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Topology-Aware Loss for Aorta and Great Vessel
Segmentation in Computed Tomography Images

Seher Ozcelik, Sinan Unver, Ilke Ali Gurses, Rustu Turkay, and Cigdem Gunduz-Demir

Abstract—Segmentation networks are not explicitly imposed
to learn global invariants of an image, such as the shape of an
object and the geometry between multiple objects, when they
are trained with a standard loss function. On the other hand,
incorporating such invariants into network training may help
improve performance for various segmentation tasks when they
are the intrinsic characteristics of the objects to be segmented.
One example is segmentation of aorta and great vessels in
computed tomography (CT) images where vessels are found in
a particular geometry in the body due to the human anatomy
and they mostly seem as round objects on a 2D CT image. This
paper addresses this issue by introducing a new topology-aware
loss function that penalizes topology dissimilarities between the
ground truth and prediction through persistent homology. Differ-
ent from the previously suggested segmentation network designs,
which apply the threshold filtration on a likelihood function of
the prediction map and the Betti numbers of the ground truth,
this paper proposes to apply the Vietoris-Rips filtration to obtain
persistence diagrams of both ground truth and prediction maps
and calculate the dissimilarity with the Wasserstein distance
between the corresponding persistence diagrams. The use of this
filtration has advantage of modeling shape and geometry at the
same time, which may not happen when the threshold filtration
is applied. Our experiments on 4327 CT images of 24 subjects
reveal that the proposed topology-aware loss function leads to
better results than its counterparts, indicating the effectiveness
of this use.

Index Terms—Topology, persistent homology, Vietoris-Rips
filtration, encoder-decoder networks, aorta and great vessel
segmentation, computed tomography.

I. INTRODUCTION

ENCODER-decoder networks have achieved state-of-the-
art results for various segmentation problems on medical

images. The training of these networks relies on minimizing
a loss function, e.g., mean squared error and cross entropy,
which typically defines the loss of each pixel separately and
aggregates these pixel-wise losses. This aggregation might be
unweighted, assigning the unit weight to each pixel’s loss, or
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weighted, giving higher loss weights to hard-to-learn pixels. In
the latter case, the pixels’ weights can be assigned beforehand
and remains the same during training, e.g., giving higher
weights for pixels close to object boundaries [1] or belonging
to the minority foreground classes [2]. Alternatively, these
weights can be adaptively changed during the training by
modulating them based on the network performance, e.g.,
reducing the weights of easy-to-learn pixels for which the
network gives high posteriors at a given epoch [3], [4].

These typical loss functions define the loss of each pixel
only on its true and predicted values, but not considering those
of other pixels, and aggregate them by weighted averaging
or summing without considering the spatial relations between
the predictions. Since this type of definition is of local nature,
these loss functions may not sufficiently impose a network
to learn the shape of an object or the geometry between
multiple objects. On the other hand, the ability of the network
to learn the shape may be important for better segmenting
the objects in medical images since these objects typically
have an expected shape or a geometry due to their intrinsic
characteristics. One example is the formation of the aortic
arch and great vessels in a human body. The aorta and the
large arteries and veins (also known as great vessels) are not
randomly distributed over the human body. Instead, they are
found in a particular geometry due to the human anatomy
(Fig. 1). Besides, they mostly seem as round objects on a
2D axial image since blood vessels are tubular in 3D. This
anatomic information is indeed utilized by human annotators
to locate these vessels and delineate their boundaries.

In response to this issue, this paper introduces a new
topology-aware loss function to train an encoder-decoder
network for segmenting the aortic arch and the great vessels
in computed tomography (CT) images. This loss function is
defined as a weighted cross entropy, in which the weight for a
training sample (and thus, for its pixels) is calculated inversely
proportional to topological similarity between the maps of its
ground truth and predicted vessels. This paper proposes to
quantify topological features of these maps through persistent
homology. To this end, it proposes to calculate the persistence
diagram of each map by applying the Vietoris-Rips filtration
on the point cloud of its vessel contours and enforces the
network to minimize the Wasserstein distance between the cor-
responding persistence diagrams by defining the loss weight
as a function of this distance.

The proposed approach differs from the existing studies
in the construction of the topological loss function and its
integration to the network. Although there exist recent studies,
such as [5], [6], [7] and [8], that satisfactorily use persistent
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Fig. 1. (a) Anatomic formation of the aortic arch and the large arteries. (b) Manual annotations of the aortic arch and the large arteries on three exemplary
axial slices. (c) CT scans for these annotations. Note that the annotations only for the green, orange, and blue squares are illustrated for better visualization.
All pixels outside the rectangles are annotated as background.

homology to train neural networks using the topology of the
ground truth, our approach is different from these studies. We
use persistent homology to learn not only the topology but also
the geometry of the ground truth. Here, by geometry we mean
the differential geometric nature of the objects in question,
namely the shape of the aorta and the distribution of the great
vessels with respect to each other.

We will describe the details of this contribution in more
mathematical terms below in Sec. II. In summary, the differ-
ence of our contribution from the other studies stems from
the type of filtration that we use in persistent homology,
from the employment of the full strength of the persistent
homology on the ground truth, as well as the use of the special
metric to compare the persistent diagrams of the ground truth
and prediction maps. The previous studies use the persistent
homology of the prediction based on the threshold filtration
associated to a likelihood function predicted by the network
and the Betti numbers of the ground truth. Additionally, the
loss functions they use only ensure that the topologies of
the ground truth and the prediction approached each other.
On the other hand, different from this previous approach, in
this paper, we propose to use the Vietoris-Rips filtration on
the persistent homology of both the ground truth and the
prediction maps and the Wasserstein distance between the
corresponding persistence diagrams. The use of the Vietoris-
Rips filtration takes into account the geometry of the ground
truth and the prediction maps, and the loss function based
on the Wasserstein distance ensures that these two geometries
approach each other.

Besides, this is the first proposal of using a topology-aware
loss function in a neural network design for the purpose
of segmenting the aortic arch and great vessels, which are
indeed found in a particular geometry in the human body,
and thus, provides an exemplary showcase to demonstrate the
usefulness of the geometry-preserving property of a neural
network. Although there exist previous traditional models and

network designs to segment the aorta and coronary arter-
ies [9], [10], [11], [12], none of them use persistent homology
in their models or in the definition of their loss functions.

II. RELATED WORK AND CONTRIBUTION

A. Persistent Homology

For visual data of medical nature, there are prior restrictions
on their shape coming from the human anatomy. At first,
it might be thought of as natural to use their topological
invariants as part of their features since the topological in-
variants would comprise a summary of the global properties
of the images. On the other hand, one immediately faces the
problem that topological invariants are very rigid and real
life data are very noisy so that using such rigid invariants to
summarize noisy data will lead to complications. A solution
to this problem in the context of homology of topological
spaces is to use an invariant which is more stable under
small perturbations. This invariant we will use, is persistent
homology, which we will briefly review in our context.

An important invariant of a topological space X is the n-
th homology group Hn(X), for each n ≥ 0 [13]. Here and
elsewhere in this paper, we always consider homology groups
with coefficients in the field of rational numbers Q. This makes
the homology groups vector spaces over Q. The dimension
bn(X) of the vector space Hn(X) is the n-th Betti number of
X and is a measure of the number of n dimensional spheres
which do not bound an n+1 dimensional ball. Thus, b0(X) is
the number of connected components of X and b1(X) is the
number of circles which do not bound a disk. Even though the
Betti invariants are extremely useful in the abstract study of
topological spaces, they are too rigid to be of use in machine
learning applications. More precisely, all real-world data come
with noise and error. This is indeed a very typical case for
medical images, in which noise and artifacts commonly exist
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in an image due to non-ideal conditions in image acquisition
and/or technical limitations of the image scanner.

A variant of homology that is more convenient for real-
world applications is the persistent homology [14], [15]. Here
the input is a topological space X, which is endowed with
a filtration {Xt}t∈R, indexed by the real numbers R, with
X = ∪t∈RXt. The condition for being a filtration is that for
every s ≤ t, Xs ⊆ Xt. Taking homology of the spaces in
the filtration for a fixed integer n, we obtain a persistence
module {Hn(Xt)}t∈R, which associates a Q-vector space to
each t ∈ R and a linear map between these vector spaces
for each pair (t, s) with t ≤ s, coming from the functoriality
of homology. Associated to a persistence module, there is a
barcode and a persistence diagram that summarizes at which
filtration index the holes are born and at which filtration index
they die. The flavor of the persistent homology and what it
measures depends very much on which filtration one chooses
to consider on X.

B. Persistent Homology for Segmentation Networks

There exist only a few studies that employ persistent homol-
ogy in the design of a segmentation network. Similar to ours,
this is achieved through the definition of a topological loss
function. On the other hand, the main difference between these
previous studies and ours is the type of filtration, the choice of
which affects the phenomena persistent homology quantifies,
and hence, the phenomena that a network is enforced to learn
during its training. In the context of segmentation networks,
there are essentially two different ways one obtains a topolog-
ical space with a filtration.

One of these filtrations, which is the one that we employ in
this work, is through the use of a distance function. Here, one
starts with a point cloud X in a metric space M with a distance
function d. For each t ∈ R, Xt is the set of m ∈ M such that
there exists an x ∈ X with d(m,x) ≤ t. Then {Xt}t∈R gives
a filtration of M. The persistence homology of this filtration
encodes information about the shape of X. This filtration
is called the distance filtration or the Vietoris-Rips filtration
below. The other type of filtration is constructed by using a real
valued function f on space. If one lets Xt := f−1((−∞, t])
then {Xt}t∈R forms a filtration of the underlying space. In
most of the studies below, f is chosen to be 1 − p where p
is a likelihood function on Rn, which aims to predict a shape
X in Rn. More precisely, we wish p to have the property that
x ∈ X if and only if p(x) = 1.

1) The method of [5]: In this work, if Ω denotes the
image, which is viewed as a rectangular domain, there are
two filtrations obtained on Ω, which correspond to two dif-
ferent functions on Ω. The first one is a binary function f
which assumes the value 0 on the foreground and 1 on the
background. The other function is g := 1 − p, where p is
the likelihood function predicted by the neural network. The
functions f and g give two different filtrations on Ω and
these result in two different persistent homology data. The
topological part of the loss function used in [5] is the square
of the 2-Wasserstein distance between the persistence diagrams
for these filtrations for both dimensions 0 and 1. The effect

of using this topological loss function, in addition to the per-
pixel cross-entropy loss, is that the network will emphasize
learning the 0-th and 1-st Betti numbers of the ground truth,
in addition to learning the pixels.

2) The method of [6]: In this work, the authors use a
training set in which they know the ground-truth segmentation
for only some of the items, but they know the topology of the
ground-truth segmentation for all of the items. The topology
is known a priori without the use of the network. The method
is then to train the network so that the predicted images have
the desired Betti numbers as well as the pixelwise Dice loss
function is minimized on the labeled images. These desired
Betti numbers are determined by the correct prior topology.
The topological loss function is then constructed in terms of
these Betti numbers. The loss function is based on increasing
the barcode length of the k-th largest barcode lengths if k
is the desired Betti number. More precisely, denoting the
birth and death coordinates of a bar by (b, d), if this bar is
to be a prominent feature of the image, its contribution to
the loss function is 1 − (d − b)2, otherwise it is (d − b)2.
The same authors extended this method to multi-class image
segmentation, including the Betti numbers corresponding to
the triplets of the objects of different classes into the prior
topology [8].

The method of [16] is somewhat similar. In this paper,
the authors define the filtration by using the voxel intensity
function on the data. The intensity function is normalized to
have values between 0 and 1. The joint loss function is defined
in terms of the Dice and cross-entropy losses together with the
topological loss, which is the 1-Wasserstein distance between
the persistence diagram of the prediction and the persistence
diagram of the expected topological space. Denoting the birth
and death coordinates of a bar with (b, d), the contribution to
the topological loss function is 1 − (d − b) if the feature is
expected to be a prominent feature, and is (d− b), otherwise.
Using such a loss function has the effect of killing non-
prominent features and emphasizing prominent ones through
the learning process.

3) The method of [17]: In this work, the authors use
persistent homology in two different ways to improve the
3D segmentation of objects: First, they use a topological loss
function in a similar vein as those in [6] and [16]. This
topological loss function is defined as the distance between the
persistence diagrams of the likelihood function predicted by
the network and those of the ground truth labels. The distance
function between the persistence diagrams is defined using
the L∞-norm on R2, and first finding a matching between
the diagrams that realizes the 1-Wasserstein distance between
these two diagrams, and then computing the sum of the squares
of the distances between the matched points with respect to the
ordinary metric on R2. Besides, the authors integrate persistent
homology with a graph convolution network to capture multi-
scale structural information. To do so, they form a point cloud
in three dimensions and calculate persistence diagrams in each
dimension using the distance filtration. From the persistence
diagrams, the persistence image is constructed and put into
a vector form, and added as a local feature map to augment
the feature map obtained by the graph convolutional network.
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Even though persistence diagrams are defined on point clouds
using the distance filtration, this second use, which involves
adding the vectorization of the persistence image as a feature,
differs considerably from our method, which is based on defin-
ing a loss function using the Wasserstein distance between
the persistence diagrams of the Vietoris-Rips filtrations of the
prediction and the ground truth. Both of the uses in [17] do
not define such kind of loss function to enforce the network
to learn the topology and shape of the objects as well as the
geometry in between.

4) Other uses: In [18], the authors use persistent homology
for a generative adversarial network to synthesize more realis-
tic images in its generator. They map synthetic and real images
into a topological feature space and define their topological
dissimilarity as an additional loss term. However, different
from our proposal, the filtration function is defined on the
distance transform, the distance from each background pixel
to the closest foreground object, which would not reflect
the shape of an object or the geometry between multiple
objects. In [19], the authors define a topological loss term for
a segmentation network, but not using persistent homology.
Instead, they measure the difference between the pretrained
VGG19 responses of the predicted and ground truth maps and
use it as an additional loss term to correct the topology of
linear structures in the ground truth.

C. Persistent Homology for Other Network Tasks

Another common use of persistent homology is to design
convolutional neural networks where classification is the up-
stream task. These networks use persistent homology as a
tool to obtain better latent representations, which reflect the
topological characteristics in the data. Such representations
are obtained from persistence landscape [7] and using the
filtration associated to the height function [20], and integrated
as a topological layer of the classification network. There are
works which also use the persistent homology associated to
the Vietoris-Rips complex. In [21], a loss function is defined
based on the death times of the barcodes for 0-dimensional
persistent homology of the latent representation. The loss
function measures the difference between these death times
and a fixed distance η. Our work is different from [21]
in several aspects. First, since we are interested in shape
as well as connectivity, our loss function uses both the 0
and 1-dimensional persistent homology groups unlike [21],
which only uses the 0-dimensional homology. Additionally,
our loss function is based on the Wasserstein distance between
the persistence diagrams of both the ground truth and the
prediction, and hence, the nature of the loss function changes
as the ground truth varies, whereas in [21] the loss function
is defined with respect to a fixed distance η as described
above. Such flexibility is essential in our setting since the
shape and arrangement of the great vessels and aorta change
through the axial scans due to the inherent nature of the human
anatomy. Likewise, in [22], connectivity properties of the
latent representation in an autoencoder are improved through
the use of a loss function based on the 0-dimensional persistent
homology. Moreover, all these studies apply this learning

(a) (b)

(c) (d)

Fig. 2. (a), (b) Boundaries of two homotopy equivalent objects, and (c), (d)
1-dimensional persistent homologies of (a) and (b), respectively. Even though
the standard homology groups of (a) and (b) are the same, since they are
homotopy equivalent, their persistent homologies are not. The latter takes
into account the shape of the object in this case. Namely, the smaller circular
bump in the upper right part of (b) is responsible for the smaller bar in (d).

process, involving persistent homology, to classification tasks
rather than a segmentation task as we do in our study.

Other principal uses of persistent homology in machine
learning, which will not have relevance for this work, includes
regularizing the weights of a network [23], interpreting the
weights of layers in a convolutional neural network [24], and
extracting topological features for a classifier [25]. Neverthe-
less, none of these studies use persistent homology to define
a loss function for a segmentation network.

III. METHODOLOGY

Our method relies on 1) quantifying the topological features
of the ground truth and the predicted segmentation maps by
their persistence diagrams, 2) defining a loss function using the
Wasserstein distance between the persistence diagrams of the
ground truth and the prediction, and 3) training an encoder-
decoder network by minimizing the proposed loss function.
The following subsections give the details.

A. Persistence Diagram Calculation for the Aortic Arch and
Great Vessels

Suppose that we start with a point cloud X in Rn. In our
case n = 2, and X will be the contours of the aorta and the
great vessels for either the ground truth or the prediction of
the network at a given epoch. For t ∈ R, if we let Xt to be
the set of points in Rn, whose distance to X is less than or
equal to max(t, 0), then this gives us a filtration {Xt}t∈R of
Rn = X, with X0 = X. The associated persistence diagrams
can be thought of as more dynamic and stable versions of the
ordinary homology groups of X.

The persistent homology with the Vietoris-Rips (distance)
filtration above has an added, somewhat surprising, benefit.
It tells us about the geometry of X, and not only about
its topology. By geometry, we mean the shape of an object
and also the distribution of multiple objects with respect to
each other. Fig. 2 depicts the boundaries of two homotopy
equivalent objects of different shapes, exhibiting the same
topology but different 1-dimensional persistent homologies.
Likewise, Fig. 3 sketches the boundaries of two pairs of
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(a) (b)

(c) (d)

Fig. 3. (a), (b) Boundaries of two pairs of homotopy equivalent objects, and
(c), (d) 0-dimensional persistent homologies of (a) and (b), represented by two
bars. The long bar in each case represents the connected component which
persists forever. The smaller bar in each case corresponds to the distance
between the two connected components. This bar is smaller in (c) than in (d),
consistent with the fact that the components are closer to each other in (a).

homotopy equivalent objects with different distributions. These
object pairs have the same topology, but this time, different
0-dimensional persistent homologies. Such geometry differ-
ences cannot be captured by a filtration associated to the
likelihood function, as suggested by the previous segmentation
networks [5], [6], [17]. On the other hand, as illustrated in
these figures, the Vietoris-Rips filtration that we use in our
design produces different barcodes, which allows us to model
differences in the object geometries.

This idea will be very important for our segmentation model
since the shape of the aorta and the distribution and the
distances of the great vessels with respect to each other give
us essential global invariants, which will help us improve the
network using this prior geometric information. In our model,
we define a loss function based on the 0-dimensional persistent
homology if the ground truth includes any great vessels, which
are indeed smaller in size compared to the aorta. The reason is
that when we are dealing with the great vessels, the geometry
of the associated point cloud is essentially determined by the
distribution and the distances of the connected components in
the data. The connected components in the images we consider
correspond to the individual great vessels themselves. Even
though the number of the connected components, hence the
0-th Betti number, in two point clouds might be the same,
the corresponding barcodes associated to their 0-dimensional
persistent homology might be quite different (see Fig. 3). If
the ground truth includes only the aortic arches, we use the 1-
dimensional persistent homology in the loss function since this
time the shape becomes more distinctive for these relatively
larger veins. The fact that the holes are born and they die at
different indices of the Vietoris-Rips filtration gives essential
information about the shape of the aortic arch (see Fig. 2),
and this trait can be successfully used to train the network.

B. Topology-Aware Loss Function

Let I be a training image, i ∈ I be a pixel, pi be the
ground truth for the pixel i, and p̂i be its posterior probability
estimated by a network. Here pi = 1 if i is an aortic arch or

a great vessel pixel, and pi = 0 otherwise. The cross-entropy
loss CEI for the image I is defined as:

CEI =
∑
i∈I

−pi log p̂i − (1− pi) log(1− p̂i) (1)

In this work, we define our topology-aware loss function
LT as a weighted sum of cross-entropy losses CEI

LT =
∑
I

ωI CEI (2)

where ωI is the topological weight term for the training image
I calculated based on the difference between the persistence
diagrams of its ground truth map SI and the prediction map ŜI

estimated by the network at the end of each forward pass, the
persistence diagrams denoted by ΠSI

and ΠŜI
, respectively.

We define the topological weight term ωI as a linear
combination of the Wasserstein distances of the homology
group 0 and the homology group 1, d0(SI , ŜI) and d1(SI , ŜI),
respectively.

ωI = 1 + αI · d0(ΠSI
,ΠŜI

) + βI · d1(ΠSI
,ΠŜI

) (3)

where αI and βI are the constants that determine the im-
portance of a homology group. Based on our discussions
given at the end of Sec. III-A, if the ground truth SI of
the image I includes any great vessel, we consider only the
homology group 0 and empirically set (αI , βI) = (5.0e–6,
0.0). Otherwise, if SI contains only the aortic arches (without
any great vessel), we consider the homology group 1 and set
(αI , βI) = (0.0, 1.0e–4).

There are different choices to calculate the distance between
two persistence diagrams. These calculations rely on finding
matches between the points in these two persistence diagrams
that minimize the cost over all matchings, where the points
are allowed to be matched with any point on a diagonal
(Fig. 4). The bottleneck distance uses the maximum of the
distances between the matched points whereas the Wasserstein
distance uses the sum of the powers of the distances between
the matched points. The main difference between these two
distance functions is that several matched points have a
contribution to the Wasserstein distance whereas they have
no contribution to the bottleneck distance. In preliminary tests
with our data, we noticed that using the Wasserstein distance
led to better results. This is consistent with our intuition
that the loss function defined in terms of the Wasserstein
distance will continue improving the network when there are
several predicted components which need minor corrections.
In contrast, the loss function defined in terms of the bottleneck
distance will not improve the network when all the components
would need only minor corrections.

C. Network Architecture and Training

An encoder-decoder network is used to segment the aortic
arch and great vessels in CT images. This network is trained
to minimize the proposed topology-aware loss function by
backpropagation. At each epoch, the forward pass estimates
segmentation maps for every training image and updates the
topology-aware loss LT by calculating cross-entropy losses
CEI as well as topological weight terms ωI with respect to
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(a) (b) (c) (d) (e)

Fig. 4. (a) Boundaries of the objects found in the ground truth map SI and (b) its persistence diagram ΠSI
for the homology group 1. (c) Boundaries of

the objects found in the prediction map ŜI and (d) its persistence diagram ΠŜI
for the homology group 1. (e) Illustration of the best matching of these two

diagrams. The Wasserstein distance is the sum of the powers of the distances between the matched points.

Fig. 5. UNet architecture used as the base model.

the difference between the ground truths and the predictions.
Then, the backward pass updates the network weights by
differentiating the updated loss LT . This training has a warm-
up period for 25 epochs where only the cross-entropy loss is
used (i.e., ωI = 1). Afterwards, it continues with minimizing
the proposed topology-aware loss function LT . It is worth
noting that this strategy is also used by the previous studies [5].

In this work, we use a UNet architecture [1], which is
illustrated in Fig. 5. The encoder path comprises three blocks
of two convolutions, with 3× 3 filters, and one max pooling,
with a 2 × 2 filter. The dropout layer with a dropout factor
of 0.3 is added to prevent overfitting. The encoder paths
starts with 32 feature maps in its first block and doubles
the number of feature maps at the end of each block. The
bottleneck block has the same two convolution layers without
max pooling. The decoder path includes three blocks, each of
which consecutively applies upsampling, concatenation, and
two convolution operations. Likewise, the convolution and
upsampling layers use 3 × 3 and 2 × 2 filters, respectively.
The number of feature maps are halved at the end of each
decoder block. All convolution layers except the last one use
the ReLu activation function. The last layer uses the sigmoid
function.

This network was implemented in Python using the Py-
Torch framework. It was end-to-end trained from scratch

with an early stopping approach; training was stopped if
there was no improvement on the validation set loss in
the last 40 epochs. AdaDelta was used as an optimizer to
adaptively adjust the learning rate and the momentum. The
batch size was selected as 1. The training was conducted
on a Tesla T4 GPU. The implementation is available at
https://github.com/seherozcelik/TopologyAware.

IV. EXPERIMENTS

A. Dataset

The proposed topology-aware loss function was tested on a
dataset that contains CT scans of 24 subjects with prediagnosis
of pulmonary embolism. The CT scans were acquired using
a 128 slice Philips Ingenuity CT scanner with 1.5 mm slice
thickness. A 60 ml of non-ionic contrast material (iohexol;
generic name Opaxol) was introduced with a 100 ml saline
chaser at 5 ml/s. The data collection was conducted in ac-
cordance with the tenets of the Declaration of Helsinki and
was approved by Koc University Institutional Review Board
(Protocol number: 2022.161.IRB1.064).

We randomly split the 24 subjects into the training and test
sets. The training set contains 2896 images of 16 subjects;
2234 images of 12 subjects were used to learn the network
weights by backpropagation and 662 images of 4 subjects
were used as validation images for early stopping. The test
set comprises 1431 images of 8 subjects; note that the images
of none of these subjects were used neither in the training nor
for early stopping.

B. Evaluation

Predictions were quantitatively evaluated by calculating the
performance metrics both at the pixel- and vessel-level. For the
pixel-level evaluation, true positive pixels were found, and the
precision, recall, and f-score were calculated for each image,
separately. These metrics were then averaged over the test set
images. The vessel-level evaluation was conducted as follows:
Let si be a vessel (a great vessel or an aortic arch) in the
ground truth SI of a test set image I , and ŝj be a segmented
object in its prediction map ŜI . Each vessel si ∈ SI was
matched with its maximally overlapping object ŝj ∈ ŜI , and
considered as true positive if the intersection-over-union (IoU)
for this match was greater than 50 percent. Afterwards, true
positive vessels were accumulated over all test set images
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TABLE I
PERFORMANCE METRICS CALCULATED OVER THE TEST SET IMAGES. THESE ARE THE AVERAGES AND STANDARD DEVIATIONS ACROSS FIVE RUNS.

Pixel-level metrics Vessel-level metrics Hausdorff
Precision Recall F-score Precision Recall F-score distance

Proposed algorithm 88.2 ± 1.4 87.2 ± 2.1 86.6 ± 0.7 74.6 ± 2.0 84.0 ± 1.2 79.0 ± 0.9 5.3 ± 0.4
Baseline [1] 87.6 ± 2.0 86.0 ± 2.5 85.6 ± 2.2 71.5 ± 6.3 82.1 ± 4.8 76.4 ± 5.6 5.5 ± 0.9
LikelihoodFiltration [5] 87.2 ± 0.7 86.9 ± 0.8 85.8 ± 0.6 73.3 ± 1.7 84.1 ± 2.2 78.3 ± 1.7 5.7 ± 0.6
FourierNet [26] 85.7 ± 2.8 81.2 ± 4.3 81.6 ± 1.6 76.9 ± 3.1 73.1 ± 2.9 74.9 ± 1.5 7.6 ± 1.1

TABLE II
PERFORMANCE METRICS CALCULATED OVER (A) THE TEST SET IMAGES CONTAINING ANY GREAT VESSELS AND (B) THE TEST SET IMAGES CONTAINING

ONLY AORTIC ARCHES. THESE ARE THE AVERAGES AND STANDARD DEVIATIONS ACROSS FIVE RUNS.

Pixel-level metrics Vessel-level metrics Hausdorff
Precision Recall F-score Precision Recall F-score distance

Proposed algorithm 83.2 ± 2.4 80.5 ± 3.3 79.9 ± 1.0 72.1 ± 1.0 78.6 ± 1.9 75.2 ± 1.0 5.7 ± 0.6
Baseline [1] 82.5 ± 3.1 78.4 ± 4.7 78.5 ± 3.8 68.9 ± 6.8 76.3 ± 6.3 72.4 ± 6.5 5.9 ± 1.4
LikelihoodFiltration [5] 81.8 ± 1.2 80.0 ± 1.5 78.8 ± 0.9 71.4 ± 1.9 79.2 ± 3.1 75.1 ± 2.1 6.0 ± 0.6
FourierNet [26] 80.3 ± 3.8 71.0 ± 6.9 72.7 ± 2.9 71.66 ± 3.2 64.2 ± 4.1 67.6 ± 1.9 9.9 ± 1.9

(a)

Pixel-level metrics Vessel-level metrics Hausdorff
Precision Recall F-score Precision Recall F-score distance

Proposed algorithm 93.5 ± 0.7 94.5 ± 1.1 93.7 ± 0.8 80.3 ± 5.2 96.8 ± 1.3 87.7 ± 3.2 4.9 ± 0.4
Baseline [1] 93.1 ± 1.2 94.1 ± 0.2 93.3 ± 0.6 77.2 ± 6.1 95.8 ± 1.5 85.5 ± 4.2 5.0 ± 0.6
LikelihoodFiltration [5] 93.2 ± 0.9 94.2 ± 0.9 93.3 ± 0.7 77.5 ± 3.2 95.9 ± 1.6 85.7 ± 2.4 5.4 ± 0.8
FourierNet [26] 91.5 ± 1.8 92.3 ± 1.8 91.3 ± 1.0 87.3 ± 2.6 94.7 ± 2.0 90.8 ± 2.1 5.0 ± 0.4

(b)

and the vessel-level metrics were calculated. With TPI being
the number of true positive vessels in the test set image I ,
precision =

∑
I TPI/

∑
I |ŜI |, recall =

∑
I TPI/

∑
I |SI |,

and f-score was calculated. Additionally, the Hausdorff dis-
tance was found between each ground truth vessel si ∈ SI and
its maximally overlapping object in the prediction map, and
vice versa. If there is no overlap for a vessel, the Hausdorff
distance was calculated between this vessel and the closest
segmented object. Then, for the test image I , the overall
Hausdorff distance was the weighted average of all Hausdorff
distances where the weight of a vessel was selected as the ratio
of the vessel’s area to the area of all vessels in SI . Note that
better segmentations yield higher precision, recall, and f-score
metrics, and lower Hausdorff distances.

C. Comparisons

We used three algorithms for comparison and ablation
studies. The first one was the Baseline algorithm that had
the UNet architecture given in Fig. 5. This network and its
training were exactly the same with ours except that it used
the standard cross-entropy as its loss function. We used this
algorithm in our comparisons to understand the importance of
using a topology-aware loss function in the network training.
Here it is worth noting that we used the same set of initial
network weights for this baseline as well as our model. Thus,
it is possible to directly observe the effects of a loss function
in a controlled setting.

The second algorithm had also the same network design,
with the same set of initial network weights, but used another
topology-preserving loss function suggested by [5]. As men-
tioned in the introduction and the related work, this suggested

loss relied on calculating the persistent homology based on
the threshold filtration associated to a likelihood function
predicted by the network and the Betti numbers of the ground
truth. We included this LikelihoodFiltration algorithm in our
comparisons to investigate the benefits of using the Vietoris-
Rips filtration on the persistent homology, which is effective
in modeling the topology but also the geometry of the ground
truth vessels (i.e., both the shape of the vessels and the
distribution of the vessels with respect to each other). Note
that in our experiments, we run this algorithm using the codes
provided by its authors.

The last comparison was with the FourierNet algorithm
that proposed a shape-preserving network design [26]. This
algorithm represented the shape prior by extracting Fourier
descriptors on the objects’ contours and concurrently learned
these descriptors with the main task of segmentation. We
included this algorithm in our comparisons to observe the
effects of modeling the vessels’ geometry instead of modeling
only the vessels’ shape. We also run this algorithm using the
codes provided by its authors.

D. Results and Discussion

The quantitative results obtained on all test set images are
given in Table I. We run our model as well as the comparison
algorithms five times, and these are the quantitative results
averaged across these five runs. This table reveals that our
model, which uses the proposed topology-aware loss function,
leads to better segmentations, giving higher f-scores and lower
Hausdorff distances. The visual results obtained on exemplary
test set images are also consistent with this observation
(Fig. 6).
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(a) (b) (c) (d) (e) (f)

Fig. 6. (a) Example test set images. (b) Ground truths. (c) Results of our model that used the proposed topology-aware loss function. (d) Results of the
Baseline algorithm [1], which uses the standard cross entropy loss. (e) Results of the topology-preserving network, the LikelihoodFiltration algorithm, proposed
by [5]. (f) Results of the shape-preserving FourierNet algorithm proposed by [26].
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Comparing with the Baseline algorithm, which uses the
standard cross-entropy as its loss function, our model with the
proposed topology-aware loss is effective to eliminate false
positives (the first two rows of Fig. 6) as well as correct
false negatives (the third and fourth rows of Fig. 6). It can
also fix incorrect segmentations when false positives and false
negatives are found in the same segmentation map (the fifth
and sixth rows of Fig. 6). Although the LikelihoodFiltration
and FourierNet algorithms can correct them to some extent,
the proposed model is more effective than these algorithms,
as also reflected in the quantitative results. The last row
of Fig. 6 shows an example where all models failed to
fix an undersegmentation. However, even on this example,
the proposed loss function improved incorrectly segmented
pixels better than the other algorithms, partially predicting the
boundary pixels between the two vessels.

The main contribution of this work is to use the Vietoris-
Rips filtration for calculating the persistent homology of the
ground truth and the prediction. This has the benefit of
modeling the shape of the objects and their geometry, which
the persistent homology associated to a likelihood function
fails to detect. This concurrent modeling is essential to capture
the global invariants in our application. Since CT images
contain both aorta and great vessels, the shape of the aorta
and the distribution and the distances of the great vessels
with respect to each other contain important prior geometric
information that could be exploited. To investigate this further,
we also calculated the performance metrics separately, for
images containing any great vessels and for those containing
only the aorta (or the aortic arches). These metrics are reported
in Tables II(a) and II(b), respectively. These tables demonstrate
that the proposed topology-aware loss function is able to
improve the metrics both for the great vessels and the aortic
arches. Here one can observe that the FourierNet algorithm,
with the shape-preserving property, gives the best vessel-level
f-score for the aortic arches, which is consistent with our
observation that the shape is important for the aorta. On the
other hand, it is not successful to model the distribution of the
great vessels, and in turn, it yields the worst results for them.

V. CONCLUSION

This paper presented a topology-aware loss function for
automated segmentation of the aorta and great vessels in CT
images. This loss function was defined as a weighted cross
entropy, in which the weight for an image was the topological
dissimilarity between the ground truth map and the segmented
map predicted by the network at the end of each epoch. Differ-
ent from the previously suggested segmentation network de-
signs, this paper proposed to apply the Vietoris-Rips filtration
to obtain the persistence diagrams of these maps and calculate
their (dis)similarity using the Wasserstein distance between
the corresponding persistence diagrams. Experiments on 4327
CT images of 24 subjects revealed that this proposal is more
effective than its counterparts in simultaneously modeling the
shape of the aorta and the geometry between the great vessels.

In this work, we used the topological dissimilarity between
the ground truth and the prediction to define the weight

of an image in the loss function. In other words, we used
the same dissimilarity metric to penalize every pixel in the
same image, regardless of whether they were correctly or
incorrectly predicted. One future research direction is to reflect
the dissimilarity only to false negative and false positive
pixels, and possibly with different extents. The aorta and great
vessel segmentation provides an exemplary showcase for the
necessity of modeling the shape and geometry at the same
time, and hence, the effectiveness of applying the Vietoris-
Rips filtration to obtain the persistence diagrams for defining
the proposed topology-aware loss function. Using it for other
segmentation problems can be considered as another future
research direction.
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