2 0

0 A1 + Ā2

)
−
(

δI δI
B1 BT

2

)(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1 (
BT

2 δI
B1 δI

)]
(

vec(X11)
vec(X22)

)
= 2α

(
−I 0
0 I

)(
vec(X11)
vec(X22)

)
,

i.e.,

Av = αv,(3.7)

where

A =
1

2

[(
A∗

1 + AT
2 0

0 A1 + Ā2

)
−
(
−δI −δI
B1 BT

2

)(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1(
BT

2 δI
B1 δI

)]
.

(3.8)

For the verification of a pair α and β satisfying (2.1), we first solve the eigenvalue
problem (3.7). If there exists a real eigenvalue α of this problem such that the matri-
ces H(α) and H(α + η) share a common imaginary eigenvalue, then the verification
succeeds.

3.2. Inverse iteration. The eigenvalue problem in (3.7) is a simplified version
of the generalized eigenvalue problem in [6]. This is a problem of finding the real eigen-
values of a nonsymmetric matrix. The implementation2 of the trisection algorithm
of [3] uses the Matlab function eig to compute the eigenvalues of that generalized
eigenvalue problem with a cost of O(n6) and therefore does not exploit the fact that
we need only the real eigenvalues of the generalized problem. In section 3.3 we discuss
two strategies to extract the real eigenvalues of a given matrix X that is preferable to
eig when the closest eigenvalue of X to a given point can be obtained efficiently.

In this section we show how one can compute the closest eigenvalue of A to a given
point in the complex plane in O(n3) time. This is due to the fact that given a shift ν

and a vector u ∈ C
2n2

, the multiplication (A − νI)−1u can be performed by solving
a Sylvester equation of size 2n× 2n which is derived next. Therefore, shifted inverse
iteration or shift-and-invert Arnoldi can locate the closest eigenvalue efficiently.

2http://www.cs.nyu.edu/faculty/overton/software/uncontrol/.

484 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

3.2.1. Computing A−1u. We first derive the Sylvester equation whose solution
yields v = A−1u, where u =

(
u1

u2

)
, v =

(
v1

v2

)
, and u1, u2, v1, v2 ∈ C

n2

. We can also
write

A
(
v1

v2

)
=

(
u1

u2

)
.(3.9)

Let

w =

(
w1

w2

)
=

(
−A∗

1 + Ā2 0
0 A1 −AT

2

)−1 (
BT

2 δI
B1 δI

)(
v1

v2

)
.(3.10)

Then (3.9) can be rewritten as(
A∗

1 + AT
2 0

0 A1 + Ā2

)(
v1

v2

)
−
(
−δI −δI
B1 BT

2

)(
w1

w2

)
= 2

(
u1

u2

)
.(3.11)

Equations (3.10) and (3.11) can then be combined into one linear system⎛
⎜⎜⎝
A∗

1 + AT
2 δI δI 0

BT
2 A∗

1 − Ā2 0 δI
B1 0 −A1 + AT

2 δI
0 −B1 −BT

2 A1 + Ā2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
v1

w1

w2

v2

⎞
⎟⎟⎠ = 2

⎛
⎜⎜⎝
u1

0
0
u2

⎞
⎟⎟⎠,(3.12)

which is analogous to (3.5). By introducing vector forms

u =

(
vec(U1)
vec(U2)

)
, v =

(
vec(V1)
vec(V2)

)
, w =

(
vec(W1)
vec(W2)

)
,

we get a matrix equation similar to (3.4),(
A∗ δI

B̂ −A

)
Z + Z

(
A− ηI B̂

δI −A∗ + ηI

)
= 2

(
U1 0
0 −U2

)
,(3.13)

where

Z =

(
V1 W1

W2 V2

)
.(3.14)

Equation (3.13) is a 2n × 2n Sylvester equation. By using a Sylvester equation
solver (such as the lapack routine dtrsyl [1]) we can solve for Z at O(n3) cost and
thus obtain v = A−1u.

3.2.2. Computing (A− νI)−1u. The derivation of the Sylvester equation for
the multiplication A−1u easily extends to the multiplication (A− νI)−1u for a given
shift ν. We alternatively rewrite the multiplication as

(A− νI)

(
v1

v2

)
=

(
u1

u2

)
(3.15)

and introduce w =
(
w1

w2

)
as in the previous section. We end up with

⎛
⎜⎜⎝
A∗

1 + AT
2 − 2νI δI δI 0

BT
2 A∗

1 − Ā2 0 δI
B1 0 −A1 + AT

2 δI
0 −B1 −BT

2 A1 + Ā2 − 2νI

⎞
⎟⎟⎠

⎛
⎜⎜⎝
v1

w1

w2

v2

⎞
⎟⎟⎠ = 2

⎛
⎜⎜⎝
u1

0
0
u2

⎞
⎟⎟⎠,

(3.16)

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 485

which is analogous to (3.12). In terms of a matrix equation, we obtain

(
A∗ − νI δI

B̂ −A + νI

)
Z + Z

(
A− (η + ν)I B̂

δI −A∗ + (η + ν)I

)
= 2

(
U1 0
0 −U2

)
,

(3.17)

where Z is as defined in (3.14). Equation (3.17) is identical to (3.13) except that A
is replaced by A− νI in (3.13) and thus can be solved at O(n3) cost.

3.3. Real eigenvalue searching strategies. In this section we seek the real
eigenvalues of a given matrix X ∈ C

q×q. The iterative methods here are preferable
to the standard ways of computing eigenvalues such as the QR algorithm when (X −
νI)−1u for a given shift ν ∈ R and a given vector u ∈ C

q is efficiently computable. In
particular, as discussed in the previous section, this is the case for A.

Throughout this section we will assume the existence of a reliable implementation
of the shifted inverse iteration or a shift-and-invert Arnoldi method that returns the
closest eigenvalue to a given shift accurately. In practice we make use of the Matlab

function eigs (based on ARPACK [9, 10]). Additionally, we assume that an upper
bound, D, on the norm of X is available and therefore we know that all of the real
eigenvalues lie in the interval [−D,D]. A straightforward approach would be to par-
tition the interval [−D,D] into equal subintervals and find the closest eigenvalue to
the midpoint of each interval. This approach must work as long as the subintervals
are chosen small enough. Nevertheless, partitioning [−D,D] into very fine subinter-
vals is not desirable, since this will require an excessive number of closest eigenvalue
computations. Next we present two viable approaches that are both reliable and
efficient.

3.3.1. Adaptive progress. The first approach we present here is rather brute-
force. In addition to the existence of an upper bound D on the norm of X , we assume
that a positive number

d ≤ min
λi,λj :distinct eigenvalues

|λi − λj |(3.18)

is known a priori. We start from the right endpoint D as our initial shift. At each
iteration we compute the closest eigenvalue to the current shift and decrement the
current shift by an amount depending on the distance from the computed eigenvalue
to the shift. We keep decrementing the shift until we reach the left endpoint.

The way the shift ν is updated depends on the closest eigenvalue λ that is found.
If λ is real and already discovered, then λ must be larger than ν. In this case there
is no real eigenvalue in the interval (ν − (λ − ν), ν]. Additionally there is no real
eigenvalue in the interval (λ − d, λ]. The corresponding update rule in Algorithm 3
combines these two conditions. When λ is real and not discovered, the shift ν is λ−d.
Finally when the closest eigenvalue is not real, the new shift is set to the leftmost of
the intersection points of two circles with the real line. One of the circles is centered
at ν and has radius |λ− ν|. The second circle is centered at λ and has radius d.

In Figure 3.1 the progress of Algorithm 3 on an example is shown. The algorithm
iterates 10 times to investigate the part of the real axis where the eigenvalues are
known to lie. In particular notice that the algorithm locates the same eigenvalue near
the real axis at the second, third, and fourth iterations and another on the real axis
at the fifth, sixth, and seventh iterations. Locating the same eigenvalue a few times
is a deficiency of this algorithm.

486 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

λ

ν
λ

ν

λ

ν

λ

ν

λ

ν

d

λν

λ
ν λ

ν

Fig. 3.1. The first eight iterations (top leftmost is the first iteration; iteration numbers increase
from left to right and top to bottom) of the adaptive progress algorithm on an example are displayed.
Black dots denote the eigenvalues. Squares mark the location of the shift ν. The closest eigenvalue
to ν is denoted by λ. The part of the real axis already investigated is marked by a thicker line.
Iterations 2, 3, 4 locate the same eigenvalue close to the real axis and iterations 5, 6, 7 locate the
same real eigenvalue repeatedly. Little progress is achieved in moving the shift toward the left during
these iterations. When an undiscovered real eigenvalue is located, the next shift is obtained by
subtracting d, a lower bound on the distance of the closest two eigenvalues, from the real eigenvalue.

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 487

Algorithm 3 Adaptive progress real eigenvalue search algorithm

Call: Λ ← Adaptive Progress(X ,D,d).
Input: X ∈ C

q×q, D, an upper bound on the norm of X , and d, a lower
bound for the distance between the closest two eigenvalues of
X .

Output: Λ ∈ R
l with l ≤ q containing all of the real eigenvalues of X

in the interval [−D,D].

1. Initially set the shift ν ← D and the vector of real eigenvalues Λ ← [].
while ν ≥ −D do

Compute the closest eigenvalue λ to the shift ν.
if λ is real then

if λ ∈ Λ then
% λ is real and already discovered.
ν ← ν − max(|λ− ν|, d− |λ− ν|).

else
% λ is real but not discovered yet.
Add λ to Λ.
ν ← λ− d.

end if
else

% Otherwise λ is not purely real. Choose the leftmost
% intersection point of the circle centered at ν and with
% radius |ν − λ| and the circle centered at λ and with
% radius d with the real line as the new shift.
if d ≥ Im λ then

% Both of the circles intersect the real line.
ν ← min(Re λ−

√
d2 − Im λ2, ν − |ν − λ|).

else
% Only the circle centered at ν intersects the real line.
ν ← ν − |ν − λ|.

end if
end if

end while
2. Return the real eigenvalue list Λ.

From the description of the algorithm it is not clear whether it terminates. The
next theorem shows that the adaptive progress algorithm indeed terminates.

Theorem 3.1. Let the shift of Algorithm 3 at a given iteration be ν. The next
shift will be no larger than ν− d

2 . Thus the number of closest eigenvalue computations

is O(Dd).

Proof. Clearly when the closest eigenvalue λ is real, the shift is decremented by
at least d/2. Therefore let us focus on the case when the eigenvalue λ is not real.

We will find a lower bound for the progress h such that the next shift is ν − h.
When only the circle centered at ν intersects the real line (i.e., the imaginary part of
λ is greater than d), it is apparent from Figure 3.2c that the distance |λ−ν| is greater
than or equal to d. Since the next shift is set to the intersection point ν − |λ− ν|, we
have h = |λ−ν| ≥ d. When both of the circles intersect the real line, as in Figure 3.2a
and Figure 3.2b, the progress h is the maximum of the lengths of the line segment

488 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

λ

β

d
|λ − ν|

νν − |λ − ν|

a)
λ

d

β

|λ − ν|

ν

ν − |λ − ν|

b)
λ

d |λ − ν|

ν|λ − ν|ν − |λ − ν|

c)

Fig. 3.2. Three possibilities for the adaptive progress algorithm when the closest eigenvalue λ
to the shift ν is not real. The circular arcs are arcs of the circle centered at ν with radius |λ−ν| and
the circle centered at λ with radius d. The point β is the intersection point of the second circle with
the real line. a) Both of the circles intersect the real line, and the circle centered at λ intersects the
real line further to the left. b) Both of the circles intersect the real line, and the circle centered at
ν intersects the real line further to the left. c) Only the circle centered at ν intersects the real line.

from ν to λ and the line segment from ν to β. In both cases, since in the triangle
with vertices ν, β and λ, the length of the third edge from β to λ is d, the triangular
inequality yields

max(|ν − λ|, |ν − β|) ≥ d

2
.

As the length of the interval to be searched is 2D, the maximum number of closest
eigenvalue computations is bounded by 4D

d .
We point out a few disadvantages of the adaptive progress approach. The most

obvious is the need for a lower bound on the distance between the closest two eigen-
values of X . For reliability, one needs to set d small. The consequence of choosing d
small, however, is too many closest eigenvalue computations. A second disadvantage
of the adaptive progress approach is that once it detects a new real eigenvalue, it will
typically continue to converge to the same eigenvalue with the next few shifts that
are close to the eigenvalue. Finally, when an upper bound on ‖X‖ is not available,
in a robust implementation D must be chosen large, and clearly this degrades the

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 489

performance of the algorithm.

3.3.2. Divide and conquer. As an alternative to the adaptive progress ap-
proach it is possible to apply a divide and conquer algorithm. Unlike the adaptive
progress approach, the divide and conquer algorithm does not require the knowledge
of a lower bound on the distance between the closest two eigenvalues of X . In addition
it chooses shifts that are away from the computed eigenvalues in order to avoid the
discovery of the same eigenvalue too many times (to be precise, each eigenvalue can be
discovered at most three times). Even though an upper bound D on the norm of X is
required and may not be available in general, in practice we can choose D very large
so that the interval [−D,D] contains all of the real eigenvalues and, as we discuss,
this affects the number of closest eigenvalue computations insignificantly. The factor
most affecting the efficiency of the algorithm is the eigenvalue distribution.

Algorithm 4 Divide and conquer real eigenvalue search algorithm

Call: Λ ← Divide And Conquer(X ,L,U).
Input: X ∈ C

q×q, a lower bound L for the smallest real eigenvalue
desired and an upper bound U for the largest real eigenvalue
desired.

Output: Λ ∈ R
l with l ≤ q containing all of the real eigenvalues of X

in the interval [L,U].

1. Set the shift ν ← (U+L)
2 .

2. Compute the eigenvalue λ closest to the shift ν.
if U − L < 2|λ− ν| then

% Base case: there is no real eigenvalue in the interval [L,U].
Return [].

else
% Recursive case: Search the left and right intervals.
ΛL ← Divide And Conquer(X ,L,ν − |λ− ν|)
ΛR ← Divide And Conquer(X ,ν + |λ− ν|,U)
% Combine all of the real eigenvalues.
if λ is real then

Return λ ∪ ΛL ∪ ΛR.
else

Return ΛL ∪ ΛR.
end if

end if

In this approach, given an interval [L,U] we compute the eigenvalue of X closest
to the midpoint of the interval ν = U+L

2 . If the modulus of the difference between
the computed eigenvalue λ and the midpoint ν is greater than half of the length
of the interval, then we terminate. Otherwise we apply the same procedure to the
subintervals [L, ν − |λ − ν|] and [ν + |λ − ν|, U]. Initially we apply the algorithm to
the whole interval [−D,D].

Figure 3.3 illustrates the first six iterations of the divide and conquer algorithm
on the same example used in Figure 3.1. The divide and conquer algorithm completes
the investigation of the real interval where the real eigenvalues reside after iterating
7 times as opposed to the 10 iterations required by the adaptive progress algorithm.

For reliability the parameter D must be chosen large. Suppose all the eigenvalues

490 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

are contained in the disk of radius D′ with D′
 D. To discover that there is no real
eigenvalue in the interval [D′, D], at most two extra closest eigenvalue computations
are required. If the first shift tried in the interval [D′, D] is closer to D′ than D, then
the distance from the closest eigenvalue to this shift may be less than half the length
of the interval [D′, D], so a second closest eigenvalue computation may be needed.
Otherwise the interval [D′, D] will be investigated in one iteration. Similar remarks
hold for the interval [−D,−D′]. However, the larger choices of D may slightly increase
or decrease the number of shifts required to investigate [−D′, D′]. The important
point is that regardless of how large D is compared to the radius of the smallest disk
containing the eigenvalues, the cost is limited to approximately four extra iterations.

Next we show that the number of closest eigenvalue computations cannot exceed
2q + 1 (recall that X ∈ C

q×q).
Theorem 3.2 (worst case for Algorithm 4). The number of closest eigenvalue

computations made by Algorithm 3.2 is no more than 2q + 1.
Proof. We can represent the progress of the algorithm by a full binary tree,

i.e., a tree with each node having either two children or no children. Each node of
the tree corresponds to an interval. The root of the tree corresponds to the whole
interval [−D,D]. At each iteration of the algorithm the interval under consideration
is either completely investigated or replaced by two disjoint subintervals that need to
be investigated. In the first case, the node corresponding to the current interval is a
leaf. In the second case, the node has two children, one for each of the subintervals.

We claim that the number of leaves in this tree cannot exceed q+1. The intervals
corresponding to the leaves are disjoint. Each such interval has a closest left interval
(except the leftmost interval) and a closest right interval (except the rightmost inter-
val) represented by two of the leaves in the tree. Each interval is separated from the
closest one on the left by the part of a disk on the real axis in which an eigenvalue
lies, and similarly for the closest interval on the right. Since the matrix X has q eigen-
values, there can be at most q separating disks and therefore at most q + 1 disjoint
intervals represented by the leaves of the tree. A full binary tree with q+1 leaves has
q internal nodes. Therefore, the total number of the nodes in the tree, which is the
same as the number of closest eigenvalue computations, cannot exceed 2q + 1.

The upper bound 2q + 1 on the worst case performance of the algorithm is tight,
as illustrated by the following example. Consider a matrix with the real eigenvalues
2j−1−1
2j−1 , j = 1, . . . , q, and suppose we search over the interval [−1, 1]. Clearly, the

algorithm discovers each eigenvalue twice except the largest one, which it discovers
three times (assuming that when there are two eigenvalues equally close to a midpoint,
the algorithm locates the eigenvalue on the right). Therefore, the total number of
closest eigenvalue computations is 2q + 1.

Next we aim to show that the average case performance of the algorithm is much
better than the worst case. First we note the following elementary result that is an
immediate consequence of the fact that the square-root function is strictly concave.

Lemma 3.3. Given l positive distinct integers k1, k2, . . . , kl and l real numbers
p1, p2, . . . , pl ∈ (0, 1) such that

∑l
j=1 pj = 1, the inequality

√√√√ l∑
j=1

pjkj >

l∑
j=1

pj
√
kj(3.19)

holds.

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 491

λ

ν
λ

ν

λ
ν

λ
ν

λ
ν

λ
ν

Fig. 3.3. First six iterations of the divide and conquer algorithm on the same example used in
Figure 3.1.

In the average case analysis we let the eigenvalues of X , say ξ1, ξ2, . . . , ξq, vary. We
assume that the eigenvalues are independently selected from a uniform distribution
inside the circle centered at the origin with radius μ. We use Algorithm 4 to compute
the real eigenvalues lying inside the circle of radius D = 1 ≤ μ (the value of the radius
D is irrelevant for the average case analysis as discussed below; we choose D = 1 for
simplicity). In Table 3.1 the random variables and the probability density functions

492 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

Table 3.1

Notation for Theorem 3.4.

X : Number of iterations performed by Algorithm 4.
N : Number of eigenvalues lying inside the unit circle.
H : Modulus of the eigenvalue closest to the origin.
Xl : Number of iterations performed by Algorithm 4 on the left in-

terval [−1,−H].
Xr : Number of iterations performed by Algorithm 4 on the right

interval [H, 1].
Nl : Number of eigenvalues lying inside the left circle centered at

−(1 + H)/2 with radius (1 −H)/2.
h(H|N = j) : The probability density function of the variable H given there

are j eigenvalues inside the unit circle.
gl(Nl|N = j,H = β) : The probability density function of the variable Nl given there

are j eigenvalues inside the unit circle and the smallest of the
moduli of the eigenvalues is β.

referenced by the proof of the next theorem are summarized.
The quantity we are interested in is E(X|N = j), the expected number of iter-

ations required by Algorithm 4 given that there are j eigenvalues inside the unit circle.

We list a few observations.
• The eigenvalues ω1, ω2, . . . , ωj contained in the circle of radius D = 1 are uni-

formly distributed and mutually independent: This is a simple consequence
of the assumption that the eigenvalues are selected from the uniform distri-
bution mutually independently. Let the eigenvalues inside the unit circle be
ξi1 , ξi2 , . . . , ξij with i1 < i2 < · · · < ij . We associate ωk with the location of
the kth smallest indexed eigenvalue inside the unit circle, i.e., ωk = ξik . Let
C1 denote the unit circle. The variable ωk is uniformly distributed because

p(ωk|j of ξ1, . . . , ξq ∈ C1)

=
∑

i1,...,ij

p(ξi1 , . . . , ξij ∈ C1|j of ξ1, . . . , ξq ∈ C1)p(ωk|ξi1 , . . . , ξij ∈ C1)

=
∑

i1,...,ij

(
q
j

)−1

p(ωk|ξik ∈ C1)

=
∑

i1,...,ij

(
q
j

)−1
1

π
=

1

π
.

Above the summation is over the subsets of ξ1, ξ2, . . . , ξq consisting of j ele-
ments. Similarly we can show that for k �= l,

p(ωk, ωl|j of ξ1, . . . , ξq ∈ C1) =
1

π2
.

Therefore the variables ω1, ω2, . . . , ωj are mutually independent.
• The eigenvalues φ1, φ2, . . . , φj−1 inside the unit circle but outside the circle

of radius H are uniformly distributed and mutually independent: Suppose
ωi1 , ωi2 , . . . , ωij−1 with i1 < i2 < · · · < ij−1 are the eigenvalues inside the
desired area. When we map ωik to φk, the argument above applies to prove
the uniformity and mutual independence of the variables φ1, φ2, . . . , φj−1.

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 493

• Given c eigenvalues ϑ1, ϑ2, . . . , ϑc inside the left circle with radius 1−H
2 cen-

tered at (−(1+H)
2 , 0), each eigenvalue is uniformly distributed and mutually

independent: This again follows from the arguments above by mapping φik

to ϑk, where φi1 , φi2 , . . . , φic are the eigenvalues inside the desired region with
i1 < i2 < · · · < ic.

• Assuming the number of eigenvalues contained in the circle of radius D is
fixed, the expected number of iterations by the algorithm does not depend on
the radius D: Consider the variables ω̂1 denoting the locations of the j eigen-
values all inside the circle of radius D1, and ω̂2 = D2ω̂1

D1
denoting the locations

of the j eigenvalues inside the circle of radius D2. Let us denote the num-
ber of iterations by Algorithm 4 with input ω̂1 over the interval [−D1, D1] by
X1(ω̂1) and the number of iterations with input ω̂2 over the interval [−D2, D2]
by X2(ω̂2). It immediately follows that X1(ω̂1) = X1(

D1ω̂2

D2
) = X2(ω̂2). By

exploiting this equality we can deduce E(X1|N1 = j) = E(X2|N2 = j),

E(X1|N1 = j) =

∫
CD1

X1(ω̂1)p(ω̂1) dω̂1

=

(
1

πD2
1

)j ∫
CD1

X1(ω̂1) dω̂1

=

(
1

πD2
1

)j ∫
CD2

X1

(
D1ω̂2

D2

)
D2j

1

D2j
2

dω̂2

=

∫
CD2

X2(ω̂2)p(ω̂2) dω̂2

= E(X2|N2 = j),

where N1 and N2 are the number of eigenvalues inside the circle of radius
CD1 of radius D1 and the circle of radius CD2 of radius D2, respectively.
Note that the eigenvalues inside both the circle CD1 and the circle CD2 are
uniformly distributed and independent, as we discussed above.

By combining these remarks we conclude the equality E(X|N = j) = E(Xl|Nl =
j), since the eigenvalues are uniformly distributed and independent inside the circles,
and the sizes of the circles do not affect the expected number of iterations given that
there are j eigenvalues inside the circles.

The next theorem establishes a recurrence equation for E(X|N = j) in terms of
E(X|N = k), k = 0 . . . j − 1. Using the recurrence equation we will show E(X|N =
j) = O(

√
j) by induction. For convenience let us use the shorthand notation Ej(X)

for E(X|N = j).
Theorem 3.4. Suppose the eigenvalues of the input matrices of size q are chosen

from a uniform distribution independently inside the circle of radius μ and Algorithm 4
is run over the interval [−1, 1]. The quantity Ej(X) can be characterized by the
recurrence equation

E0(X) = 1(3.20)

and for all 0 < j < q

Ej(X) = 2Fj−1(X) + 1,(3.21)

494 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

where Fj−1(X) is a linear combination of the expectations E0(X), . . . , Ej−1(X),

Fj−1(X) =

∫ 1

0

(
j−1∑
k=0

Ek(X)gl(Nl = k|N = j,H = β)

)
h(H = β|N = j) dβ.(3.22)

Proof. Equation (3.20) is trivial; when there is no eigenvalue inside the unit
circle, the algorithm will converge to an eigenvalue on or outside the unit circle and
terminate.

For j > 0 at the first iteration of the algorithm, we compute the closest eigenvalue
to the midpoint and repeat the same procedure with the left interval and with the
right interval, so the equality

X = Xl + Xr + 1

and therefore the equality

Ej(X) = E(Xl|N = j) + E(Xr|N = j) + 1(3.23)

follow. Clearly the number of iterations on the left and right intervals depend on the
modulus of the computed eigenvalue. By the definition of conditional expectations,
we deduce

E(Xl|N = j) =

∫ 1

0

E(Xl|N = j,H = β)h(H = β|N = j) dβ(3.24)

and similarly

E(Xr|N = j) =

∫ 1

0

E(Xr|N = j,H = β)h(H = β|N = j) dβ.(3.25)

Now we focus on the procedures applied on the left and right intervals. Let the
modulus of the eigenvalue computed at the first iteration be β. There may be up
to j − 1 eigenvalues inside the circle centered at the midpoint of the left interval
[−1,−β] and with radius 1−β

2 . The expected number of iterations on the left interval

is independent of the radius 1−β
2 and the number of eigenvalues lying outside this

circle. Therefore given the number of eigenvalues inside this circle, by the definition
of conditional expectations, the equality

E(Xl|N = j,H = β) =

j−1∑
k=0

E(Xl|Nl = k,N = j,H = β)gl(Nl = k|N = j,H = β)

=

j−1∑
k=0

E(Xl|Nl = k)gl(Nl = k|N = j,H = β)

=

j−1∑
k=0

Ek(X)gl(Nl = k|N = j,H = β)

(3.26)

is satisfied. A similar argument applies to the right interval to show the analogous
equality

E(Xr|N = j,H = β) =

j−1∑
k=0

Ek(X)gl(Nl = k|N = j,H = β).(3.27)

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 495

By substituting (3.26) into (3.24), (3.27) into (3.25), and combining these with (3.23),
we deduce the result.

Corollary 3.5 (average case for Algorithm 4). Suppose the eigenvalues of the
matrices input to Algorithm 4 are selected uniformly and independently inside the
circle of radius μ. The expectation Ej(X) is bounded above by c

√
j + f − 1 for all

c ≥
√

12 and f ∈ [4/c2, 1/3].
Proof. The proof is by induction. In the base case, when there is no eigenvalue

inside the unit circle, the algorithm iterates only once, i.e., E0(X) = 1 ≤ c
√
f − 1.

Assume for all k < j, that the claim Ek(X) ≤ c
√
k + f − 1 holds. We need

to show the inequality Ej(X) ≤ c
√
j + f − 1 is satisfied under this assumption. By

definition (3.22) in Theorem 3.4 we have

Fj−1(X) ≤
∫ 1

0

(
j−1∑
k=0

(c
√
k + f − 1)gl(Nl = k|N = j,H = β)

)
h(H = β|N = j) dβ.

(3.28)

As we argued before, the uniformity and independence of each of the j−1 eigenvalues
inside the unit circle but outside the circle of radius H = β is preserved. In other
words gl(Nl|N = j,H = β) is a binomial density function, and we can explicitly write
gl(Nl = k|N = j,H = β), the probability that there are k eigenvalues inside the left
circle given that there are j − 1 eigenvalues contained in the unit circle and outside
the circle of radius β, as

gl(Nl = k|N = j,H = β) =

(
j − 1
k

)(
1 − β

4(1 + β)

)k (
1 − 1 − β

4(1 + β)

)j−1−k

.

Now the expected value of the binomial distribution above is (j − 1) 1−β
4(1+β) . From

Lemma 3.3, we deduce

√
j + f

2
≥

√
j − 1 + 4f

2

≥

√
(1 − β)(j − 1)

4(1 + β)
+ f

=

√√√√j−1∑
k=0

(k + f)gl(Nl = k|N = j,H = β)

>

j−1∑
k=0

√
k + f gl(Nl = k|N = j,H = β).

Substituting the upper bound
√
j+f
2 for

∑j−1
k=0

√
k + f gl(Nl = k|N = j,H = β) in

(3.28) yields

Fj−1(X) ≤
∫ 1

0

(
c
√
j + f

2
− 1

)
h(H = β|N = j) dβ =

c
√
j + f

2
− 1.(3.29)

Now it follows from (3.21) that

Ej(X) ≤ c
√
j + f − 1(3.30)

496 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

as desired.

Recall that we intend to apply the divide and conquer approach to A which has
size 2n2×2n2. Assume that the conditions of Corollary 3.5 hold for the eigenvalues of
A and the circle of radius D contains all of the eigenvalues. Suppose also that for any
shift ν, convergence of the shifted inverse iteration or shift-and-invert Arnoldi method
to the closest eigenvalue requires the matrix vector multiplication (A − νI)−1u for
various u only a constant number of times. Then the average running time of each
trisection step is O(n4), since finding the closest eigenvalue takes O(n3) time (which is
the cost of solving a Sylvester equation of size 2n a constant number of times) and we
compute the closest eigenvalue O(n) times at each trisection step on average. Because
of the special structure of the Kronecker product matrix A, even if the input matrices
have eigenvalues uniformly distributed and mutually independent, the eigenvalues of
A may not have this property. However, the numerical examples in the next section
suggest that the number of closest eigenvalue computations as a function of the size of
the Kronecker product matrices is still bounded by O(

√
q). According to Theorem 3.2,

in the worst case scenario, each trisection step requires O(n5) operations, which is an
improvement over computing all of the eigenvalues of A.

4. Numerical experiments. We first compare the accuracy of the new algo-
rithm with the divide and conquer approach, and Gu’s algorithm in [6] on a variety
of examples. Second, we discuss why in general we prefer the divide and conquer
approach over the adaptive progress approach. In our final example we aim to show
the asymptotic running time difference between the new method and Gu’s method.
All the tests are run using Matlab 6.5 under Linux on a PC.

4.1. Accuracy of the new algorithm and the old algorithm. We present
results comparing the accuracy of the new method using the divide and conquer ap-
proach with Gu’s method in [6]. In exact arithmetic both the method in [6] and the
new method using the divide and conquer approach must return the same interval,
since they perform the same verification by means of different but equivalent eigen-
value problems. Our data set consists of pairs (A,B), where A is provided by the
software package EigTool [13] and B has entries selected independently from the nor-
mal distribution with zero mean and variance one. The data set is available on the
web.3 In all of the tests the initial interval is set [0, σn([A B])] and the trisection
step is repeated until an interval (l, u] with u− l ≤ 10−4 is obtained.

When the second and third columns in Table 4.1 are considered, on most of the
examples the methods return the same interval with the exception of the companion,
Demmel, Godunov, and gallery5 examples. The common property of these matrices
is that they have extremely ill-conditioned eigenvalues. As we discuss in section 5,
when the matrix A has an ill-conditioned eigenvalue, the new method is not expected
to produce accurate small intervals containing the distance to uncontrollability. One
false conclusion that one may draw from Table 4.1 is that Gu’s method is always
more accurate than the new method. Indeed for the Basor–Morrison, Grcar, or Lan-
dau examples with n = 5 (for which the eigenvalues are fairly well conditioned) the
new method generates more accurate results than Gu’s method when one seeks in-
tervals of length around 10−6. In terms of accuracy these two methods have different
weaknesses.

3http://www.cs.nyu.edu/∼mengi/robust stability/data dist uncont.mat.

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 497

Table 4.1

For pairs (A,B) with A chosen from EigTool as listed above in the leftmost column and B
normally distributed, intervals (l, u] that are supposed to contain the distance to uncontrollability of
the system (A,B) are computed with u − l ≤ 10−4 by both of the methods. The size of the system
(n,m) is provided next to the name of the matrix A in the leftmost column. In the fourth column
the norm of A computed by Matlab at the last trisection step is given. In the rightmost column the
norm of A is approximated using (5.1).

Example New method Gu’s method ‖A‖ ≈ ‖A‖
Airy(5,2) (0.03759,0.03767] (0.03759,0.03767] 8 × 107 7 × 108

Airy(10,4) (0.16337,0.16345] (0.16337,0.16345] 4 × 107 6 × 108

Basor–Morrison(5,2) (0.68923,0.68929] (0.68923,0.68929] 2 × 106 2 × 107

Basor–Morrison(10,4) (0.60974,0.60980] (0.60974,0.60980] 2 × 107 5 × 108

Chebyshev(5,2) (0.75026,0.75034] (0.75026,0.75034] 3 × 107 5 × 108

Chebyshev(10,4) (0.82703,0.82711] (0.82703,0.82711] 6 × 1010 3 × 1012

Companion(5,2) (0.42431,0.42438] (0.42431,0.42438] 2 × 108 4 × 109

Companion(10,4) (0.46630,0.46637] (0.46610,0.46616] 5 × 1013 5 × 1018

Convection diffusion(5,2) (0.69829,0.69836] (0.69829,0.69836] 7 × 105 1 × 107

Convection diffusion(10,4) (1.48577,1.48586] (1.48577,1.48586] 9 × 106 1 × 108

Davies(5,2) (0.23170,0.23176] (0.23170,0.23176] 2 × 106 2 × 107

Davies(10,4) (0.70003,0.70012] (0.70003,0.70012] 1 × 106 1 × 107

Demmel(5,2) (0.09090,0.09097] (0.09049,0.09056] 8 × 1049 Inf

Demmel(10,4) (0.12049,0.12057] (0.11998,0.12006] 9 × 1080 Inf

Frank(5,2) (0.45907,0.45916] (0.45907,0.45916] 1 × 107 7 × 108

Frank(10,4) (0.67405,0.67414] (0.67405,0.67414] 3 × 1016 2 × 1018

Gallery5(5,2) (0.17468,0.17474] (0.02585,0.02592] 1 × 1016 1 × 1029

Gauss–Seidel(5,2) (0.06279,0.06288] (0.06279,0.06288] 2 × 1020 Inf

Gauss–Seidel(10,4) (0.05060,0.05067] (0.05060,0.05067] 1 × 1030 3 × 1040

Godunov(7,3) (1.23802,1.23810] (1.23764,1.23773] 1 × 1014 8 × 1031

Grcar(5,2) (0.49571,0.49579] (0.49571,0.49579] 2 × 105 3 × 106

Grcar(10,4) (0.44178,0.44185] (0.44178,0.44185] 4 × 107 6 × 108

Hatano(5,2) (0.39570,0.39578] (0.39570,0.39578] 4 × 106 2 × 107

Hatano(10,4) (0.23297,0.23304] (0.23297,0.23304] 4 × 108 1 × 1010

Kahan(5,2) (0.18594,0.18601] (0.18594,0.18601] 8 × 108 2 × 1010

Kahan(10,4) (0.05587,0.05594] (0.05587,0.05594] 8 × 1013 7 × 1014

Landau(5,2) (0.41766,0.41773] (0.41766,0.41773] 1 × 105 1 × 106

Landau(10,4) (0.28166,0.28174] (0.28166,0.28174] 1 × 107 3 × 108

Markov chain(6,2) (0.04348,0.04358] (0.04348,0.04358] 3 × 107 5 × 108

Markov chain(10,4) (0.07684,0.07693] (0.07684,0.07693] 8 × 108 6 × 1010

Orr–Sommerfield(5,2) (0.04789,0.04796] (0.04789,0.04796] 1 × 109 8 × 109

Orr–Sommerfield(10,4) (0.07836,0.07843] (0.07836,0.07843] 2 × 1010 2 × 1012

Skew–Laplacian(8,3) (0.01001,0.01011] (0.01001,0.01011] 3 × 1010 4 × 1013

Supg(4,2) (0.06546,0.06554] (0.06546,0.06554] 7 × 108 4 × 109

Supg(9,4) (0.03627,0.03634] (0.03627,0.03634] 2 × 1013 1 × 1014

Transient(5,2) (0.11027,0.11036] (0.11027,0.11036] 3 × 107 4 × 108

Transient(10,4) (0.13724,0.13731] (0.13724,0.13731] 6 × 108 6 × 109

Twisted(5,2) (0.14929,0.14936] (0.14929,0.14936] 2 × 107 1 × 108

Twisted(10,4) (0.77178,0.77185] (0.77178,0.77185] 1 × 107 2 × 108

498 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

Table 4.2

A comparison of the real eigenvalue extraction techniques when the matrix A has eigenvalues
squeezed in a small real interval.

Method d Computed interval No. of calls to eigs

Adaptive progress 10−1 (0.00702,0.00711] 19

Adaptive progress 10−2 (0.00474,0.00483] 35

Adaptive progress 10−3 (0.00476,0.00484] 81
Divide and conquer - (0.00476,0.00484] 13

Gu’s algorithm - (0.00476,0.00484] -

Table 4.3

A comparison of the real eigenvalue extraction techniques for an uncontrollable pair.

Method d Computed interval No. of calls to eigs
Adaptive progress 1 (0.13538,0.13546] 17
Adaptive progress 0.5 (0.00025,0.00033] 19
Adaptive progress 0.1 (0.00000,0.00008] 50

Divide and conquer - (0.00000,0.00008] 12
Gu’s algorithm - (0.00000,0.00008] -

4.2. Comparison of the real eigenvalue extraction techniques. When
the Kronecker product matrix A has too many eigenvalues close to the real axis, the
adaptive progress method is not the ideal real eigenvalue extraction technique. A
remedy for the efficiency problems in this case is choosing d large, which may cause
accuracy problems. Suppose we choose A = Q diag(v) Q∗, where

v = [−1 − 0.99 − 0.98 − 0.97 − 0.96]

and Q is a unitary matrix whose columns form an orthonormal basis for the column
space of a normally distributed matrix. The matrix B is chosen from a normal distri-
bution. The eigenvalue pattern of A is also reflected in A, as it also has eigenvalues
tightly squeezed around −1. Among the values listed in Table 4.2, d = 10−3 is the
one for which the adaptive progress approach returns the correct interval. But the
average number of calls to eigs for d = 10−3 by the adaptive progress approach is
more than six times the number of calls made by the divide and conquer approach.

In a second example we choose the pair

A =

⎛
⎝ 1 1 0

0 0.95 1
0 0 0.9

⎞
⎠, B =

⎛
⎝ 0

0.1
0

⎞
⎠,

which is uncontrollable since rank([A − 0.9I B]) = 2. In Table 4.3 we see that the
adaptive progress approach with d = 0.1 yields the correct interval. Nevertheless the
number of calls to eigs is once again excessive compared to the number of calls by
the divide and conquer approach.

These examples illustrate that there may not exist a d value such that the adaptive
progress returns an accurate result with fewer calls to eigs than the number of calls
required by the divide and conquer approach.

4.3. Running times of the new algorithm on large matrices. To observe
the running time differences between Gu’s method and the new method with the divide
and conquer approach, we run the algorithms on pairs (A,B) of various size, where A
is a Kahan matrix available through EigTool and B is a normally distributed matrix.

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 499

Table 4.4

Running times of Gu’s method/new method in seconds and the average number of calls to eigs
by the new method for Kahan-random matrix pairs of various size.

Size (n,m) tcpu (Gu’s method) tcpu (new method) No. of calls to eigs
(10,6) 47 171 34
(20,12) 3207 881 63
(30,18) 46875 3003 78
(40,24) 263370 7891 92

1 1.5 2 2.5 3 3.5 4
10

1

10
2

10
3

10
4

10
5

10
6

Gu’s method

New method with
divide and conquer

Fig. 4.1. Running times of the methods on Kahan-random matrix pairs are displayed as func-
tions of the size of the matrix in logarithmic scale.

We normalized the pairs (by dividing them by σn([A B])) so that the same number of
trisection steps are required. For (n,m) = (40, 24) we didn’t run Gu’s method, since
it takes an excessive amount of time. Instead we extrapolated its running time. For
all other sizes both methods return the same interval of length approximately 10−4.
In Table 4.4 the running times of both the algorithms and the average number of calls
to eigs made by the divide and conquer approach are provided for various sizes. For
small pairs Gu’s method is faster. However, for matrices of size 20 and larger the new
method is more efficient and the difference in the running times increases drastically
as a function of n. In the third column the average number of calls to eigs is shown
and apparently varies linearly with n. Figure 4.1 displays plots of the running times
as functions of n using a log scale. The asymptotic difference in the running times
agrees with the plots.

5. Concluding remarks. Based on the results in the previous section, among
all the methods discussed, the most reliable and efficient appears to be the new veri-
fication scheme with the divide and conquer approach to extract the real eigenvalues.
The divide and conquer approach requires only an upper bound on the norm of A. In
practice this parameter may be set arbitrarily large and the efficiency of the algorithm
is affected insignificantly. Alternatively the upper bound on ‖A‖ in [11], or when A
has simple eigenvalues, the formula (5.1) discussed below can be used.

Improvements to the divide and conquer approach still seem possible. As the
upper and lower bound become closer, the Kronecker product matrices A in two
successive iterations differ only slightly. Therefore it is desirable to benefit from the
eigenvalues computed in the previous iteration in the selection of the shifts. We

500 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

address further details of the new algorithm below.

5.1. Sylvester equation solvers. The Sylvester equations needed to perform
the multiplication (A−νI)−1u are not sparse in general. We solve them by first reduc-
ing the coefficient matrices on the left-hand side of (3.17) to upper quasi-triangular
forms (block upper triangular matrices with 1 × 1 and 2 × 2 blocks on the diagonal).
Then the algorithm of Bartels and Stewart can be applied [2]. In our implementation
we used the lapack routine dtrsyl [1], which is similar to the method of Bartels and
Stewart, but rather than computing the solution column by column it generates the
solution row by row, bottom to top. A more efficient alternative may be the recursive
algorithm of Jonsson and K̊agström [7].

5.2. Difficulties in computing to a high precision. Gu’s method in [6]
suffers from the fact that the matrix Q12 in (2.4) becomes highly ill-conditioned
as δ → 0 and is not invertible at the limit. This is an issue if the input pair is
uncontrollable or nearly uncontrollable.

For the new method instability is caused by small η. The accuracy of the algo-
rithm depends on the ability to extract the real eigenvalues of A successfully. (The
imaginary eigenvalues of H(α) can be obtained reliably by using a Hamiltonian eigen-
value solver.) A computed eigenvalue of A differs from the exact one by a quantity
with modulus on the order of ‖A‖εmach/|w∗z|, where w and z are the corresponding
unit left and right eigenvectors, respectively. In general the more dominant factor in
the formation of this numerical error is the norm ‖A‖ rather than the absolute con-
dition number of the eigenvalue (appearing in the denominator), since the inverted
matrix in the definition of A is the inverse of a matrix that is nearly singular for small
η, and therefore the norm of A is big. There is another numerical trouble caused by
big ‖A‖. We cannot expect to solve the linear system (A − νI)x = u accurately for
A with large norm. This obviously has an effect on the convergence of shifted inverse
iteration and shift-and-invert preconditioned Arnoldi especially considering the fact
that the shift ν is not close to an eigenvalue in general. (Because of this, computing
the eigenvalues of A using the QR algorithm may be superior to computing them
using shifted inverse iteration or shift-and-invert preconditioned Arnoldi, as indeed
we observed in practice.) In our experience eigs has convergence problems typically
when the norm of A reaches the order of 1010. Smaller η contributes to the increase
in the norm of A; however, it is not the only factor. Indeed for certain pairs (A,B)
the norm ‖A‖ is large even when η is not small. Under the assumption that A is
diagonalizable, an upper bound on ‖A‖ is derived in [11]. Specifically when A has
simple eigenvalues, the upper bound on ‖A‖ in [11] simplifies to

2‖A‖ +
(2‖BB∗/δ − δI‖ + δ)2

η infdet(A−λI)=0 |y∗λxλ|2
(5.1)

with xλ and yλ denoting the unit right and unit left eigenvectors, respectively, cor-
responding to λ. Notice that the upper bound given by (5.1) can be efficiently com-
puted in O(n3) time, and therefore in an implementation it can be used to estimate
the length of the smallest interval containing the distance to uncontrollability that
can possibly be computed accurately. Surprisingly the norm of A heavily depends on
the worst conditioned eigenvalue of A, but it has little to do with the norm of A. For
instance, when A is normal and ‖B‖ is not very large, we expect that ‖A‖ exceeds
1010 only when η is smaller than 10−10 unless the pair (A,B) is nearly uncontrollable.
This in turn means we can reliably compute an interval of length 10−10 containing

FAST METHODS FOR DISTANCE TO UNCONTROLLABILITY 501

the distance to uncontrollability. On the other hand when A is far from being normal
or the pair (A,B) is close to being uncontrollable and a small interval is required, the
new method performs poorly. The accuracy of the intervals generated on various ex-
amples in Table 4.1 in the second column is also justified by (5.1). All of the examples
for which the method performs poorly are highly nonnormal. In the fourth column in
Table 4.1 the norms of A computed by calling Matlab’s norm at the last trisection
step (approximately when η is the difference between the upper and lower bounds of
the interval in the second column and δ is the upper bound of the interval) are listed.
In the rightmost column the upper bounds on the norm of A using (5.1) are provided.
For most of the pairs in Table 4.1 the upper bound on ‖A‖ in the rightmost column
is tight.

5.3. Alternative eigenvalue problem. To see whether there exists an α such
that H(α) and H(α + η) share an eigenvalue, we extract the real eigenvalues of A.
Alternatively we can solve the generalized eigenvalue problem

P − λM =

⎛
⎜⎜⎝

−A∗
1 −AT

2 δI δI 0
BT

2 −A∗
1 + Ā2 0 δI

B1 0 A1 −AT
2 δI

0 B1 BT
2 A1 + Ā2

⎞
⎟⎟⎠− λ

⎛
⎜⎜⎝

−I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

⎞
⎟⎟⎠.

(5.2)

The real eigenvalue extraction techniques are applicable to this problem as well, since
the scalar λ is an eigenvalue of the pencil above if and only if 1

λ−ν is an eigenvalue of

the matrix (P −νM)−1M . The multiplication x = (P −νM)−1My can be performed
efficiently by solving the linear system (P − νM)x = My. When we write this linear
system in matrix form, we obtain the Sylvester equation (3.3) but with α replaced by
ν and with the matrix (

−Y11 0
0 Y22

)

replacing 0 on the right-hand side, where y = [vec(Y11) y12 y21 vec(Y22)]
T with

equal sized block components. Notice that the fact that the eigenvalue problem (5.2)
is of double size compared to the eigenvalue problem Ax = λx is not an efficiency
concern. We still solve Sylvester equations of the same size. The real issue is that
these two eigenvalue problems have different conditioning. Theoretically either of
them can be better conditioned than the other in certain situations. In practice we
retrieved more accurate results with the eigenvalue problem Ax = λx most of the
time, even though there are also examples on which the algorithm using (5.2) yields
more accurate results.

6. Software. By combining the new verification scheme and BFGS, it is possible
to come up with a more efficient and accurate algorithm. A local minimum of the
function σn([A − λI B]) can be found in a cheap manner by means of the BFGS
optimization algorithm. Notice that the cost of this local optimization step is O(1),
since we are searching over two unknowns, namely, the real and the imaginary parts
of λ. Using the new verification scheme we can check whether the local minimum is
indeed a global minimum as described in [3, Algorithm 5.3]. If the local minimum
is not a global minimum, the new verification scheme also provides us with a point
λ′, where the value of the function σn([A − λI B]) is less than the local minimum.

502 M. GU, E. MENGI, M. L. OVERTON, J. XIA, AND J. ZHU

Therefore we can repeat the application of BFGS followed by the new scheme until
we verify that the local minimum is a global minimum.

An efficient implementation of the new method is freely available.4 In this im-
plementation, by setting an input parameter appropriately, one can either run the
trisection method or the hybrid method just described. Typically, the new scheme is
faster than the previous implementation of the trisection method of [3] for matrices
of size larger than 20.

Acknowledgements. Many thanks to A. Yılmaz for carefully reading the aver-
age case analysis for the divide and conquer approach. We are also grateful to two
anonymous referees for their invaluable suggestions.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorenson, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, 1999.

[2] R. H. Bartels and G. W. Stewart, Solution of the equation AX + XB = C, Comm. ACM,
15 (1972), pp. 820–826.

[3] J. V. Burke, A. S. Lewis, and M. L. Overton, Pseudospectral components and the distance
to uncontrollability, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 350–361.

[4] R. Eising, The distance between a system and the set of uncontrollable systems, in Mathe-
matical theory of networks and systems, Lecture Notes in Control and Inform. Sci., 58,
Springer, London, 1984, pp. 303–314.

[5] R. Eising, Between controllable and uncontrollable, System Control Lett., 4 (1984), pp. 263–
264.

[6] M. Gu, New methods for estimating the distance to uncontrollability, SIAM J. Matrix Anal.
Appl., 21 (2000), pp. 989–1003.

[7] I. Jonsson and B. Kågström, Recursive blocked algorithm for solving triangular systems,
Part I: One-sided and coupled Sylvester-type matrix equations, ACM Trans. Math. Soft-
ware, 28 (2002), pp. 392–415.

[8] R. E. Kalman, Mathematical description of linear dynamical systems, J. SIAM Control Ser.
A, 1 (1963), pp. 152–192.

[9] R. B. Lehoucq, K. Maschoff, D. Sorensen, and C. Yang, ARPACK Software Package,
http://www.caam.rice.edu/software/ARPACK/, 1996.

[10] R. B. Lehoucq, D. Sorensen, and C. Yang, ARPACK Users’ Guide, SIAM, Philadelphia,
1998.

[11] E. Mengi, Measures for Robust Stability and Controllability, Ph.D. thesis, Courant Institute
of Mathematical Sciences, New York, NY, 2006.

[12] C. C. Paige, Properties of numerical algorithms relating to computing controllability, IEEE
Trans. Automat. Control, 26 (1981), pp. 130–138.

[13] T. G. Wright, EigTool: A graphical tool for nonsymmetric eigenproblems, Oxford Uni-
versity Computing Laboratory, Oxford, UK, http://www.comlab.ox.ac.uk/pseudospectra/
eigtool/, 2002.

4http://www.cs.nyu.edu/∼mengi/robust stability/dist uncont.html.

