
INFINITESIMAL DILOGARITHM ON CURVES OVER TRUNCATED

POLYNOMIAL RINGS

SİNAN ÜNVER

Abstract. We construct infinitesimal invariants of thickened one dimensional cycles in three
dimensional space, which are the simplest cycles that are not in the Milnor range. This

generalizes Park’s work on the regulators of additive cycles. The construction also allows us to
prove the infinitesimal version of the strong reciprocity conjecture for thickenings of all orders.

Classical analogs of our invariants are based on the dilogarithm function and our invariant

could be seen as their infinitesimal version. Despite this analogy, the infinitesimal version
cannot be obtained from their classical counterparts through a limiting process.

1. Introduction

1.1. Statement of the main technical result. For a scheme X, one expects an abelian cat-
egory MX of mixed motivic Q-sheaves on X, such that the extensions groups HiM(X,Q(n)) :=

ExtiMX
(Q(0),Q(n)) of the Tate sheaves are computed in terms of the K-groups as K2n−i(X)

(n)
Q .

We emphasize that we do not assume that X is smooth over a field or even reduced. At present,
such a category has not been constructed. When X is a smooth and projective curve over a base
scheme S, which in our case will be the spectrum of an artin ring, the conjectural Leray-Serre
spectral sequence would give a map:

K3(X)
(3)
Q = H3

M(X,Q(3)) → H1
M(S,Q(2)) = K3(S)

(2)
Q .

In certain cases, there are regulator maps from K3(S)
(2)
Q to an abelian group A. The compo-

sition with the above map would induce a map from K3(X)
(3)
Q to A. In case S = Spec k[t]/(tm),

such a map K3(S)
(2)
Q → ⊕m<r<2mk was constructed in [10]. One of our aims in this paper is to

give an analog of the induced map

H3
M(X,Q(3)) = K3(X)

(3)
Q → ⊕m<r<2mk,

which does not depend on the conjectural category of motives. This map is an infinitesimal analog
of a real analytic regulator as we will describe in §2.2. This makes this paper a continuation of
our project started in [21] and followed up in [20], which aim to give infinitesimal analogs of real
analytic regulators.

First, let us state the main technical result on which all the applications are based. Let k be
a field of characteristic 0, km := k[t]/(tm), for m ≥ 2, and C/km be a smooth and projective
curve. We denote the underlying reduced scheme of C by C. We will need a variant of the Bloch
complex ([6, §1.8, §1.9], §2.1). If X/k is a smooth and projective curve, then the part of the
classical Bloch complex relevant for us is:

B2(k(X))⊗ k(X)× → ⊕x∈|X|B2(k(x))⊕ Λ3k(X)× → ⊕x∈|X|Λ
2k(x)×.(1.1.1)

Here the summations are over the set closed points |X| of X and B2 denotes the Bloch group
(§2.1.1).

In order to define a variant of the above complex for C, we first need to make a choice of
smooth liftings. By a smooth lifting c of a closed point c ∈ |C|, we mean a closed subscheme c of
C, which is supported on c and is smooth over km (cf. §7). For each point c ∈ |C|, fix once and
for all a smooth lifting c and let P denote the set of all of these liftings. Let η be the generic
point of C, for a function f ∈ O×

C,η, and c ∈ P, we define a notion of f being good with respect to
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c or equivalently of being c-good in §7. We then define the sheaf (OC ,P)× in §8.1, by requiring
that its sections on an open set U to be those f ∈ O×

C,η, which are c-good for all c ∈ P with

c := |c| ∈ U. We similarly define a sheaf B2(OC ,P) in §8.1, which is a generalization of the
Bloch group but which also encodes the notion of goodness with respect to elements of P. This
gives us a complex C (C,P) of sheaves on C which are concentrated in degrees 2 and 3:

B2(OC ,P)⊗ (OC ,P)× → ⊕c∈Pic∗(B2(k(c)))⊕ Λ3(OC ,P)×.(1.1.2)

Here k(c) denotes the artin ring which is the ring of regular functions on the affine scheme c, and
ic denotes the imbedding from c to C. Since we fixed a single lifting c ∈ P for each point c in
|C|, the sum above can also be thought of as a sum over |C|. The main technical result is the
following construction of infinitesimal Chow dilogarithms:

Theorem 8.1.1. Let k be a field of characteristic 0, C be a smooth and projective curve over
km := k[t]/(tm), with m ≥ 2 and P be a choice of a smooth lifting for each closed point of C.
For each m < r < 2m, there is an infinitesimal regulator:

ρm,r : H
3(C (C,P)) → k.(1.1.3)

Specializing to the case when C is the projective line P1
km
, with coordinate function z, we fix

an a ∈ k×m such that 1 − a ∈ k×m. If we choose P such that that z, 1 − z and z − a are all good
with respect to P, then (1− z) ∧ z ∧ (z − a) ∈ Γ(Λ3(OP1 ,P)×) and

ρm,r((1− z) ∧ z ∧ (z − a)) = ℓim,r([a]),

where ℓim,r : B2(km) → k is the additive dilogarithm defined in [18] (cf. §3).
The notation of the theorem in the main body of the paper is slightly different but equivalent.

This generalizes the construction in [21] in two different ways: we sheafify the previous con-
struction and we construct the regulator for any m < r < 2m, rather than only for m = 2. More
precisely, if we let k(C,P)× denote the set of global sections Γ(C, (OC ,P)×) of (OC ,P)×, the
construction of [21] only gives a map from Λ3k(C,P)× and only in the case when m = 2 and
r = 3. We will sketch the main idea of the construction in the section below, but let us mention
here that the construction of a map ρm,m+1 from Λ3k(C,P)× to k can be done by the methods
of [21]. On the other hand, the construction of ρm,r form+1 < r < 2m requires the new methods
that we introduce in this paper.

1.2. Applications. As we described above, specializing to triples of functions gives us the in-
finitesimal Chow dilogarithm:

ρm,r : Λ
3k(C,P)× → k.(1.2.1)

which we will denote by the same symbol.

1.2.1. Infinitesimal strong reciprocity conjecture. The first application of this construction will
be to an infinitesimal analog of the strong reciprocity conjecture of Goncharov [7]. If X/k is a
smooth and projective curve over an algebraically closed field k, the Suslin reciprocity theorem
states that the sum of the residue maps∑

x∈|X|

resx : KM
3 (k(X)) → KM

2 (k)(1.2.2)

at all the closed points of X is equal to 0. In [7], Goncharov conjectures that the map of
complexes:

B2(k(X))⊗ k(X)× //

��

Λ3k(X)×

��
B2(k) // Λ2k×
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obtained from (1.1.1) by taking sums of the maps B2(k(x)) → B2(k) and Λ2k(x)× → Λ2k×, is
homotopic to 0. More precisely, he conjectures that there is a canonical map h : Λ3k(X)× →
B2(k) which makes the diagram

B2(k(X))⊗ k(X)× //

��

Λ3k(X)×

��

h

vv
B2(k) // Λ2k×

commute and has the property that h(λ ∧ f ∧ g) = 0, if λ ∈ k× and f, g ∈ k(X)×. Note that
this is a stronger version of the Suslin reciprocity theorem since the cokernel of the horizontal
maps in the diagram above are KM

3 (k(X)) and KM
2 (k). This original version of the conjecture

is proved by Rudenko [16], by using homotopy invariance.
We prove an infinitesimal version of this conjecture using the infinitesimal Chow dilogarithm

above and the determination of the structure of the Bloch group over km which was done in [18].
Our method is entirely different from Rudenko’s, since homotopy invariance is no longer true in
the infinitesimal world. Let B2(k(C,P)) denote the set of global sections of B2(OC ,P), then
the infinitesimal version of the strong reciprocity conjecture states:

Theorem 9.1.1. There is a map h : Λ3k(C,P)× → B2(km), which makes the diagram

B2(k(C,P))⊗ k(C,P)× //

��

Λ3k(C,P)×

��

h

uu
B2(km) // Λ2k×m

commute and has the property that h(k×m ∧ Λ2k(C,P)×) = 0.

1.2.2. Application to algebraic cycles. As another application of the infinitesimal Chow diloga-
rithm, we construct invariants of higher algebraic cycles up to rational equivalence. In principle
the group of algebraic cycles that we are interested in should be denoted by CH2(km, 3). However,
since km is far from being smooth over k, such a group of cycles which can be expressed in terms
of K-theory is not defined.

One way overcoming this problem is to use the additive Chow groups of Bloch and Esnault
[4]. Additive Chow groups were defined in order to give a cycle theoretic interpretation of the
motivic cohomology groups of km. One can think of additive Chow cycles as those cycles which
are very close to the 0 cycle, the closeness to 0 being defined via the modulus (tm). A regulator
on this group was defined by Park in [15] for r = m+ 1.

We think that additive Chow groups tell only part of the story when we try to understand
higher cycles on km. For this reason we define a somewhat bigger class of higher cycles over km.
We do this by defining a group z2f (k∞, 3) of codimension 2 cycles on A3

k∞
, where k∞ := k[[t]].

The main theorem is then a reciprocity theorem:

Theorem 9.4.2. For m < r < 2m, we define a regulator ρm,r : z2f (k∞, 3) → k. If Za, for

a(1− a) ∈ k×∞ is the dilogarithmic cycle given by the parametric equation (1− z, z, z − a) then

ρm,r(Za) = ℓim,r([a]).

If Zi ∈ z2f (k∞, 3), for i = 1, 2, satisfy the condition (Mm), then they have the same infinitesimal
regulator value:

ρm,r(Z1) = ρm,r(Z2).

This essentially states that if two cycles are the same modulo (tm) then they have the same
value under the regulator. Note the similarity of this to the definition of de Rham cohomology on
singular schemes by first imbedding them in a smooth scheme. The precise definition of z2f (k∞, 3)

and the condition (Mm) can be found in §9.4. After the category of motives over non-reduced
rings is constructed, we expect these invariants to induce the regulators in this category.
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1.3. Main ideas behind the construction. In this section, we will try to illustrate the ideas
behind the construction in Theorem 8.1.1. For each 2 ≤ m < r < 2m, we will construct a
regulator whose source is the degree 3 cohomology of the complex of sheaves:

B2(OC ,P)⊗ (OC ,P)× → ⊕c∈Pic∗(B2(k(c)))⊕ Λ3(OC ,P)×

concentrated in the degrees [2, 3].
Suppose that we are given a Zariski open cover {Ui}i∈I of C and a corresponding cocyle

γ, given by the following data: γi ∈ Λ3(OC ,P)×(Ui); εi,c ∈ B2(k(c)) for every c ∈ Ui; and
βij ∈ (B2(OC ,P)⊗ (OC ,P)×)(Uij). We will define ρm,r(γ) ∈ k, by first making many choices
and then showing that the construction is independent of all the choices.

(i) Let Ãη be a lifting of OC,η to a smooth k∞-algebra and for every c ∈ |C|, let Ãc be a

lifting of the completion ÔC,c of the local ring of C at c, to a smooth k∞-algebra, together with
a smooth lifting c̃ of c.

(ii) Let an i ∈ I be arbitrary and for each c choose a jc ∈ I such that c ∈ Ujc
(iii) Choose an arbitrary lifting γ̃iη ∈ Λ3Ã×

η of the germ γiη ∈ Λ3O×
C,η

(iii) Choose a good lifting γ̃jc ∈ Λ3(Ãc, c̃)
× of the image γ̂jc,c of γjc in Λ3(ÔC,c, c)

×, for every
c ∈ |C|,

(iv) Choose an arbitrary lifting β̃jci,η ∈ B2(Ãη)⊗ Ãη of the image βjci,η ∈ B2(OC,η)⊗O×
C,η

of βjci, for every c ∈ |C|.
We then define the value of the regulator ρm,r on the above element by the expression

ρm,r(γ) :=
∑
c∈|C|

Trk
(
ℓm,r(resc̃γ̃jc)− ℓim,r(εjc,c) + rescωm,r(γ̃iη − δ(β̃jci,η), γ̃jc)

)
.(1.3.1)

We continue with the description of this expression.
The starting point for the above definition is our construction of the additive dilogarithm in

[18]. For a regular local Q-algebra R, letting Rm := R[t]/(tm), for every 2 ≤ m < r < 2m, we
have an additive dilogarithm map ℓim,r : B2(Rm) → R that satisfies all the analogous properties
of the Bloch-Wigner dilogarithm function. Most importantly, the direct sums of these maps over

all the possible r’s give an isomorphism between the infinitesimal part of the K-group K3(Rm)
(2)
Q

and ⊕m<r<2mR. We explain this in detail in §3 and give explicit formulas for these functions
ℓim,r. The function ℓim,r can also be described in terms of the differential δ in the Bloch complex
of B2(R∞), with R∞ := R[[t]], by the following commutative diagram

B2(R∞)
δ //

��

Λ2R×
∞

ℓm,r

��
B2(Rm)

ℓim,r // R,

where ℓm,r is given explicitly in Definition 3.0.2 below.
We can then describe the first two terms in (1.3.1) as follows. For a connected, étale km-

algebra (resp. k∞-algebra) A, there is a canonical isomorphism A ≃ k′m (resp. A ≃ k′∞). Using
this isomorphism for k(c), we get a canonical identification B2(k(c)) = B2(k(c)m). Therefore,
ℓim,r(εj,c) ∈ k(c) is unambiguously defined using the map ℓim,r : B2(k(c)m) → k(c). Since the

element γ̃jc ∈ Λ3(Ãc, c̃)
× is assumed to be c̃-good, the residue resc̃γ̃jc is defined as an element

of Λ2k(c̃)× in the beginning of §7. Using the identification Λ2k(c̃)× = Λ2k(c)×∞ and the map
ℓm,r : Λ

2k(c)×∞ → k(c), we define the element ℓm,r(resc̃γ̃jc) ∈ k(c).
Defining the last term rescωm,r and proving its properties will constitute a large propor-

tion of the paper. If R is smooth of relative dimension 1 over k, we construct a map ωm,r :
Λ3(Rr, (t

m))× → Ω1
R/k. Here (Rr, (t

m))× denotes {(a, b)|a, b ∈ R×
r , ab

−1 ∈ 1 + (tm)}. Since we

do not fix a lifting of our curve in the construction of ρm,r, defining ωm,r on this group is not
enough. More precisely, we need to extend ωm,r to the following context. Suppose that R and
R′ are smooth of relative dimension 1 over kr together with a fixed isomorphism:

χ : R/(tm) → R′/(tm),
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of km-algebras between their reductions modulo (tm). Let

(R,R′, χ)× := {(a, b)|a ∈ R×, b ∈ R′×, χ(a+ (tm)) = b+ (tm) in R′/(tm)}.
Ideally, we would like to extend the definition of ωm,r to a map from Λ3(R,R′, χ)× to Ω1

R/k.

This can be done when r = m+ 1 but it is not true if m+ 1 < r.
However, it turns out that for us purposes, we do not need these 1-forms themselves but only

their residues and we can construct these residues independently of all the choices. Suppose that
S is a smooth km-algebra of relative dimension 1, with x a closed point and η the generic point of
its spectrum. Suppose that R, R′ are liftings of Sη to kr, with χ the corresponding isomorphism
from R/(tm) to R′/(tm). We construct a map

resxωm,r : Λ
3(R,R′, χ)× → k′,

where k′ is the residue field of x, which is functorial and independent of all the choices. Let χ̃ :
R → R′ be an isomorphism of kr-algebras which is a lifting of χ. Choosing also an isomorphism
Rr ≃ R of kr-algebras, provides us with an identification

(R,R′, χ)×
χ̃∗
// (Rr, (t

m))× .

Let ψ denote the isomorphism R → Sη induced by the one from R/(tm) to Sη. Then we define
resxωm,r by the composition

Λ3(R,R′, χ)×
Λ3χ̃∗

// Λ3(Rr, (t
m))×

ωm,r // Ω1
R/k

dψ
// Ω1

Sη/k

resx // k′.

We prove that this composition is independent of all the choices. Applying this construction in
the above context, we see that γ̃iη − δ(β̃jci) and γ̃jc are two liftings of the same object γjc to two

different generic liftings of ÔC,c. Therefore, the expression

rescωm,r(γ̃iη − δ(β̃jci,η), γ̃jc) ∈ k(c)

is defined.
Applying traces and taking the sum over all the closed points, we obtain the expression in

(1.3.1). Next we show that the sum is in fact a finite sum. The above construction involves many
choices and would be completely useless if it depended on anything other than the initial data.
This is the content of Theorem 8.1.1, our main theorem. Because of its basic properties that we
prove below, ρm,r deserves to be called a regulator.

Finally, let us mention that in [21], where the case m = 2 was handled, the only possible r
is 3 and hence satisfies r = m + 1. In this case, the map ω2,3 can be defined as a map from
Λ3(R,R′, χ)× → Ω1

R/k. This is not true in general and this is why we have to pursue a different

approach in this paper which is based on defining only the residue of the differential rather than
the differential itself.

1.4. Outline. We give an outline of the paper. In §2, we describe the complex analytic version
of our construction for motivation. In §3, we give a review of the construction in [18] of the
additive dilogarithm on the Bloch group of a truncated polynomial ring. In §4, we describe the
infinitesimal part of the Milnor K-theory of a local Q-algebra endowed with a nilpotent ideal,
which is split, in terms of Kähler differentials. Without any doubt the results in this section are
known to the experts and we do not claim originality. The reason for our inclusion of this section
is first that we could not find an easily quotable statement in the full generality which we will need
in our later work, and second that we found a short argument which is in line with the general set-
up of this paper. In §5, for a regular local Q-algebra R, we define regulators B2(Rm)⊗R×

m to Ω1
R

for every m < r < 2m, which vanishes on boundaries. This construction depends on the splitting
of Rm in an essential way. In §6, we introduce the main object of this paper: for a smooth algebra
R of relative dimension 1 over k, we define regulators ωm,r : Λ3(Rr, (t

m))× → Ω1
R/k, for each

m < r < 2m. In §7, we compute the residues of the value of ωm,r on good liftings. In §8, we use
the results of the previous sections to construct the regulator from H3

B(C,Q(3)) and specializing
to triples of rational functions we obtain the infinitesimal Chow dilogarithm of higher modulus.
In §9, we give examples of the infinitesimal Chow dilogarithm in the cases of the projective curve
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and elliptic curves and also give the applications to the strong reciprocity conjecture and the
invariants of cycles.

Conventions and notation. We are interested in everything modulo torsion. Therefore,
we tensor all abelian groups under consideration with Q without explicitly signifying this in the
notation. For example, KM

n (A) denotes Milnor K-theory of A tensored with Q etc.
For a ring R, we let R∞ := R[[t]] (resp. R((t))) be the formal power series (resp. the formal

Laurent series) ring over R. For m ≥ 1, we let Rm := R[t]/(tm), be the truncated polynomial ring

over R of modulus m. If R is a Q-algebra then we write exp(α) :=
∑

0≤n
αn

n! for α ∈ (t) ⊆ R∞.

The same formula is used for α ∈ (t) ⊆ Rm.
For an appropriate functor F, we let F (R∞)◦ := ker(F (R∞) → F (R)) (resp. F (Rm)◦ :=

ker(F (Rm) → F (R))), denote the infinitesimal part of F (R∞) (resp. F (Rm)).
For any set X, let Q[X] denote the vector space over Q with basis {[x]|x ∈ X}.
We denote both the differential B2(A) → Λ2A× in the Bloch complex of weight 2 (cf. §2.1.1)

and the differential B2(A) ⊗ A× → Λ3A× in the Bloch complex of weight 3 (cf. §2.1.2) by δ.
Since the sources of the maps are different, this will not cause any confusion. When we use these
maps in the case when A = Rr and we want to emphasize dependence on r in the notation, we
denote both of these differentials by δr.

2. The analogy with the complex case

In this section we will describe the analogy with the complex case after recalling some of the
standard definitions. Our aim is to give a flavor of the concepts before going into the technical
details.

2.1. Basic definitions. Here we collect some of the basic definitions that are standard in the
literature. We will use these definitions in this section and generalize them in the later sections.

2.1.1. The Bloch group B2 and the Bloch complex of weight 2. For any ring A, we let A♭ := {a ∈
A|a(1 − a) ∈ A×}. For a local Q-algebra R, the Bloch group B2(R) is the quotient of Q[R♭] by
the subspace generated by

[x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)],

for all x, y ∈ R♭ such that x − y ∈ R×. There is a map δ : B2(R) → Λ2R×, which is defined on
the generators by letting δ([x]) := (1 − x) ∧ x. The corresponding complex obtained by putting
B2(R) in degree 1 and Λ2R× is degree 2 is called the Bloch complex of weight 2. This complex
computes the weight 2 motivic cohomology of R, when R is a field. We refer to [18] for details
about the Bloch group and the Bloch complex of weight 2. We denote the cohomology of this
complex with Hi(R,Q(2)).

2.1.2. The pre-Bloch complex of weight 3. Continuing with the notation above, we have a complex

Q[R♭] → B2(R)⊗R× → Λ3R×,(2.1.1)

concentrated in degrees [1, 3], where the first map sends a basis element [x] to [x] ⊗ x and the
second one sends [x]⊗ y to δ(x) ∧ y. Abusing the notation, we denote all the differentials in this
complex by δ. This complex and its variants are defined and studied in detail in [6]. We will call
this complex the pre-Bloch complex of weight 3.

The first group Q[R♭] when divided by the appropriate relations is denoted by B3(R). At this
stage of this theory, the exact type of these relations are not clear. There are several different
candidates and it is not known that they give the same answer [6]. The corresponding sequence
obtained is a candidate for the weight 3 motivic cohomology complex [6]. Since we will only deal
with the cohomology groups in degrees 2 and 3, we will only work with the pre-Bloch complex
(2.1.1) above and the precise relations in order to define B3(R) will not be important for us. The
reason that we do not call this complex the Bloch complex is that we do not use a version of the
group B3(R) and instead use Q[R♭]. For R equal to the dual numbers of a field, this complex
and its higher weight analogs were used in [19] to construct the additive polylogarithms.

For the degrees i = 2 and 3, we will denote the cohomology of the pre-Bloch complex in (2.1.1)
by Hi(R,Q(3)).
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2.1.3. Residue map between the Bloch complexes. Suppose that R is a discrete valuation ring
with residue field k and with field of fractions K. There is a canonical residue homomorphism
KM
n (K) → KM

n−1(k) constructed by Milnor [13] between the Milnor K-groups. Goncharov gen-
eralized to a map between the Bloch complexes in [6, §1.14].

For us, the only parts of this construction that will be relevant are:

res : ΛnK× → Λn−1k×

and
res : B2(K)⊗K× → B2(k).

To describe these maps, let us fix a uniformizer π of R. The map will turn out to be independent
of the choice of the uniformizer.

The first map is determined by the following formula

res(u0π
m ∧ u1 ∧ u2 ∧ · · · ∧ un−1) = m · u1 ∧ u2 ∧ · · · ∧ un−1,

where m ∈ Z, ui, for 1 ≤ i < n are units in R and ui for 1 ≤ i < n are the images of ui in k.
The second map is determined by the formulas that

res([a]⊗ b) = 0,

if a ∈ K♭ \R♭ or b ∈ R×; and
res([u]⊗ π) = [u],

if u ∈ R♭ and u is the image of u in k♭.
These maps give a commutative diagram

B2(K)⊗K× //

res

��

Λ3K×

res

��
B2(k) // Λ2k×

and hence a sequence
B2(K)⊗K× → B2(k)⊕ Λ3K× → Λ2k×.

If we start with a smooth curve X/k, then taking residues at all the closed points and summing
them will give a sequence

B2(k(X))⊗ k(X)× → ⊕x∈|X|B2(k(x))⊕ Λ3k(X)× → ⊕x∈|X|Λ
2k(x)×.

This is part of the motivic complex of weight 3 of the curve X [6], whose middle cohomology
receives a map from the motivic cohomology H3

M(X,Q(3)) of X.

2.2. Complex analog of the main construction. Here we briefly explain the complex analog
of our construction, which is one of our main motivations for the infinitesimal case. If X/C is a
smooth projective curve, then as above one expects a map

K3(X)
(3)
Q = H3

M(X,Q(3)) → H1
M(C,Q(2)) = K3(C)(2)Q .

Composing with the Borel regulatorK3(C)(2)Q → C/(2πi)2Q and taking the imaginary part would

give a map K3(X)
(3)
Q → R. Up to normalization, this map can be constructed as follows [7, §6].

For f1, f2, and f3 ∈ C(X)×, let

r2(f1, f2, f3) := Alt3(
1

6
log |f1| · d log |f2| ∧ d log |f3| −

1

2
log |f1| · d arg f2 ∧ d arg f3),

(such that dr2(f1, f2, f3) = Re(d log(f1) ∧ d log(f2) ∧ d log(f3))). The Chow dilogarithm map
ρ : Λ3C(X)× → R is given in terms of this by

ρ(f1 ∧ f2 ∧ f3) :=
∫
X(C)

r2(f1, f2, f3).(2.2.1)

In the special case when X = P1, we have

ρ((1− z) ∧ z ∧ (z − a)) = D2(a),(2.2.2)
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where D2(z) := Im(ℓi2(z))+arg(1− z) · log(|z|) is the Bloch-Wigner dilogarithm, with ℓi2(z) the

(multi-valued) analytic continuation of
∑

1≤n
zn

n2 .
The middle cohomology of

→ B2(C(X))⊗ C(X)×Q → (⊕x∈XB2(C))⊕ Λ3C(X)×Q → ⊕x∈XΛ2C×
Q →(2.2.3)

receives a map from H3
M(X,Q(3)) ≃ K3(X)

(3)
Q . Combining D2 and ρ, if we let

ρX := −(⊕x∈XD2)⊕ ρ : (⊕x∈XB2(C))⊕ Λ3C(X)×Q → R,

then ρX vanishes on the image of B2(C(X)) ⊗ C(X)×Q and induces the map K3(X)
(3)
Q → R, we

were looking for above. If one assumes a theory of motivic sheaves then this is the composition
of H3

M(X,Q(3)) → Ext1MC
(Q(0),H2(X/C)(3)) = H1

M(C,Q(2)) → B2(C) and the Bloch-Wigner

dilogarithm D2 : B2(C) → R. Here MC denotes the category of motives over C and H2(X/C) =
Q(−1) denotes the relative motivic cohomology of X/C.

In the special case of X = P1 the map ρ can be made even more explicit [7, §6.3]. Suppose
that f1, f2, and f3 are arbitrary rational functions on P1. By the linearity of ρ and the fact that
ρ vanishes on elements of the from λ ∧ f ∧ g, if λ ∈ C×, we notice that in order to determine
ρ(f1 ∧ f2 ∧ f3), it is enough to determine its value for fi = z − αi, for pairwise distinct αi.
Using functoriality with respect to automorphisms of P1 fixing ∞, and the formula (2.2.2), we
determine that

ρ((z − α1) ∧ (z − α2) ∧ (z − α3)) = D2(
α3 − α2

α1 − α2
).(2.2.4)

3. Additive dilogarithm of higher modulus

In this section, we review and rephrase the theory of the additive dilogarithm over truncated
polynomial rings in a manner which we will need in the remainder of the paper. Further results
for this function can be found in [18].

For a Q-algebra R, let R∞ := R[[t]], denote the formal power series over R and Rm :=
R∞/(t

m) the truncated polynomial ring of modulus m over R. Since R is a Q-algebra we have

the logarithm log : (1 + tR∞)× → R∞ given by log(1 + z) :=
∑

1≤n(−1)n+1 zn

n , for z ∈ tR∞.

Let log◦ : R×
∞ → R∞, be the branch of the logarithm associated to the splitting of R∞ ↠ R

corresponding to the inclusion R ↪→ R∞, defined as log◦(α) := log( α
α(0) ). If q =

∑
0≤i qit

i ∈ R∞

and 1 ≤ a then let q|a :=
∑

0≤i<a qit
i ∈ R∞, denote the truncation of q to the sum of the first

a-terms, and ta(q) := qa, the coefficient of ta in q. If u ∈ tR∞ and s(1− s) ∈ R×, we let

ℓim,r(s exp(u)) := tr−1(log
◦(1− s exp(u|m)) · ∂u

∂t

∣∣
r−m),(3.0.1)

for m < r < 2m. Here, and everywhere in the paper, exp(z) denotes the formal power series∑
0≤n

zn

n! . Also note that ∂u
∂t

∣∣
r−m denotes the truncation of the derivative of u with respect to

t, to the sum of its first (r −m)-terms. Fixing m ≥ 2, these ℓim,r’s, for m < r < 2m together

constitute a regulator for the kernel of the map from K3(Rm)(2) to K3(R)
(2). This is exactly

analogous to the Bloch-Wigner dilogarithm in the complex case [1], [17], [18].
Since every element of R♭∞ can be written in the form s exp(u) as the above, we can linearly

extend ℓim,r, to obtain a map from the vector space Q[R♭∞] with basis R♭∞. We denote this map
by the same symbol.

When we would like to specify the δ defined on B2(R∞) (resp. B2(Rm)), as given in §2.1.1,
we denote it by δ∞ (resp. δm).

Let V be a free R module with basis {ei}i∈I and {e∨i }i∈I the dual basis of V ∨. Given v and
α =

∑
i∈I aiei in V, we let

(v|α) :=
∑
i∈I

aie
∨
i (v) ∈ R.

If there is an ordering on I, we let {ei ∧ ej}i>j be the corresponding basis of Λ2V. Then, with
the above notation, the expression (w|β), for w, β ∈ Λ2V, is defined. We consider tR∞, as a free
R-module with basis {ti}1≤i.
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Let us denote the composition of B2(R∞)
δ−→ Λ2R×

∞ with the canonical projection Q[R♭∞] →
B2(R∞) also by δ. Also denote the map

Λ2R×
∞ → Λ2tR∞ ↠ Λ2

RtR∞

induced by Λ2 log◦ : Λ2R×
∞ → Λ2tR∞, by the same symbol.

Proposition 3.0.1. With the notation above, for α ∈ Q[R♭∞] and 2 ≤ m < r < 2m, we have

ℓim,r(α) =
(
Λ2 log◦(δ(α))|

∑
1≤i≤r−m

itr−i ∧ ti
)
,(3.0.2)

and this function descends through the canonical projections

Q[R♭∞] → B2(R∞) → B2(Rm),

to define a map from B2(Rm) to R, denoted by the same notation.

Proof. We proved in [18, Prop. 2.2.1] that the function defined by the right hand side of (3.0.2),
temporarily denote it by ℓi∗m,r, descends to give a map from Q[R♭m] and in [18, Prop. 2.2.2] that
it descends to give a map from B2(Rm). Therefore it only remains to prove the equality (3.0.2).

With the notation ℓi(α) := ti(log
◦(α)), ℓi∗m,r can be rewritten as

ℓi∗m,r =
( ∑

1≤i≤r−m

i · ℓr−i ∧ ℓi
)
◦ δ.

Then we have ℓi∗m,r(s exp(u)) = ℓi∗m,r(s exp(u|m)), since we know that ℓi∗m,r descends to Q[R♭m].
We have ℓi(s exp(u|m)) = ui, for 1 ≤ i < m and ℓi(s exp(u|m)) = 0, for m ≤ i. Using this we
obtain that ℓi∗m,r(s exp(u|m)) =

∑
1≤i≤r−m i · ℓr−i(1− s exp(u|m)) · ui = ℓim,r(s exp(u)). □

Let us give a name to the essential map which constitute ℓim,r.

Definition 3.0.2. We denote the map from Λ2R×
∞ to R which sends α ∧ β to

(Λ2 log◦(α ∧ β)|
∑

1≤i≤r−m

itr−i ∧ ti)

by ℓm,r. It is clear that ℓm,r : Λ2R×
∞ → R factors through the projection Λ2R×

∞ → Λ2R×
r . The

additive dilogarithm above is given in terms of this function as

ℓim,r = ℓm,r ◦ δ∞ = ℓm,r ◦ δr.

We will use the main result from [18], there it was stated in the case when R is a field of
characteristic 0, but the same proof works when R is a regular, local Q-algebra. Let B2(Rm)◦

denote the kernel of the natural map from B2(Rm) to B2(R), consistent with the notation in the
introduction.

Theorem 3.0.3. The complex B2(Rm)◦
δ◦−→ (Λ2R×

m)◦ computes the infinitesimal part of the
weight two motivic cohomology of Rm, and the map ⊕m<r<2mℓim,r induces an isomorphism

HC◦
2(Rm)(1) ≃ K◦

3 (Rm)(2) ≃ ker(δ◦)
∼−→ R⊕(m−1)

from the relative cyclic homology group HC◦
2(Rm)(1) to R⊕(m−1).

4. Infinitesimal Milnor K-theory of local rings

Suppose that R is a local Q-algebra and A is an R-algebra, together with a nilpotent ideal
I such that the natural map R → A/I is an isomorphism. Then the Milnor K-theory KM

n (A)
of A, naturally splits into a direct sum KM

n (A) = KM
n (R) ⊕ KM

n (A)◦. In this section, we will
describe this infinitesimal part KM

n (A)◦ in terms of Kähler differentials. It is easy to find such
an isomorphism using Goodwillie’s theorem [8], and standard computations in cyclic homology.
However, in the next section, we need an explicit description of this isomorphism in order to
determine which symbols vanish in the corresponding Milnor K-group. Fortunately, determining
what this isomorphism turns out to be quite easy. By the functoriality and the multiplicativity
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of the isomorphism, we reduce the computation to the case of KM
2 of the dual numbers over R

where the computation is easy.
There is no doubt that the results in this section are well-known and we do not claim any

originality. We simply have not been able to find a description of the map φ below which is easily
quotable in the literature. Since our discussion is quite short we did not refrain from including
it in the present paper. We will only need the result below for A = Rm. On the other hand, in a
future work we will need this result in full generality which justifies our somewhat more general
discussion:

Proposition 4.0.1. There exists a unique map φ : KM
n (A)◦ → Ωn−1

A /(dΩn−2
A +Ωn−1

R ) such that

φ({α, β1, · · · , βn−1}) = log(α)
dβ1
β1

∧ · · · ∧ dβn−1

βn−1
,(4.0.1)

for α ∈ 1 + I and β1, · · · , βn−1 ∈ A×, and this map is an isomorphism.

Proof. The uniqueness follows from the fact that the infinitesimal part of Milnor K-theory is
generated by terms {α, β1, · · · , βn−1} as in the statement. In order to see this, let ι : R → A
denote the structure map. Since R → A → A/I is an isomorphism, every element in A×

can be uniquely written as ι(r)α with r ∈ R× and α ∈ 1 + I. This implies that KM
n (A) is

generated by elements of the form {α1, · · · , αi, ι(r1), · · · , ι(rn−i)}, with 0 ≤ i ≤ n and rj ∈ R,

αj ∈ 1 + I. The terms with 1 ≤ i are in KM
n (A)◦ = ker(KM

n (A) → KM
n (A/I)). They are also of

the form {α, β1, · · · , βn−1}. In order to prove the statement, we only need to show that if a linear
combination of terms of the form {ι(r1), · · · , ι(rn)} are in ker(KM

n (A) → KM
n (A/I)) then it is in

fact 0. This again follows from the fact that the natural map from R to A/I is an isomorphism.
We define a functorial map φ by the following composition:

KM
n (A)◦ → K(n)

n (A)◦
∼−→ HC

(n−1)
n−1 (A)◦ = (Ωn−1

A /dΩn−2
A )◦ = Ωn−1

A /(dΩn−2
A +Ωn−1

R ).(4.0.2)

The first map is the multiplicative map induced by the isomorphism when n = 1, the second one
is the Goodwillie isomorphism [8], and the last one is given by [12, Theorem 4.6.8].

By Nesterenko-Suslin’s theorem [14], Milnor K-theory is the first obstruction to the stability
of the homology of general linear groups:

KM
n (A) ≃ Hn(GLn(A),Q)/Hn(GLn−1(A),Q).

Moreover, the composition

KM
n (A)◦ → K(n)

n (A)◦ → Prim(Hn(GL(A),Q)) → Hn(GL(A),Q) ≃ Hn(GLn(A),Q) ↠ KM
n (A)

is multiplication by (n − 1)! by [14]. This implies the injectivity of φ. It only remains to prove
the property (4.0.1), since then the surjectivity of φ also follows.

The multiplicativity of φ takes the following form: for a, b ∈ KM
m (A)◦, φ(a·b) = φ(a)∧d(φ(b)).

We do induction on n. The statement is clear for n = 1. We show that we may assume that
βi ∈ R×:

Lemma 4.0.2. Suppose that we have the formula (4.0.1) for α ∈ 1 + I and βi ∈ R×, for
1 ≤ i ≤ n− 1, then we have the same formula for α ∈ 1 + I and βi ∈ A×, for 1 ≤ i ≤ n− 1.

Proof. We do induction on the number of βi which are not in R×. If all of them are in R×, the
hypothesis of the lemma gives the expression. If there is at least one βi which is not in R×,
without loss of generality assume that βn−1 /∈ R×. Let us write βn−1 := λ · β, with λ ∈ R× and
β ∈ 1 + I. Then

φ({α, β1, · · · , βn−1}) = φ({α, β1, · · · , βn−2, λ}) + φ({α, β1, · · · , βn−2, β}).
By the multiplicativity of φ, the formula for n = 1, and the induction hypothesis on n, we have

φ({α, β1, · · · , βn−2, β}) = φ({α, β1, · · · , βn−2}) ∧ d(log(β)) = log(α)
dβ1
β1

∧ · · · dβn−2

βn−2
∧ dβ

β
.

By the induction hypothesis on the number of βi not in R
×, we have

φ({α, β1, · · · , βm−1, λ}) = log(α)
dβ1
β1

∧ · · · ∧ dβm−1

βm−1
∧ dλ

λ
.
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Adding these two expressions, we obtain the expression we were looking for. □

The above lemma shows that we may without loss of generality assume that the βi ∈ R×. The
next lemma shows that we may also assume that A = Rr and α = 1 + t.

Lemma 4.0.3. Suppose that we have the formula (4.0.1) for α = 1 + t and βi ∈ R× for
1 ≤ i ≤ n− 1, for the ring Rr := R[t]/(tr). Then we have the same formula for any A as above.

Proof. Given α ∈ 1 + I ⊆ A× and βi ∈ R×. Since α − 1 is nilpotent, we have an R-algebra
morphism ψ : Rr → A, for some r, such that ψ(t) = α − 1. The result then follows by the
functoriality of φ since the map induced by ψ maps {1+t, β1, · · · , βn−1} to {α, β1, · · · , βn−1}. □

Next we will show that we can also assume that r = 2. Note that for each λ ∈ Q×, we obtain
an R-automorphism ψλ of Rr which sends t to λ · t. If F is any functor from the category rings
to the category of Q-vector spaces, this gives us an action of Q× on F (Rr), which we call the
⋆-action of Q× and denote F (ψλ)(v) by λ ⋆ v. For m ∈ Z, we let F (Rr)

[m] denote the subspace
of elements v ∈ F (Rr) such that λ ⋆ v = λm · v, for every λ ∈ Q×. An element v ∈ F (Rr)

[m] is
said to be an element of ⋆-weight m.

Lemma 4.0.4. Suppose that we have the formula (4.0.1) for α = 1 + t and βi ∈ R× for
1 ≤ i ≤ n− 1, for the ring R2. Then we have the same formula for any A as above.

Proof. We need to prove the result for 1 + t ∈ Rr, and βi ∈ R×. Since 1 + t = exp(log(1 + t)), it
is a product of elements of the form exp(atm), for 1 ≤ m < r, and a ∈ Q. Therefore it is enough
to prove the formula for elements as above with α = exp(atm).

Since {exp(atm), β1, · · · , βn−1} is of ⋆-weight m, its image under φ is in (Ωn−1
Rr

/dΩn−2
Rr

)[m], the

⋆-weight m part of Ωn−1
Rr

/dΩn−2
Rr

. On the other hand the natural surjection Rr → Rm+1 induces
an isomorphism

(Ωn−1
Rr

/dΩn−2
Rr

)[m] ≃ (Ωn−1
Rm+1

/dΩn−2
Rm+1

)[m].

Therefore, without loss of generality, we will assume that r = m + 1. Then we use the map
from R2 to Rm+1 that sends t to atm. This map sends 1 + t to exp(atm) and hence maps
{1+ t, β1, · · · , βn−1} to {exp(atm), β1, · · · , βn−1}. Therefore, again by the functoriality of φ, the
result follows from the assumption on R2. □

To finish the proof, we will need a special identity in KM
2 (R3) :

Lemma 4.0.5. We have the following relation in KM
2 (R3) :

2{1 + t2

2
, λ} = {1 + t

λ
, 1 + λt},

for any λ ∈ R×.

Proof. It is possible to give a direct computational proof of this statement. We choose to give a
proof which is based on the ideas in this section.

First suppose that R is a field. We know that both sides are in KM
2 (R3)

◦. We know from [9]

that the map KM
2 (R3)

◦ → (Ω1
R3
/dR3)

◦ which sends {α, β} to log(α)dββ , where α− 1 ∈ (t), is an

isomorphism.
The left hand side goes to t2 dλλ , whereas the right hand side goes to

t

λ
d(λt) = t2

dλ

λ
+ tdt = t2

dλ

λ
+

1

2
dt2 = t2

dλ

λ

in (Ω1
R3
/dR3)

◦. This proves the statement when R is a field.

In general, the statement forQ[x, x−1] implies the one for a generalR by sending x to λ. Finally,
if we can show that KM

2 (Q[x, x−1]3)
◦ → KM

2 (Q(x)3)
◦ is an injection, the known statement for
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Q(x) implies the one for Q[x, x−1]. This injectivity follows from the commutative diagram

KM
2 (Q[x, x−1]3)

◦

��

� � φ // (Ω1
Q[x,x−1]3

/d(Q[x, x−1]3))
◦

��

tΩ1
Q[x,x−1] ⊕ t2Ω1

Q[x,x−1]∼
oo

� _

��
KM

2 (Q(x)3)
◦ � � φ // (Ω1

Q(x)3
/d(Q(x)3))

◦ tΩ1
Q(x) ⊕ t2Ω1

Q(x),∼
oo

where the injectivity of φ was proven above. This finishes the proof of the lemma. □

Finally, we prove the result for R2.

Proposition 4.0.6. Let α = 1+t ∈ R×
2 and βi ∈ R×, for 1 ≤ i ≤ n−1, then φ({α, β1, · · · , βn−1)

is given by (4.0.1).

Proof. Note the map ψ from R2 to R3 that sends t to t2

2 . This map induces an isomorphism

(Ωn−1
R2

/dΩn−2
R2

)[1] ≃ (Ωn−1
R3

/dΩn−2
R3

)[2].

Therefore we only need to compute the image of

{1 + t2

2
, β1, · · · , βn−1}(4.0.3)

in Ωn−1
R3

/dΩn−2
R3

)[2]. By the previous lemma, we know that

{1 + t2

2
, β1} =

1

2
{1 + t

β1
, 1 + β1t},

which implies that (4.0.3) is equal to

1

2
{1 + t

β1
, 1 + β1t, β2, · · · , βn−1}.(4.0.4)

This last expression is the 1
2 times the product of {1 + t

β1
} ∈ KM

1 (R3)
◦ and

{1 + β1t, β2, · · · , βn−1} ∈ KM
n−1(R3)

◦.

By the induction hypothesis on n,

φ({1 + β1t, β2, · · · , βn−1}) = log(1 + β1t)
dβ2
β2

∧ · · · ∧ dβn−1

βn−1
.

Since φ is multiplicative, this implies that (4.0.4) is sent by φ to

1

2
log(1 +

t

β1
)d log(1 + β1t)

dβ2
β2

∧ · · · ∧ dβn−1

βn−1
= log(1 +

t2

2
)
dβ1
β1

∧ · · · ∧ dβn−1

βn−1
.

□

This finishes the proof of Proposition 4.0.1. □

In the case of truncated polynomial rings, we can also describe this isomorphism as follows:

Corollary 4.0.7. The map λi : Λ
nR×

∞ → Ωn−1
R given by

λi(a1 ∧ · · · ∧ an) = rest=0
1

ti
d log(a1) ∧ · · · ∧ d log(an) ∈ Ωn−1

R ,

for 1 ≤ i < r, descends to give a map KM
n (Rr)

◦ → Ωn−1
R . Their sums induce an isomorphism:

KM
n (Rr)

◦ → ⊕1≤i<rΩ
n−1
R .
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Proof. For 1 ≤ i < r, we let µi : (Ω
n−1
Rr

/d(Ωn−2
Rr

))◦ → Ωn−1
R be given by µi(w) := rest=0

1
ti dω.

The induced map

(Ωn−1
Rr

/d(Ωn−2
Rr

))◦ → ⊕1≤i<rΩ
n−1
R

is an isomorphism.
The surjectivity can be seen as follows. Given ω ∈ Ωn−1

R , and 1 ≤ i, j < r,

µj(t
iω) = rest=0

1

tj
d(tiω) = δij · i · ω.

In order to prove injectivity, using the notation in the proof of Lemma 4.0.3, we note that
(Ωn−1

Rr
/d(Ωn−2

Rr
))◦ is the direct sum of its subspaces ((Ωn−1

Rr
/d(Ωn−2

Rr
))◦)[i] of ⋆-weight i, for 1 ≤

i < r. The subspace ((Ωn−1
Rr

/d(Ωn−2
Rr

))◦)[i] consists of elements of the form tiα + βti−1dt, with

α ∈ Ωn−1
R and β ∈ Ωn−2

R . For 1 ≤ j < r, we have

µj(t
iα+ βti−1dt) = δij(i · α+ (−1)n−1dβ).

Therefore, if µi(t
iα+ βti−1dt) = 0, then α = (−1)n

i dβ and hence

tiα+ βti−1dt = d(
(−1)nβ

i
ti).

This proves the injectivity of the map

(Ωn−1
Rr

/d(Ωn−2
Rr

))◦ = ⊕1≤i<r((Ω
n−1
Rr

/d(Ωn−2
Rr

))◦)[i] → ⊕1≤i<rΩ
n−1
R .

The corollary then follows from Proposition 4.0.1. □

5. Construction of maps from B2(Rm)⊗R×
m to Ω1

R

In this section, we assume that R is a regular, local Q-algebra.

5.1. Preliminaries on the construction. In this section, we fix m and r such that 2 ≤ m <

r < 2m. We let f(s, u) := log◦(1 − s exp(u)) = log( 1−s exp(u)1−s ). As in the proof of Proposition

3.0.1, we define ℓi : R
×
∞ → R, by the formula ℓi(a) := ti(log

◦(a)). Note that ti is defined in the
beginning of §3. Let us consider the expression

αj :=
∑

1≤i≤j−1

idℓj−i ∧ ℓi =
∑

a+b=j
1≤a, b

bdℓa ∧ ℓb,(5.1.1)

for m ≤ j < r, which defines a map from Λ2R×
∞ to Ω1

R. We will use this expression to define a
map from B2(Rm)⊗R×

m.

Lemma 5.1.1. For s ∈ R♭, and u :=
∑

0<i uit
i ∈ tR∞, letting fs := ∂f

∂s and ut := ∂u
∂t =∑

0<i iuit
i−1, we have

αj(δ(s exp(u))) = tj−1(fsut)ds = tj−1(
∂ log◦(1− s exp(u))

∂s
· ∂u
∂t

)ds.

Proof. Let us write f(s, u) =: f =
∑

0<i fit
i. The expression idℓj−i ∧ ℓi evaluated on δ(s exp(u))

is equal to

id(fj−i)ui − ifiduj−i = id(fj−i)ui + (j − i)fiduj−i − jfiduj−i.

Summing these, we find that

αj(δ(s exp(u))) =
∑

1≤i≤j−1

(id(fj−i)ui + (j − i)fiduj−i)− j
∑

1≤i≤j−1

fiduj−i.

Let Du :=
∑

1≤i duit
i and ut :=

∂u
∂t . Then the last expression can be rewritten as

tj−1(D(fut))− jtj(fDu) = tj−1(D(fut)− (fDu)t) = tj−1(Dfut − ftDu).(5.1.2)
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We would like to see that the coefficient of dui in (5.1.2) is equal to 0. The coefficient of dui
in Df = D log( 1−s exp(u)1−s ) is equal to −s exp(u)

1−s exp(u) t
i. Therefore, the coefficient of dui in (5.1.2) is

tj−1−i

( −s exp(u)
1− s exp(u)

ut − ft

)
.

Since ft =
∂
∂t (log(1− s exp(u))) = −s exp(u)

1−s exp(u)ut, the last expression is 0.

Therefore αj(δ(s exp(u))) does not depend on the dui’s, and we can rewrite (5.1.2) as

αj(δ(s exp(u))) = tj−1(Dfut − ftDu) = tj−1(fsut)ds,

where fs =
∂f
∂s . □

Lemma 5.1.2. If u = u|m and m ≤ j < r, we have

jtj(f) = stj−1(fsut).

Proof. The expression jtj(f)− stj−1(fsut) is equal to

tj−1(ft − s(fsut)) = tj−1(
∂

∂t
log(1− s exp(u))− s

∂

∂s
log(

1− s exp(u)

1− s
) · ut).

Since
∂

∂t
log(1− s exp(u)) =

−s exp(u)
1− s exp(u)

· ut = s
∂

∂s
log(1− s exp(u)) · ut,

the above expression is equal to tj−1(
s
s−1ut), which is 0, under the assumption that u = u1t +

· · ·+ um−1t
m−1 and m ≤ j. □

Let dℓ0 : R×
∞ → Ω1

R be defined as dℓ0(α) := d log(α(0)). Note that ℓ0 itself is not defined, even
though ℓi are defined for i > 0.

Proposition 5.1.3. The map Mm,r defined as

Mm,r := ℓim,r ⊗ dℓ0 −
∑

m≤j<r

r − j

j
(αj ◦ δ)⊗ ℓr−j

gives a map from B2(R∞) ⊗ R×
∞ to Ω1

R, of ⋆-weight r, which vanishes on the image under δ of

those [seu] ∈ Q[R♭∞], with u = u|m. The map Mm,m+1 descends to a map from B2(Rm)⊗R×
m.

Proof. That Mm,r is of ⋆-weight r follows immediately from the expression for αj(δ(s exp(u)))
in Lemma 5.1.1, which shows that αj(δ(s exp(u))) is of ⋆-weight j.

Let us now show that Mm,r evaluated on [s exp(u)]⊗s exp(u), with u = u|m, is equal to 0. By

Lemma 5.1.1, αj(δ(s exp(u))) is equal to tj−1(fsut)ds. This implies that
∑
m≤j<r

r−j
j (αj◦δ)⊗ℓr−j

evaluated on [s exp(u)]⊗ s exp(u) is equal to∑
m≤j<r

r − j

j
tj−1(fsut)ur−jds =

1

s

∑
m≤j<r

(r − j)tj(f)ur−jds,

by Lemma 5.1.2, since u = u|m. The final expression can be rewritten as

tr−1(f · ut|r−m)
ds

s
= ℓim,r(s exp(u))

ds

s
= (ℓim,r ⊗ dℓ0)([s exp(u)]⊗ s exp(u))

since u = u|m. This proves the first part of the proposition.
When r = m+ 1, Mm,r takes the form

ℓim,m+1 ⊗ dℓ0 −
1

m

(
(dℓm−1 ∧ ℓ1 + 2dℓm−2 ∧ ℓ2 + · · ·+ (m− 1)dℓ1 ∧ ℓm−1) ◦ δ

)
⊗ ℓ1.

Since all the functions in this expression depend on the classes of the elements in Rm, the
statement easily follows. □
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5.2. The regulator maps from H2(Rm,Q(3)) to Ω1
R. We would like to define maps

Lm,r : H
2(Rm,Q(3)) → Ω1

R

based on the mapsMm,r in Proposition 5.1.3. The problem withMm,r is that it does not descend
to a map on B2(Rm) ⊗ R×

m, if r ̸= m + 1 . We will modify Mm,r slightly to correct this defect
but keep the other properties to obtain Lm,r.

In order to simplify the notation from now on we are going to let ℓim,m := 0. Note that ℓim,r
was previously defined only when m+ 1 ≤ r ≤ 2m− 1 so this will not cause any confusion. We
define βm(j), for m ≤ j < 2m− 1, by

βm(j) := dℓim,j +
∑

a+b=j
1≤a,b<m

b(dℓa ∧ ℓb) ◦ δ =
∑

a+b=j
m≤a, 1≤b

bd(ℓa ∧ ℓb) ◦ δ +
∑

a+b=j
1≤a,b<m

b(dℓa ∧ ℓb) ◦ δ

= dℓim,j + αj ◦ δ −
∑

1≤a≤j−m

(
(j − a)dℓa ∧ ℓj−a + adℓj−a ∧ ℓa

)
◦ δ

and

Lm,r := ℓim,r ⊗ dℓ0 −
∑

m≤j<r

(r − j

j
βm(j)⊗ ℓr−j − ℓim,j ⊗ dℓr−j

)
.(5.2.1)

We would like to emphasize that, because of our conventions, the summand that corresponds to
j = m is equal to r−m

m αm ⊗ ℓr−m exactly as in the case of Mm,r, the terms corresponding to
m < j are modified however.

Lemma 5.2.1. With the above definition, Lm,r defines a map from B2(Rm) ⊗ R×
m to Ω1

R of
⋆-weight r.

Proof. Since all the terms in the definition of Lm,r depend on the variables modulo tm, we obtain
a map from B2(Rm)⊗R×

m to Ω1
R.

Since we know that Mm,r is of ⋆-weight r, in order to prove that Lm,r is of ⋆-weight r, it
suffices to prove the same for Lm,r −Mm,r. This difference is equal to the sum of

−
∑

m≤j<r

(r − j

j
dℓim,j ⊗ ℓr−j − ℓim,j ⊗ dℓr−j

)
(5.2.2)

and ∑
m≤j<r

r − j

j

( ∑
1≤a≤j−m

(
(j − a)dℓa ∧ ℓj−a + adℓj−a ∧ ℓa

))
◦ δ ⊗ ℓr−j .(5.2.3)

Let us first look at the term (j − a)dℓa ∧ ℓj−a + adℓj−a ∧ ℓa. For any u ∧ v ∈ Λ2tR∞ and
λ ∈ R×, ((j − a)dℓa ∧ ℓj−a + adℓj−a ∧ ℓa)(λ ⋆ (u ∧ v)) =(

(j − a)d(λaℓa) ∧ λj−aℓj−a + ad(λj−aℓj−a) ∧ λaℓa
)
((u ∧ v))

=
(
λj((j − a)dℓa ∧ ℓj−a + adℓj−a ∧ ℓa) + (j − a)a(ℓa ∧ ℓj−a + ℓj−a ∧ ℓa)λj−1dλ

)
(u ∧ v)

= λj((j − a)dℓa ∧ ℓj−a + adℓj−a ∧ ℓa)(u ∧ v).
Therefore the term (5.2.3) is of ⋆-weight r.

Similarly, (r − j)dℓim,j ⊗ ℓr−j − jℓim,j ⊗ dℓr−j evaluated on λ ⋆ (u⊗ v) is equal to

(r − j)d(λjℓim,j)⊗ λr−jℓr−j − jλjℓim,j ⊗ d(λr−jℓr−j)

= λr
(
(r − j)dℓim,j ⊗ ℓr−j − jℓim,j ⊗ dℓr−j

)
+ (r − j)j(ℓim,j ⊗ ℓr−j − ℓim,j ⊗ ℓr−j)λ

r−1dλ

= λr
(
(r − j)dℓim,j ⊗ ℓr−j − jℓim,j ⊗ dℓr−j

)
evaluated on u ⊗ v. This implies that the term (5.2.2) is of ⋆-weight r and finishes the proof of
the lemma. □

Proposition 5.2.2. The map Lm,r : B2(Rm) ⊗ R×
m → Ω1

R vanishes on the boundaries of the

elements in Q[R♭m] and hence induces a map

(B2(Rm)⊗R×
m)/im(δ) → Ω1

R,
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which by restriction gives the regulator map H2(Rm,Q(3)) → Ω1
R of ⋆-weight r we were looking

for. We continue to denote these two induced maps by the same notation Lm,r.

Proof. We know that Mm,r vanishes on the boundary δ(s exp(u)) of elements s exp(u) ∈ Q[R∞],
with u = u|m, by Proposition 5.1.3. We also know by the previous lemma that Lm,r descends to
a map on B2(Rm)⊗R×

m. Therefore, in order to prove the statement, we only need to prove that

Lm,r(δ(s exp(u))) =Mm,r(δ(s exp(u))),

for u = u|m. We first rewrite Lm,r as the composition of δ ⊗ id with∑
a+b=r

m≤a, 1≤b

b · ℓa ∧ ℓb ⊗ dℓ0 −
∑

a+b+c=r
m≤a+b,

1≤a, b, c<m

c

a+ b
b · dℓa ∧ ℓb ⊗ ℓc

−
∑

a+b+c=r
m≤a, 1≤b, c

c

a+ b
b · d(ℓa ∧ ℓb)⊗ ℓc +

∑
a+b+c=r

m≤a, 1≤b, c

b · ℓa ∧ ℓb ⊗ dℓc.

On the other hand, recall that Mm,r is the composition of δ ⊗ id with∑
a+b=r

m≤a, 1≤b

b · ℓa ∧ ℓb ⊗ dℓ0 −
∑

a+b+c=r
m≤a+b,
1≤a, b, c

c

a+ b
b · dℓa ∧ ℓb ⊗ ℓc.

If we compare the two expressions we see that all of the terms match above except possibly the
ones that correspond to the triples (a, b, c) with 1 ≤ a, b, c, a+ b+ c = r, and m ≤ a or m ≤ b.
By anti-symmetry, we may assume without loss of generality that m ≤ a. We need to compare
the coefficients of the terms dℓa ∧ ℓb ⊗ ℓc, ℓa ∧ dℓb ⊗ ℓc, and ℓa ∧ ℓb ⊗ dℓc, subject to the above
constraints, in Lm,r and Mm,r.

The coefficient of dℓa ∧ ℓb ⊗ ℓc in Lm,r and Mm,r are both equal to − cb
a+b . The coefficient of

ℓa ∧ dℓb⊗ ℓc in Lm,r is
−cb
a+b and in Mm,r, it is

ca
a+b . Finally, the coefficient of ℓa ∧ ℓb⊗ dℓc in Lm,r

is b, whereas in Mm,r it is 0.
We finally note that the values of ℓa ∧ dℓb ⊗ ℓc and ℓa ∧ ℓc ⊗ dℓb on δ(s exp(u))⊗ s exp(u) are

the same when u = u|m. Then the equality −cb
a+b + c = ca

a+b finishes the proof. □

We can restate Lemma 5.2.1 as follows. First, let

γm(j) := dℓm,j +
∑

a+b=j
1≤a,b<m

b(dℓa ∧ ℓb).

Note that since ℓim,j = ℓm,j ◦ δ by Definition 3.0.2, we have βm(j) = γm(j) ◦ δ. Finally, if we let

Nm,r := ℓm,r ⊗ dℓ0 −
∑

m≤j<r

(r − j

j
γm(j)⊗ ℓr−j − ℓm,j ⊗ dℓr−j

)
,

then by (5.2.1), we have the following.

Corollary 5.2.3. For 2 ≤ m < r < 2m, we have a commutative diagram

B2(Rr)⊗R×
r

δ⊗id //

����

Λ2R×
r ⊗R×

r

Nm,r

��
B2(Rm)⊗R×

m

Lm,r // Ω1
R.

We expect that the above maps combine to give an isomorphism between the infinitesimal
part of the cohomology of Rm and the direct sum of the module of Kähler differentials, justifying
the name of the regulator, cf. [6, Conjecture 1.15]. However, at this point, we can only prove
the surjectivity:

Proposition 5.2.4. Suppose that R is a regular local Q-algebra and 2 ≤ m as the above. The
direct sum of the Lm,r induces a surjection:

⊕m<r<2mLm,r : H
2(Rm,Q(3))◦ ↠ ⊕m<r<2mΩ1

R.
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Proof. Suppose that α ∈ B2(Rm)◦ is in the part of kernel of the δ◦ which is of ⋆-weight r. By
Theorem 3.0.3, this part is isomorphic to R via the restriction of the map ℓim,r. Computing the

value of Lm,r on α ⊗ b, for b ∈ R×, we see that Lm,r(α ⊗ b) = ℓim,r(α)
db
b . Since α ⊗ b is in

the kernel of δ, we see that the image of Lm,r above is the additive group generated by the set
Rd log(R×). Since R is local this is equal to Ω1

R. This implies the surjectivity. □

Conjecture 5.2.5. We conjecture that the map ⊕m<r<2mLm,r in Proposition 5.2.4 is injective
and hence is an isomorphism.

6. Construction of the maps from Λ3(R2m−1, (t
m))× to Ω1

R/k

For a ring A and ideal I, let (A, I)× := {(a, b)|a, b ∈ A×, a−b ∈ I}, and let πi : (A, I)
× → A×,

for i = 1, 2 denote the two projections. If R is a k-algebra, in this section we will define a map
ωm,r : Λ

3(Rr, (t
m))× → Ω1

R/k.

6.1. Definition of Ωm,r. Assume that R is Q-algebra and 2 ≤ m < r < 2m. Let us put
Im,r := im

(
(1 + (tm))⊗ Λ2R×

r

)
⊆ (Λ3R×

r )
◦.

Definition 6.1.1. We define the map Ωm,r : Im,r → ΩR by the following formulae:
(i) if x ≥ m; x+ y + z = r; y, z ≥ 1; and a, b, c ∈ R then:

Ωm,r(exp(at
x) ∧ exp(bty) ∧ exp(ctz)) := a(yb · dc− zc · db);

(ii) if x ≥ m; x+ y = r; y ≥ 1; a, b ∈ R; and γ ∈ R× then:

Ωm,r(exp(at
x) ∧ exp(bty) ∧ γ) := a(yb · dγ

γ
);

(iii) if x ≥ m; x+ z = r; z ≥ 1; a, c ∈ R; and β ∈ R× then:

Ωm,r(exp(at
x) ∧ β ∧ exp(ctz)) := a(−zc · dβ

β
);

(iv) if x = r; and β, γ ∈ R× then:

Ωm,r(exp(at
x) ∧ β ∧ γ) := 0.

Remark 6.1.2. Notice that in case (ii) of the above definition, using the notation exp(ctz) with
z = 0 instead of γ would not make sense. This is because in order for exp(ctz) to be well-defined,
we need ctz ∈ (t) ⊆ Rr. However, if we continue to use this notation exp(c), without specifying
what c is and without the notation making actual sense, we note that the formula (ii) becomes
a special case of formula (i) in the following sense. If we formally put γ = exp(c) then again

formally log(γ) = c and dγ
γ = d log(γ) = dc. This makes formula (ii) exactly the same as formula

(i) if we also note that since we put z = 0 the term involving zc.db disappears in (i). We will
be using these notations and conventions in order to shorten the expressions in the remaining
of the paper. However, we would like to emphasize that when proving the statements under
consideration we are always using the Definition 6.1.1 since these notations are only formal and
do not make actual sense. Similar comments apply to (iii) when y = 0 and to (iv) when y = z = 0.

To sum up we will write that, if x ≥ m; x+ y + z = r; and y, z ≥ 0 :

Ωm,r(exp(at
x) ∧ exp(bty) ∧ exp(ctz)) = a(yb · dc− zc · db).(6.1.1)

In the proof of the next proposition, we will use the following notation. Recall that Qr =
Q[t]/(tr). Since we assume that R contains Q, Rr is a Qr-algebra. Let d : Rr → Ω1

Rr/Qr

denote the canonical differential. Note that d has the property that d(t) = 0. There is a natural
isomorphism

⊕0≤i<rt
iΩ1
R → Ω1

Rr/Qr
.

Proposition 6.1.3. Suppose that f̂ , f̃ ∈ R♭r and ĝ, g̃ ∈ R×
r have the same reductions modulo

(tm), with 2 ≤ m < r < 2m. Then we have

Ωm,r(δ([f̂ ]) ∧ ĝ − δ([f̂ ]) ∧ g̃) = 0
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and

Ωm,r(δ([f̂ ]) ∧ ĝ − δ([f̃ ]) ∧ ĝ) = 0.

Proof. By the assumptions ĝ/g̃ is a product of terms of the form exp(atx) with a ∈ R and
m ≤ x < r. Hence, in order to prove the first equality we need to prove that Ωm,r vanishes on

δ([f̂ ]) ∧ exp(atx). By the definition of Ωm,r above, we have

Ωm,r(δ([f̂ ]) ∧ exp(atx)) = −a · rest=0
1

tr−x
(d log∧d log)((1− f̂) ∧ f̂) = 0,

since (d log∧d log)((1− f̂) ∧ f̂) = 0.
In order to prove the second equality, note that ĝ is a product of terms of type exp(ctz) with

0 ≤ z, where for z = 0, we use the notation in Remark 6.1.2. Then using the first equality, we
only need to prove that

Ωm,r(δ([f̂ ]) ∧ exp(ctz)− δ([f̃ ]) ∧ exp(ctz)) = 0,(6.1.2)

for 0 ≤ z < m. On the other hand, since f̂ and f̃ are equal modulo (tm), we see that (6.1.2)
holds when r − z < m. Therefore from now on we assume that m ≤ r − z.

If we knew (6.1.2) in the special case when f̂ = f̃ +atx with m ≤ x, then by successively using

this information we obtain (6.1.2) for any f̂ and f̃ which have the same reduction modulo (tm).

Therefore, from now on we assume that f̂ = f̃ + atx, and f̃ = s+ b1t+ b2t
2 + · · · .

The left hand side of (6.1.2)) is a sum of two terms: one containing the term dc and the other
one containing the term c.

Let us first consider the term containing dc. The term containing dc is 0 when r− z = m since
m ≤ x. Therefore we assume that m < r− z. In this case, we compute that this term containing
dc is equal to (( ∑

1≤i≤r−z−m

i · ℓr−z−i ∧ ℓi
)
◦ δ

)
([f̂ ]− [f̃ ]) · dc.(6.1.3)

We have
((∑

1≤i≤r−z−m i · ℓr−z−i ∧ ℓi
)
◦ δ

)
([h]) = ℓim,r−z([h|tm ]), by the definition of ℓim,r−z,

for any h ∈ R♭r. This implies that (6.1.3) is equal to (ℓim,r−z([f̂ |tm ])− ℓim,r−z([f̃ |tm ])) · dc = 0.
Finally, we consider summand of (6.1.2) which contain the term c. Letting β := b1t+b2t

2+· · · ,
this term is equal to −z · c · a times the coefficient of tr−z−x in∑

0<i,j

(−1)i−1 βi−1

(s− 1)i
· d

( (−1)j−1

j

βj

sj
)
−
(
(−1)i−1 β

i−1

si
· d

( (−1)j−1

j

βj

(s− 1)j
))

+
∑
0<i

(−1)i−1 βi−1

(s− 1)i
· ds
s

−
(
(−1)i−1 β

i−1

si
· ds

s− 1

)
.

Let us rewrite the last expression as∑
0<i,j

(−1)i+jβi+j−2d(β)
( 1

(s− 1)isj
− 1

si(s− 1)j
)

+
∑
0<i,j

(−1)i+j−1βi+j−1ds
( 1

(s− 1)isj+1
− 1

si(s− 1)j+1

)
+
∑
0<i

(−1)i−1βi−1ds
( 1

(s− 1)is
− 1

si(s− 1)

)
.

In this expression, the first sum is equal to 0. In the second sum only the terms with i = 1
survive, to make the sum equal to∑

0<j

(−1)jβjds
( 1

(s− 1)sj+1
− 1

s(s− 1)j+1

)
.

This is precisely the negative of the third sum above. This finishes the proof. □
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Let s : Λ3(Rr, (t
m))× → Λ3R×

r , be given by s := Λ3π1 − Λ3π2. The group Λ3(Rr, (t
m))× is

generated by elements of the form (a, a′) ∧ (b, b′) ∧ (c, c′) with a − a′, b − b′, c − c′ ∈ (tm) and
a, a′, b, b′, c, c′ ∈ R×

r . If we let a = αa′, b = βb′, and c = γc′, then α, β, γ ∈ 1 + (tm). We have

s((a, a′) ∧ (b, b′) ∧ (c, c′)) = αa′ ∧ βb′ ∧ γc′ − a′ ∧ b′ ∧ c′ ∈ Im,r,

since the last expression is a sum of elements of the form δ ∧ d ∧ e with δ ∈ 1 + (tm) and d,
e ∈ R×

r . This implies that s factors through Im,r ⊆ (Λ3R×
r )

◦.

Definition 6.1.4. Suppose that R is a k-algebra. We let Ωm,r denote the composition of Ωm,r
with the canonical projection Ω1

R → Ω1
R/k. We define ωm,r : Λ3(Rr, (t

m))× → Ω1
R/k as the

composition Ωm,r ◦ s of s : Λ3(Rr, (t
m))× → Im,r, and Ωm,r : Im,r → Ω1

R/k.

6.2. Relation of Ωm,r to Lm,r. In this section, we assume that R is a smooth local k-algebra of
relative dimension 1. We will relate the construction Ωm,r to Lm,r, assuming Conjecture 5.2.5.
Even though the results in this section will not be used in the rest of the paper, we include this
section since it gives a more conceptual description of Ωm,r and it will be referred to in future
work. Let us denote the composition of Lm,r with the canonical projection Ω1

R → Ω1
R/k by Lm,r.

Given α ∈ Im,r, we will show that there exists

ε ∈ im((1 + (tm))⊗ k× ⊗R×
r ) ⊆ (Λ3R×

r )
◦,

such that α− ε = δr(γ) for some γ ∈ (B2(Rr)⊗R×
r )

◦. Assuming Conjecture 5.2.5, we will then
show that

Ωm,r(α) = Lm,r(γ|tm) ∈ Ω1
R/k.

Lemma 6.2.1. For any α ∈ (Λ3R×
r )

◦, there exists ε ∈ im(Λ2R×
r ⊗ k×) ⊆ (Λ3R×

r )
◦ such that

α− ε lies in the image of (B2(Rr)⊗R×
r )

◦ in (Λ3R×
r )

◦. Moreover, if

α ∈ im((1 + tmRr)
× ⊗ Λ2R×

r ) ⊆ (Λ3R×
r )

◦

then we can choose
ε ∈ im((1 + tmRr)

× ⊗R×
r ⊗ k×) ⊆ (Λ3R×

r )
◦

such that α− ε lies in the image of (B2(Rr)⊗R×
r )

◦ in (Λ3R×
r )

◦.

Proof. The infinitesimal part of the cokernel of the map

B2(Rr)⊗R×
r → Λ3R×

r

is KM
3 (Rr)

◦ which is isomorphic to ⊕1≤i<rt
iΩ2
R via the map from Λ3R×

r , whose i-th coordinate
is given by

rest=0
1

ti
d log(y1) ∧ d log(y2) ∧ d log(y3),(6.2.1)

by Corollary 4.0.7. Further, by the assumption on smoothness of dimension 1, we conclude that
the natural map

Ω1
R ⊗k Ω1

k → Ω2
R

is surjective. Since we assume that R is local, the map

R⊗Z R
× → Ω1

R,

which sends a⊗ b to a · d log b, is surjective.
Note that the image of exp(tiu) ∧ v ∧ λ, with u ∈ R, v ∈ R× and λ ∈ k× under the i-th map

in (6.2.1) is i · u · d log(v) ∧ d log(λ) and under the coordinate j maps in (6.2.1) with j ̸= i, the
image is 0. Together with the above, this shows that the map

(Λ2R×
r ⊗ k×)◦ → (Λ3R×

r )
◦ → ⊕1≤i<rt

iΩ2
R

is surjective and hence proves the first statement.
For the second statement, note that if α ∈ im((1+tmRr)

×⊗Λ2R×
r ) ⊆ (Λ3R×

r )
◦ then its image

in ⊕1≤i<rt
iΩ2
R lands in the summand ⊕m≤i<rt

iΩ2
R. Since by the above discussion, we also see

that the composition

(1 + tmRr)
× ⊗R×

r ⊗ k× → (Λ3R×
r )

◦ → ⊕m≤i<rt
iΩ2
R
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is surjective, the second statement similarly follows. □

The next lemma is crucial in relating Ωm,r to Lm,r.

Lemma 6.2.2. Let A(r) denote the kernel of the differential B2(Rr) ⊗ R×
r → Λ3R×

r . Then
Conjecture 5.2.5 implies that the composition

A(r) ⊆ B2(Rr)⊗R×
r

|tm−−−−→ B2(Rm)⊗R×
m

Lm,r−−−−→ Ω1
R

is 0.

Proof. By Proposition 5.2.2, we know that Lm,r induces a map from H2(Rm,Q(3)) to Ω1
R of

weight r. The composition of the maps in the statement of the lemma can be rewritten as the
composition

A(r) −−−−→ H2(Rr,Q(3))
|tm−−−−→ H2(Rm,Q(3))

Lm,r−−−−→ Ω1
R.

By Conjecture 5.2.5 the ⋆-weights of H2(Rr,Q(3)) are between r + 1 and 2r − 1. This implies
that the map from H2(Rr,Q(3)) → Ω1

R, which is of weight r, is in fact the zero map and finishes
the proof. □

Remark 6.2.3. We emphasize that, in the above lemma, we prove that Lm,r(γ|tm) = 0 for
γ ∈ A(r). If γ is only assumed to be in the kernel of the map B2(Rm) ⊗ R×

m → Λ3R×
m then

Lm,r(γ) need not be equal to 0.

Lemma 6.2.4. Assuming Conjecture 5.2.5, suppose that γ ∈ B2(Rr)⊗R×
r such that

δr(γ) ∈ im(
(
⊕0≤s<r (1 + tsRr)

× ⊗ (1 + tr−sRr)
×)⊗ k×) ⊆ Λ3R×

r

then Lm,r(γ|tm) = 0.

Proof. First let α := exp(uti) ∧ exp(vtj) ∧ λ ∈ Λ3R×
r with u, v ∈ R and λ ∈ k× and r ≤ i + j.

We have exp(uti) ∧ exp(vtj) ∈ (Λ2R×
r )

◦ and

rest
1

ta
d log(exp(uti)) ∧ d log(exp(vtj)) = rest

1

ta
d(uti) ∧ d(vtj) = 0 ∈ Ω1

R,

for all 1 ≤ a < r, since r ≤ i + j. This implies that there is α0 ∈ B2(Rr) such that δr(α0) =
exp(uti) ∧ exp(vtj), and hence δr(α0 ⊗ λ) = α.

Let us compute Lm,r((α0 ⊗ λ)|tm). Since ℓi(λ) = 0, for 0 < i by the formula for Lm,r we see
that

Lm,r((α0 ⊗ λ)|tm) = ℓim,r(α0|tm) · d log(λ) ∈ Ω1
R.

This expression vanishes in Ω1
R/k and therefore Lm,r((α0⊗λ)|tm) = 0. Taking the sum of expres-

sions such as above, we deduce that if

α ∈ im(
(
⊕0≤s<r (1 + tsRr)

× ⊗ (1 + tr−sRr)
×)⊗ k×) ⊆ Λ3R×

r

then there is a α̃ ∈ B2(Rr)⊗R×
r such that δr(α̃) = α and Lm,r(α̃|tm) = 0.

Applying this to α := δr(γ) we deduce that there exists α̃ ∈ B2(Rr)⊗ R×
r such that δr(α̃) =

δr(γ) and Lm,r(α̃|tm) = 0. Then we have

Lm,r(γ|tm) = Lm,r(α̃|tm) + Lm,r((γ − α̃)|tm) = Lm,r((γ − α̃)|tm).

Since δr(γ − α̃) = 0, the last expression is 0 by Lemma 6.2.2. □

Lemma 6.2.5. Assuming Conjecture 5.2.5, if γ ∈ B2(Rr)⊗R×
r such that

δr(γ) ∈ im((Λ2R×
r )

◦ ⊗ k×) ⊆ Λ3R×
r

then Lm,r(γ|tm) = 0.

Proof. Suppose that γ is as in the statement of the lemma. Fix some a ∈ Z>1. We inductively
define γ[i] as follows. Let γ[−1] = γ, and

γ[i] := a ⋆ γ[i−1] − aiγ[i−1],
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for 0 ≤ i < r. Since Lm,r is of weight r, Lm,r(γ
[i]|tm) = (ar − ai)Lm,r(γ

[i−1]|tm). Therefore

proving that Lm,r(γ|tm) = 0 is equivalent to proving that Lm,r(γ
[r−1]|tm) = 0. On the other

hand,
δ(γ[r−1]) ⊆ im(

(
⊕0≤s<r (1 + tsRr)

× ⊗ (1 + tr−sRr)
×)⊗ k×),

and therefore the previous lemma implies that Lm,r(γ
[r−1]|tm) = 0. □

Assuming Conjecture 5.2.5, we construct a map Ω̃m,r : Im,r → ΩR/k, using Lm,r as follows.
Starting with α ∈ Im,r, we know, by Lemma 6.2.1, that there exists

ε ∈ im((1 + (tm))⊗ k× ⊗R×
r ) ⊆ (Λ3R×

r )
◦,

such that α− ε = δr(γ) for some γ ∈ (B2(Rr)⊗R×
r )

◦. We then define

Ω̃m,r(α) := Lm,r(γ|tm) ∈ Ω1
R/k.(6.2.2)

In order to see that Ω̃m,r(α) := Lm,r(γ|tm) ∈ Ω1
R/k is well-defined, suppose that

ε′ ∈ im((1 + (tm))⊗ k× ⊗R×
r ) ⊆ (Λ3R×

r )
◦

and γ′ ∈ (B2(Rr)⊗R×
r )

◦ are other such choices. Then

δr(γ
′ − γ) = ε− ε′ ∈ im((Λ2R×

r )
◦ ⊗ k×) ⊆ Λ3R×

r

and hence Lm,r((γ
′ − γ)|tm) = 0 by Lemma 6.2.5. The following proposition is the statement

which we were looking for, that relates Ωm,r to Ω̃m,r and hence to Lm,r :

Proposition 6.2.6. Assuming Conjecture 5.2.5, we have Ωm,r = Ω̃m,r.

Proof. Suppose that x ≥ m and x+ y + z = r, with y, z ≥ 0. We need to check that

Ω̃m,r(exp(at
x) ∧ exp(bty) ∧ exp(ctz)) = a(yb · dc− zc · db).

(i) Case when y = z = 0. In this case, we need to compute the image of exp(atr)∧β ∧γ under

Ω̃m,r, where β, γ ∈ R×. The image of exp(atr) ∧ β in ⊕1≤i≤r−1t
iΩ1
R is equal to 0. Therefore,

there is α ∈ B◦
2(Rr) such that δr(α) = exp(atr) ∧ β. Then, by definition,

Ω̃m,r(exp(at
r) ∧ β ∧ γ) = Lm,r((α⊗ γ)|tm).(6.2.3)

On the other hand, by (5.2.1), Lm,r(α|tm ⊗ γ) = ℓim,r(α|tm)dγγ . By the expression (3.0.2) for

ℓim,r, we have

ℓim,r(α|tm) =
(
Λ2 log◦(δr(α))|

∑
1≤i≤r−m

itr−i ∧ ti
)
= 0,

since Λ2 log◦(δr(α)) = Λ2 log◦(exp(atr) ∧ β) = 0. By the above formula (6.2.3), this implies that

Ω̃m,r(exp(at
r) ∧ β ∧ γ) = 0 as we wanted to show.

(ii) Case when y ̸= 0 and z = 0. In this case we try to compute the image of exp(atx)∧exp(bty)∧
γ under Ω̃m,r. Here we assume that γ ∈ R× and x + y = r, with x ≥ m. By exactly the same
argument as above, we deduce that there exists α ∈ B◦

2(Rr) such that δr(α) = exp(atx)∧exp(bty)
and we have

Ω̃m,r(exp(at
x) ∧ exp(bty) ∧ γ) = Lm,r((α⊗ γ)|tm) = ℓim,r(α|tm)

dγ

γ
.

Since δr(α) = exp(atx) ∧ exp(bty)

ℓim,r(α|tm) =
(
Λ2 log◦(δr(α))|

∑
1≤i≤r−m

itr−i ∧ ti
)
= yab.

This exactly coincides with the expression in the statement of the proposition.
(iii) Case when y ̸= 0 and z ̸= 0. Note that, by localizing, we may assume that R is local.

Moreover, since both sides of the expression are linear in a, b and c, we may assume without loss
of generality that a, b, c ∈ R×. Since any element in a local ring can be written as a sum of units.

If θ := exp(atx) ∧ exp(bty) then its image in ⊕1≤i≤r−1t
iΩ1
R is equal to

⊕1≤i≤r−1rest
1

ti
(Λ2d log(exp(atx) ∧ exp(bty))),
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which only has a non-zero component in degree x+ y equal to yb · da− xa · db.
If we compute the image of φ := x

x+y exp(abt
x+y)∧b− y

x+y exp(abt
x+y)∧a in the same group, we

obtain the same element. Therefore θ−φ lies in the image of B2(Rr). Suppose that γ0 ∈ B2(Rr)
such that δ(γ0) = θ − φ. Since exp(abtx+y) ∧ exp(ctz) has weight r, there is ε0 ∈ B2(Rr) such
that δ(ε0) = exp(abtx+y) ∧ exp(ctz). We now write

exp(atx) ∧ exp(bty) ∧ exp(ctz) = (θ − φ) ∧ exp(ctz) + φ ∧ exp(ctz)

= δ(γ0 ⊗ exp(ctz))− x

x+ y
δ(ε0 ⊗ b) +

y

x+ y
δ(ε0 ⊗ a).

By the definition of Ω̃m,r, we have Ω̃m,r(exp(at
x) ∧ exp(bty) ∧ exp(ctz)) =

Lm,r(γ0|tm ⊗ exp(ctz))− x

x+ y
Lm,r(ε0|tm ⊗ b) +

y

x+ y
Lm,r(ε0|tm ⊗ a).

By definition, Lm,r(ε0|tm ⊗ b) =

ℓim,r(ε0|tm)d log(b) = (Λ2 log◦ δ(ε0)|
∑

m≤i<r

(r − i)ti ∧ tr−i)d log(b) = zabc · d log(b) = azc · db.

By the same argument, Lm,r(ε0|tm ⊗ a) = bzc · da.
In order to compute Lm,r(γ0|tm ⊗ exp(ctz)), first note that, by the definition of Lm,r, we have

Lm,r(γ0|tm ⊗ exp(ctz)) = − z

x+ y
dℓim,x+y(γ0|tm) · c+ ℓim,x+y(γ0|tm) · dc.

Since ℓim,x+y(γ0|tm) = (Λ2 log◦ δ(γ0)|
∑
m≤i<x+y(x+ y − i)ti ∧ tx+y−i) = yab, we have

Lm,r(γ0|tm ⊗ exp(ctz)) = − zy

x+ y
c · d(ab) + yab · dc.

Combining all of these gives, Ω̃m,r(exp(at
x) ∧ exp(bty) ∧ exp(ctz)) =

− zy

x+ y
c · d(ab) + yab · dc− xzac

x+ y
· db+ yzbc

x+ y
da = a(yb · dc− zc · db).

This finishes the proof of the proposition. □

6.3. Behaviour of ωm,r with respect to automorphisms of R2m−1 which are identity
modulo (tm). In this section, we continue to assume thatR is smooth of relative dimension 1 over
k. We will show the invariance of Ωm,r with respect to reparametrizations of Rr that are identity
on the reduction to Rm. In order to do this, we will need to make an explicit computation on
k′((s))∞, where k

′ is a finite extension on k. In order to make the formulas concise and intuitive,
we will use several notational conventions as follows. If a ∈ k′((s)), we let a′ = a(1) ∈ k′((s))
denote its derivative with respect to s and a(n+1) = (a(n))′. Similarly, we let exp(a) denote an

arbitrary non-zero element in k′((s)) and a′ = a(1) := (exp(a))′

exp(a) and a(n+1) = (a(n))′. This notation

is intuitive in the sense that, if one thinks of a as log(exp(a)) then a′ is the logarithmic derivative
of exp(a). With these conventions, we will state the following basic lemma.

Lemma 6.3.1. Let σ be the automorphism of the k∞ algebra k′((s))∞, which is the identity
automorphism modulo (t) and has the property that σ(s) = s+ αtw, with w ≥ 1 and α ∈ k((s)),

then σ(exp(atx)) = exp(
∑

0≤i
αia(i)

i! tx+iw).

Proof. Assume that σ is such an automorphism of k′((s))∞. Let i : k
′ → k′((s))∞ be the standard

inclusion, which sends an element of k′ to a constant series in s and t. In other words, i is the
k′-algebra structure map. Let

π : k′((s))∞ → k′((s))∞/(t) = k′((s))

denote the canonical projection. By the assumptions, the restriction of σ ◦ i to k, is the standard
inclusion k → k′((s))∞. Similarly, by the assumptions, π ◦σ ◦ i is the standard inclusion of k′ into
k′((s)). Since k′ is étale over k, these two statements above imply that σ ◦ i is the same as the
inclusion i. Together with the assumption that σ(t) = t, this implies that σ is an automorphism
of k′∞-algebras.
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The rest proof is then separated into two cases, when x = 0 and when x ̸= 0. In both cases,
the statement follows from the Taylor expansion formula. □

Lemma 6.3.2. Let σ be the automorphism of the k∞ algebra k′((s))∞, which is the identity
automorphism modulo (t) and has the property that σ(s) = s+ αtw, with m ≤ w. Then we have,

Ωm,r
(σ(exp(ati) ∧ exp(btj) ∧ exp(ctk))

exp(ati) ∧ exp(btj) ∧ exp(ctk)

)
= 0,

for 0 < i+ j + k.

Proof. Since m ≤ w, 0 < i+ j + k and m < r < 2m, the weight r terms of

σ(exp(ati) ∧ exp(btj) ∧ exp(ctk))

exp(ati) ∧ exp(btj) ∧ exp(ctk)

are possibly non-zero only when i+ j + k + w = r and in this case they are given by

exp(αa′ti+w) ∧ exp(btj) ∧ exp(ctk) + exp(ati) ∧ exp(αb′tj+w) ∧ exp(ctk)

+ exp(ati) ∧ exp(btj) ∧ exp(αc′tk+w).

By the definition of Ωm,r, the above sum is sent to

α(a′(jbc′ − kcb′)− b′(iac′ − kca′) + c′(iab′ − jba′))ds = 0.

□

Corollary 6.3.3. Let σ be any automorphism of Rr as a kr-algebra, which reduces to identity
on Rm, then ωm,r ◦ Λ3σ = ωm,r.

Proof. This follows by the corresponding statement for Ωm,r. This in turn reduces to Lemma
6.3.2 after localizing and completing. □

Definition 6.3.4. If R/kr is a smooth kr-algebra of relative dimension 1. We defined the map

ωm,r : Λ
3(Rr, (t

m))× → Ω1
R/k,

as the composition Ωm,r ◦ s, where R is the reduction of R modulo (t) and Rr := R ×k kr.
Let τ : Rr → R be a splitting, that is an isomorphism of kr-algebras which is the identity map
modulo (t). By transport of structure, this gives a map

ωm,r,τ : Λ3(R, (tm))× → Ω1
R/k.

Suppose that τ ′ is another such splitting which agrees with τ modulo (tm). Applying Corollary

6.3.3 to τ ′
−1 ◦ τ, we deduce that ωm,r,τ = ωm,r,τ ′ . Therefore, if σ : Rm → R/(tm) is a splitting

of the reduction R/(tm) of R then ωm,r,σ is unambiguously defined as ωm,r,τ , where τ is any
splitting of R that reduces to σ modulo (tm).

Recall the relative version of the Bloch group from [21, §2.4.8]. If A is a ring with ideal I, let
(A, I)♭ := {(ã, â) ∈ (A, I)×|(1 − ã, 1 − â) ∈ (A, I)×}. Then the relative Bloch group B2(A, I) is
defined as the abelian group generated by the symbols [(ã, â)] for every (ã, â) ∈ (A, I)♭, modulo
the relations generated by the analog of the five term relation for the dilogarithm:

[(x̃, x̂)]− [(ỹ, ŷ)] + [(ỹ/x̃, ŷ/x̂)]− [(
1− x̃−1

1− ỹ−1
,
1− x̂−1

1− ŷ−1
)] + [(

1− x̃

1− ỹ
,
1− x̂

1− ŷ
)]

for every (x̃, x̂), (ỹ, ŷ) ∈ (A, I)♭ such that (x̃ − ỹ, x̂ − ŷ) ∈ (A, I)×. As in the classical case, we
obtain a complex δ : B2(A, I) → Λ2(A, I)×, which sends (ã, â) to (1− ã, 1− â)∧ (ã, â). As usual,
abusing the notation, we will denote the induced map δ ⊗ id : B2(A, I) ⊗ (A, I)× → Λ3(A, I)×,
also by δ. With these definitions, we have the following expected property of the map ωm,r,τ .

Proposition 6.3.5. For a splitting σ of R/(tm), the above map ωm,r,σ vanishes on the image
of B2(R, (tm))⊗ (R, (tm))× in Λ3(R, (tm))× under δ.
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Proof. By the definition of ωm,r,σ, we easily reduce to the split case where R = Rr. It suffices to
prove that Ωm,r vanishes on the following two types of elements:

δr([f̂ ]⊗ ĝ)− δr([f̃ ]⊗ ĝ) and δr([f̂ ]⊗ ĝ)− δr([f̂ ]⊗ g̃),

where f̂ , f̃ ∈ R♭ have the same reduction modulo (tm) and ĝ, g̃ ∈ R× have the same reduction
modulo (tm). This precisely the statement of Proposition 6.1.3. □

6.4. Behaviour of res(ωm,r,σ) with respect to automorphisms of Rm. In order to proceed
with our construction, we need an object such as the 1-form in [21] which controls the effect of
changing splittings. This object in ⋆-weight r will be constructed below by using ωm,r. On the
other hand, this objects does depend on the choice of splittings if these splittings are different
modulo (tm), when r > m+1. In the modulus m = 2 case the only possible r is 3 so this situation
does not occur in [21]. In the current case of higher modulus, we will see that the residues of the
1-form ωm,r is invariant under the automorphisms of Rm which are identity modulo (t), which
will imply that the residue can be defined independent of various choices. We will see that this
will be enough for constructing the Chow dilogarithm of higher modulus. We will again start
with an explicit computation on k′((s))∞.

Proposition 6.4.1. Suppose that σ is the automorphism of k′((s))∞ as a k∞-algebra such that
σ(s) = s + αtw, with w ≥ 1 and α ∈ k′((s)), and which is identity modulo (t). Consider the
element exp(atx) ∧ exp(bty) ∧ exp(ctz), with m ≤ x. If r− (x+ y + z) > 0, and is divisible by w,

let q = r−(x+y+z)
w . Then Ωm,r

(σ(exp(atx)∧exp(bty)∧exp(ctz))
exp(atx)∧exp(bty)∧exp(ctz)

)
is equal to

d
(αq
q!

∑
0≤k≤q−1

a(k)
(
q − 1

k

) ∑
i+j=q−k

((q − k − 1

i

)
yb(i)c(j) −

(
q − k − 1

j

)
zb(i)c(j)

))
.(6.4.1)

Otherwise, Ωm,r
(σ(exp(atx)∧exp(bty)∧exp(ctz))

exp(atx)∧exp(bty)∧exp(ctz)

)
= 0.

Proof. First note that by Lemma 6.3.1

Q :=
σ(exp(atx) ∧ exp(bty) ∧ exp(ctz))

exp(atx) ∧ exp(bty) ∧ exp(ctz)

=
exp(

∑
0≤i

αia(i)

i! tx+iw) ∧ exp(
∑

0≤i
αib(i)

i! ty+iw) ∧ exp(
∑

0≤i
αic(i)

i! tz+iw)

exp(atx) ∧ exp(bty) ∧ exp(ctz)

and hence if r − (x + y + z) ≤ 0 or w ∤ r − (x + y + z) then Q does not have a component of
weight r and Ωm,r(Q) = 0.

Suppose then that r − (x + y + z) > 0, w|(r − (x + y + z)) and let q := r−(x+y+z)
w as in the

statement of the proposition. In this case the weight r term of Q is given as∑
i+j+k=q

exp(
αka(k)

k!
tx+kw) ∧ exp(

αib(i)

i!
ty+iw) ∧ exp(

αjc(j)

j!
tz+jw).

This implies that Ωm,r(Q) is equal to∑
i+j+k=q

αka(k)

k!

(
(y + iw)

αib(i)

i!

(αjc(j)
j!

)′ − (z + jw)
(αib(i)

i!

)′αjc(j)
j!

)
ds.

We first claim that the expression above does not depend on w. The coefficient of w · a
(k)

k! α
q−1dα

in this expression is
∑
i+j=q−k(i

b(i)

i!
jc(j)

j! − j ib
(i)

i!
c(j)

j! ) = 0. The coefficient of w · a
(k)

k! α
qds in the

same expression is∑
i+j=q−k

(i
b(i)

i!

c(j+1)

j!
− j

b(i+1)

i!

c(j)

j!
) =

∑
i+j=q−k+1

1≤i, j

b(i)

(i− 1)!

c(j)

(j − 1)!
−

∑
i+j=q−k+1

1≤i, j

b(i)

(i− 1)!

c(j)

(j − 1)!
= 0.



INFINITESIMAL DILOGARITHM ON CURVES OVER TRUNCATED POLYNOMIAL RINGS 25

Therefore Ωm,r(Q) can be rewritten as∑
i+j+k=q

αka(k)

k!

(
y
αib(i)

i!

(αjc(j)
j!

)′ − z
(αib(i)

i!

)′αjc(j)
j!

)
ds.(6.4.2)

The coefficient of α′αq−1ds in the above expression is equal to∑
0≤k≤q−1

a(k)

k!

∑
i+j=q−k

(
y
b(i)

i!

jc(j)

j!
− z

ib(i)

i!

c(j)

j!

)
which agrees with the coefficient of α′αq−1ds in (6.4.1).

Fix i0, j0, and k0 such that i0 + j0 + k0 = q. Then the coefficient of yαqa(k0)b(i0)c(j0+1) in
(6.4.1) is equal to 1

q (
1

(k0−1)!
1
i0!

1
j0!

+ 1
k0!

1
i0!

1
(j0−1)! +

1
k0!

1
(i0−1)!

1
j0!

) = 1
k0!

1
i0!

1
j0!
, which is exactly the

same as the coefficient of the same term in (6.4.2). By symmetry, we deduce the same statement
for the coefficients of zαqa(k0)b(i0+1)c(j0). This finishes the proof of the proposition. □

Corollary 6.4.2. Suppose that σ and exp(atx)∧ exp(bty)∧ exp(ctz) are as above. If r = m+1,

then Ωm,r
(σ(exp(atx)∧exp(bty)∧exp(ctz))

exp(atx)∧exp(bty)∧exp(ctz)

)
= 0.

Proof. In this case in order to have m ≤ x and (m+ 1)− (x+ y + z) = r − (x+ y + z) > 0, we
have to have x = m and y = z = 0. In this case, (6.4.1) is equal to 0. □

Corollary 6.4.3. If R is a smooth km+1-algebra of relative dimension 1 as above, then for
r = m+ 1, we have a well-defined map

ωm,m+1 : Λ3(R, (tm))× → Ω1
R/k

as in Definition 6.3.4, which does not depend on the choice of a splitting of R/(tm).

Proof. This follows immediately from Corollary 6.4.2, by reducing to the case R = k′((s))m+1,
after localising and completing. □

For a general r between m and 2m, the following corollary will be essential.

Corollary 6.4.4. Fix m < r < 2m, and let R be a smooth kr-algebra of relative dimension
1 as above. Let x be a closed point of the spectrum of R, k′ its residue field, and let η be the
generic point of R. Then for any two splittings σ and σ′ of Rη/(t

m), the reduction modulo
(tm) of the local ring of R at η, and for any α ∈ Λ3(Rη, (t

m))×, the residues of ωm,r,σ(α) and
ωm,r,σ′(α) ∈ Ω1

Rη/k
at x are the same:

resxωm,r,σ′(α) = resxωm,r,σ(α) ∈ k′.

Proof. Again by localising and completing we reduce to the case of k′((s))r. By Proposition 6.4.1,
we see that the difference ωm,r,σ′(α) − ωm,r,σ(α) is the differential of an element in k′((s)) and
hence has zero residue. □

Remark 6.4.5. Let R/kr be as above. Suppose that τ and σ are two splittings Rm → R/(tm).
In this case, there should be a map

hωm,r(τ, σ) : Λ
3(R, (tm))× → R

such that

d(hωm,r(τ, σ)) = ωm,r,τ − ωm,r,σ.

Moreover, hωm,r(τ, σ) should vanish on the image of B2(R, (tm))⊗ (R, (tm))×.
In case r = m + 1, hωm,m+1 = 0 does satisfy the properties above. Let us look at the first

non-trivial case whenm = 3 and r = 5. Note that the reduction modulo (t2) of the automorphism
τ−1◦σ : R3 → R3, which lifts the identity map on R, is determined by a k-derivation θ : R → R.

Define hΩ3,5(θ) : I3,5 ⊆ (Λ3R×
5 )

◦ → R, as

hΩ3,5(θ)(exp(at
3) ∧ exp(bt) ∧ c) = abθ(

dc

c
),
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where a, b,∈ R and c ∈ R×. Let hΩ3,5(θ) be defined as 0 on all the other type of elements in

I3.5. Then hω3,5(τ, σ) : Λ
3(R, (t3))× → R defined by

hω3,5(τ, σ)(α) := −hΩ3,5(θ)(s(σ
−1(α)))

satisfies the desired properties above. An analog of this construction is one of the main tools in
defining an infinitesimal version of the Bloch regulator in [20].

Definition 6.4.6. Let R be a smooth kr-algebra of relative dimension 1 as above. Let η be the
generic point and x be a closed point of the spectrum of R. Then we have a canonical map

resxωm,r : Λ
3(Rη, (t

m))× → k′,

where k′ is the residue field of x. The map is defined by choosing any splitting σ of Rη/(t
m) and

letting resxωm,r := resxωm,r,σ. This is independent of the choice of the splitting σ, by Corollary
6.4.4.

6.5. Variant of the residue map for different liftings. For the construction of the infini-
tesimal Chow dilogarithm, we need a variant of Definition 6.4.6. Fortunately, we do not need to
do extra work, Corollary 6.3.3 and Proposition 6.4.1 will still be sufficient to give us what we are
looking for.

Suppose that A is a ring with an ideal I and B and B′ are two A-algebras together with an
isomorphism χ : B/IB ≃ B′/IB′ of A-algebras. We let

(B,B′, χ)× := {(p, p′)|p ∈ B× and p′ ∈ B′× s.t. χ(p|I) = p′|I},
where p|I denotes the image of p in (B/IB)×. Similarly, we define (B,B′, χ)♭ and B2(B,B

′, χ)
and obtain maps, B2(B,B

′, χ) → Λ2(B,B′, χ)× and B2(B,B
′, χ)⊗(B,B′, χ)× → Λ3(B,B′, χ)×.

We will use these definitions below with A = k∞ and I = (tm). In fact the following variant will
be essential in what follows.

Suppose that S/km is a smooth algebra of relative dimension 1, with x a closed point and η
the generic point of its spectrum. Suppose that R, R′/kr are liftings of Sη to kr. In other words,
we have fixed isomorphisms:

ψ : R/(tm) → Sη
and

ψ′ : R′/(tm) → Sη.
Letting χ := ψ′−1 ◦ ψ, we would like to construct a map

resxωm,r : Λ
3(R,R′, χ)× → k′,

where k′ is the residue field of x. Note that (R,R′, χ)× consists of pairs of (p, p′) with p ∈ R×

and p′ ∈ R′× such that ψ(p|tm) = ψ′(p′|tm). In other words, it consists of different liftings of
elements of S×

η . We sometimes use the notation (R,R′, ψ, ψ′)× to denote the same set.
In order to construct this map, let

χ̃ : R → R′

be an isomorphism of kr-algebras which is a lifting of χ. This provides us with a map

(R,R′, χ)×
χ̃∗
// (R, (tm))× .

Choosing a splitting σ : Rm → R/(tm), by Definition 6.3.4 we obtain the map ωm,r,σ, composing
this with the map induced by the reduction ψ of ψ, we obtain

Λ3(R,R′, χ)×
Λ3χ̃∗

// Λ3(R, (tm))×
ωm,r,σ // Ω1

R/k
dψ

// Ω1
Sη/k

resx // k′.(6.5.1)

Proposition 6.5.1. The map (6.5.1) above is independent of the choices of the lifting χ̃ of χ
and the choice of the splitting σ of R/(tm).

Proof. That the composition is independent of the choice of χ̃ follows from Corollary 6.3.3 and
Definition 6.3.4. That it is independent of the choice of the splitting σ follows from Proposition
6.4.1. □
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Definition 6.5.2. We denote the composition (6.5.1) above by

resxωm,r(ψ,ψ
′) : Λ3(R,R′, ψ, ψ′)× → k′.

If ψ and ψ′ are clear from the context, we denote this map by resxωm,r, and (R,R′, ψ, ψ′)× by
(R,R′, (tm))×. Depending on the context, we also use the notation resxωm,r(χ) : Λ

3(R,R′, χ) →
k′ for the same map, with χ = ψ′−1 ◦ ψ.

With these definitions, we have the following corollary.

Corollary 6.5.3. Suppose that R and R′ are smooth kr-algebras of dimension 1 as above which
are liftings of the generic local ring Sη of a smooth km-algebra S . Let χ : R/(tm) → R′/(tm) be
the corresponding isomorphism of km-algebras. Let x be a closed point of S . Then the map

resxωm,r(χ) : Λ
3(R,R′, χ)× → k′

vanishes on the image of B2(R,R′, χ)⊗ (R,R′, χ)×.

Proof. Follows from Proposition 6.3.5. □

7. The residue of ωm,r on good liftings.

Suppose that R/kr is as above. Moreover, we assume that the reduction R of R modulo (t)
is a discrete valuation ring with x being the closed point. We let x̃/kr be a lifting of x to R.
By this what we mean is as follows. Let s be a uniformizer at x, and let s̃ be any lifting of s to
R, we call s̃ also a uniformizer at x on R. The associated scheme x̃, which is smooth over kr, is
what we call a lifting of x. In other words a lifting of x is a 0-dimensional closed subscheme x̃
of R such that its ideal is generated by a single element which reduces to a uniformizer on R.
Note that if we are given x̃, then s̃ is determined up to a unit in R. Sometimes we will abuse the
notation and write (s̃) instead of x̃. Let η denote the generic point of R. We let

(R, x̃)× := {α ∈ R×
η |α = us̃n, for some u ∈ R× and n ∈ Z}.

We say that an element α ∈ R×
η is good with respect to x̃, if α ∈ (R, x̃)×. Note that this property

depends only on x̃, and not on s̃. The importance of this notion for us is that for wedge products
of good liftings, we can define their residue along (s) as in [21, §2.4.5]. Namely, there is a map

resx̃ : Λn(R, x̃)× → Λn−1(R/(s))×,
with the properties that it vanishes on ΛnR× and s∧α1∧· · ·∧αn−1 is mapped to α1∧· · ·∧αn−1,
if αi ∈ R× and αi denotes the image of αi in (R/(s))×, for 1 ≤ i ≤ n− 1.

Suppose that R′/kr is another such ring, and x̃′ a lifting of the closed point of R′. Suppose
that there is an isomorphism χ : R/(tm) → R′/(tm) which identifies the reduction of x̃ modulo
(tm) with the reduction of x̃′ modulo (tm). Then we let

(R,R′, x̃, x̃′, χ)× := {(p, p′)|p ∈ (R, x̃)× and p′ ∈ (R′, x̃′)× such that χ(p|tm) = p′|tm}.
Note that clearly (R,R′, x̃, x̃′, χ)× ⊆ (R,R′, χ)×. In case R′ = R with χ the identity map, we
denote the corresponding group by (R, x̃, (tm))×. Denote the natural maps (R,R′, x̃, x̃′, χ)× →
(R, x̃)× and (R,R′, x̃, x̃′, χ)× → (R′, x̃′)× by π1 and π2.

In this section, we would like to compute resxωm,r(χ)(α) for α ∈ Λ3(R,R′, x̃, x̃′, χ)× in terms
of the value of ℓm,r on the residue of α. The main result of this section is Proposition 7.0.3.
We will first start with certain explicit computations on the formal power series rings and then
finally reduce our general statement to these special cases. Let us immediately remark that in
order to compute the residues, we immediately reduce to the case when R and R′ are complete
with respect to the ideal which correspond to their closed points.

We will first consider the case of R = k′[[s]] and that of the same uniformizer on both of the
liftings as follows.

Note that
res(s)(s ∧ α ∧ β) = α ∧ β ∈ Λ2k′r

×
,

where α and β are the images of α and β under the natural projection R× → (R/(s))× = k′r
×
.

Similarly for p′.
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Lemma 7.0.1. Suppose that R = k′[[s]], and R := Rr = k′[[s, t]]/(tr). Suppose that α, α′,
and β ∈ R× such that α′|tm = α|tm ∈ R/(tm). Let p′ := s ∧ α′ ∧ β, p := s ∧ α ∧ β and
(p, p′) := (s, s) ∧ (α, α′) ∧ (β, β) ∈ Λ3(R, (s), (tm))× ⊆ Λ3(Rη, (t

m))×. Then the residue of
ωm,r(p, p

′) at the closed point of R = k′[[s]] is given by

ress=0ωm,r(p, p
′) = ℓm,r(res(s)(p))− ℓm,r(res(s)(p

′)).

Proof. By Definition 6.1.4, we see that ωm,r(p, p
′) = Ωm,r(p − p′) = Ωm,r(s ∧ α

α′ ∧ β). Let us

compute the residue at s = 0 of an expression of the type Ωm,r(s ∧ exp(ati) ∧ exp(btj)), with
a, b ∈ k[[s]] and i ≥ m, such that if j = 0. We use the notation in Remark 6.1.2. Since

Ωm,r(s ∧ exp(ati) ∧ exp(btj)) = jab
ds

s
,

when i+ j = r and is 0 otherwise, we conclude that its residue is equal to ja(0)b(0) if i+ j = r,
and is 0 otherwise. Since, for i ≥ m,

ℓm,r(res(s)(s ∧ exp(ati) ∧ exp(btj))) = ℓm,r(exp(a(0)t
i) ∧ exp(b(0)tj))

is equal to ja(0)b(0) if i+ j = r, and is 0 otherwise, we conclude that

ress=0(Ωm,r(s ∧ exp(ati) ∧ exp(btj))) = ℓm,r(res(s)(s ∧ exp(ati) ∧ exp(btj))).(7.0.1)

On the other hand, since α′|tm = α|tm , s ∧ α
α′ ∧ β is a sum of terms of the above type, and the

linearity of both sides of (7.0.1) imply that (7.0.1) is also valid for s∧ α
α′ ∧β. By linearity of ℓm,r

and res(s), we have

ℓm,r(res(s)(s ∧
α

α′ ∧ β)) = ℓm,r(res(s)(s ∧ α ∧ β))− ℓm,r(res(s)(s ∧ α′ ∧ β)),

which together with the above proves the lemma. □

Let us now try to prove the same formula when the choice of the uniformizer is not the
same. In other words, with notation as above let s′ ∈ R such that s′|tm = s|tm . For simplicity,
let us temporarily use the notation (R, (s), (s′), (tm))× := (R,R, (s), (s′), idR/(tm))

×. Let p′ :=

s′ ∧ α ∧ β, p := s ∧ α ∧ β and (p, p′) := (s, s′) ∧ (α, α) ∧ (β, β) ∈ Λ3(R, (s), (s′), (tm))×.

Lemma 7.0.2. With notation as above, the residue of ωm,r(p, p
′) at the closed point of k′[[s]] is

given by the following formula:

ress=0ωm,r(p, p
′) = ℓm,r(res(s)(p))− ℓm,r(res(s′)(p

′)).

Proof. If s′′ is another lift of the uniformizer s, in other words s′′ ∈ R with s′′|tm = s|tm then

ress=0ωm,r(p, p
′′) = ress=0ωm,r(p, p

′) + ress=0ωm,r(p
′, p′′)

and ℓm,r(res(s)(p))− ℓm,r(res(s′′)(p
′′)) =(

ℓm,r(res(s)(p))− ℓm,r(res(s′)(p
′))

)
+

(
ℓm,r(res(s′)(p

′))− ℓm,r(res(s′′)(p
′′))

)
.

Therefore in order to prove the lemma we may assume without loss of generality that s′ = s+ati,
with a ∈ k′[[s]] and m ≤ i. Note that in R, we have s+ ati = s exp(as t

i), since r < 2m. Letting

α = exp(btj) and β = exp(ctk), we can rewrite ωm,r(p, p
′) as

Ωm,r(p− p′) = Ωm,r(exp(−
a

s
ti) ∧ exp(btj) ∧ exp(ctk)) = −a

s
(jb · dc− kc · db),

if i+ j + k = r and 0 otherwise. Its residue is

−a(0)(jb(0)c′(0)− kc(0)b′(0))(7.0.2)

if i+ j + k = r and 0 otherwise, with the usual conventions if j or k is 0.
On the other hand, res(s)(p) = exp(b(0)tj) ∧ exp(c(0)tk) and

res(s′)(p
′) = exp(b(0)tj − a(0)b′(0)ti+j) ∧ exp(c(0)tk − a(0)c′(0)ti+k) ∈ Λ2k′r

×
.

By the linearity of ℓm,r, the right hand side of the expression in the statement of the lemma is
then equal to

−ℓm,r(exp(b(0)tj) ∧ exp(−a(0)c′(0)ti+k))− ℓm,r(exp(−a(0)b′(0)ti+j) ∧ exp(c(0)tk))
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− ℓm,r(exp(−a(0)b′(0)ti+j) ∧ exp(−a(0)c′(0)ti+k)).

The last summand is equal to 0 since ℓm,r is of weight r and i+ j+ i+ k ≥ 2i ≥ 2m > r. For the
same reason, the first two summands are 0 if i + j + k ̸= r and if i + j + k = r, then the total
expression is equal to −a(0)c′(0)jb(0) + a(0)b′(0)kc(0), which agrees with the formula (7.0.2) for
the residue of Ωm,r. Since α and β are sums of the terms of the above type, this proves the
lemma. □

Proposition 7.0.3. Suppose that R, R′ are local algebras which are smooth of relative dimension
1 over kr, together with liftings x̃, x̃′ of their closed points and a km-isomorphism χ : R/(tm) →
R′/(tm) which maps the reductions of x̃ and x̃′ to each other. Then for q ∈ Λ3(R,R′, x̃, x̃′, χ)×,
we have the following formula for the closed point x,

resxωm,r(q) = ℓm,r(resx̃(Λ
3π1)(q))− ℓm,r(resx̃′(Λ3π2)(q)).

Proof. In order to prove the statement, we can replace R and R′ with their completions at their
closed points. Let k′ be the residue field at the closed point x. Without loss of generality, we will
assume that R = R′ = k′[[s]]r, x̃ is given by s = 0 and x̃′ is given by s′ = 0 for some s′ ∈ k′[[s]]r
with s′|tm = s|tm , and χ is the map which is identity on k′[[s]]m.

In order to make the computations we need to choose a lifting χ̃ of χ from R to R′.We choose
this lifting to be the one that sends s to s′ and is identity on k′. Note that χ̃ being a map of kr
algebras has to satisfy χ̃(t) = t.

The statement above then reduces to the following: suppose that α, β, γ ∈ (k′[[s]]r, (s))
×

and α′, β′, γ′ ∈ (k′[[s]]r, (s
′))× such that α|tm = α′|tm , β|tm = β′|tm , and γ|tm = γ′|tm , and

p = α ∧ β ∧ γ, p′ = α′ ∧ β′ ∧ γ′, and (p, p′) = (α, α′) ∧ (β, β′) ∧ (γ, γ′), then

ress=0Ωm,r(p− p′) = ℓm,r(res(s)(p))− ℓm,r(res(s′)(p
′)).

By assumption α is of the form usn for some u ∈ k′[[s]]×r and n ∈ Z. Similarly, α′ is of the

form u′s′n
′
, with u′ ∈ k′[[s]]×r . The condition that α|tm = α′|tm implies that n = n′. The same is

true for β, β′, and γ, γ′. By multi-linearity and anti-symmetry, we reduce to checking the above
identity in the following two cases: in the first case where α, β, γ ∈ k′[[s]]× and in the second
case where α = s, α′ = s′ and β, γ ∈ k′[[s]]×.

If α, β, γ ∈ k′[[s]]×, then α′, β′, γ′ ∈ k′[[s]]×. This implies on the one hand that res(s)(p) = 0

and res(s′)(p
′) = 0, and on the other that p− p′ ∈ Im,r = (1+ (tm)⊗Λ2k′[[s]]×r ) ⊆ (Λ3k′[[s]]×r )

◦,

which implies that Ωm,r(p−p′) ∈ Ω1
k′[[s]]/k. Therefore ress=0Ωm,r(p−p′) = 0 = ℓm,r(res(s)(p))−

ℓm,r(res(s′)(p
′)) in this case.

Let us now consider the more interesting case of α = s, α′ = s′ and β, γ, β′, γ′ ∈ k′[[s]]×, with
β|tm = β′|tm and γ|tm = γ′|tm . Applying Lemma 7.0.1 first with p = (s, α, β) and p′ = (s, α′, β)
then with p = (s, α′, β) and p′ = (s, α′, β′) and then applying Lemma 7.0.2 with p = (s, α′, β′)
and p′ = (s′, α′, β′) and adding all the equalities finishes the proof of the proposition. □

8. Construction of ρ and a regulator on curves

8.1. Regulators on curves. Let R/km be smooth of relative dimension 1, as in the previous
section but without the assumption that R is a discrete valuation ring. Choose and fix a lifting
c of c to R for every closed point c of R as in the previous section. We denote the set of these
liftings by P. We let k(c) denote the residue field of c and k(c) denote the artin ring which is
the ring of regular functions on the affine scheme c. Let |R| = |R| denote the set of closed points
of R, or equivalently of R. Note that the reductions of the localizations Rc of R are discrete
valuation rings. We let

(R,P)× :=
⋂
c∈|R|

(Rc, c)
×

and (R,P)♭ := {f ∈ (R,P)×|1 − f ∈ (R,P)×}. We define B2(R,P) to be the vector space
over Q generated by the symbols [f ] with f ∈ (R,P)♭ modulo the five term relations associated
to pairs f and g in (R,P)♭ which have the property that f − g ∈ (R,P)×. As usual we have
maps B2(R,P) → Λ2(R,P)× and B2(R,P)⊗(R,P)× → Λ3(R,P)×.We also have a residue
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map resc : B2(R,P)⊗ (R,P)× → B2(k(c)) that is defined exactly as in [21, §3.3.1] and which
gives a commutative diagram:

B2(R,P)⊗ (R,P)×

resc

��

δ // Λ3(R,P)×

resc

��
B2(k(c))

δ // Λ2k(c)×.

Suppose that C/km is a smooth and projective curve. For every closed point c of C, choose and
fix a smooth lifting of c of c to C. We denote P to be the set of these liftings. We let (OC ,P)×

denote the sheaf on C which associates to an open set U of C, the group (OC(U),P|U )×.
Similarly, B2(OC ,P) is the sheaf associated to the presheaf, which associates to U the group
B2(OC(U),P |U ). For each c ∈ |C|, let ic denote the imbedding of c in C. The commutative
diagram above gives us a complex Γ′

B(C,P, 3) of sheaves:

B2(OC ,P)⊗ (OC ,P)× → ⊕c∈|C|ic∗(B2(k(c)))⊕ Λ3(OC ,P)× → ⊕c∈|C|ic∗(Λ
2k(c)×),

concentrated in degrees [2, 4]. We use the following sign conventions in the above complex: the
first map is (δ, res) and the second one is −δ+res.We will be interested in the infinitesimal part
of the degree 3 cohomology H3

B(C,Q(3)) := H3(C,Γ′
B(C,P, 3)) of the complex Γ′

B(C,P, 3).
More precisely, we will be interested in defining regulator maps from H3

B(C,Q(3)) to k for every
m < r < 2m.

The above cohomology group is a candidate for the motivic cohomology group H3
M(C,Q(3)).

To be more precise, we would expect a sheaf B3(OC ,P) of Bloch groups of weight 3 as in [6],
which would fit into a complex ΓB(C,P, 3) of sheaves on C:

B3(OC ,P) → B2(OC ,P)⊗ (OC ,P)× → ⊕ic∗(B2(k(c)))⊕ Λ3(OC ,P)× → ⊕ic∗(Λ2k(c)×),

and which would compute motivic cohomology of weight 3. Since we are only interested in
H3(C,ΓB(C,P, 3)) and since on a curve, by Grothendieck’s vanishing theorem, the cohomology
of any sheaf vanishes in degree greater than 1, we have an isomorphism

H3(C,Γ′
B(C,P, 3)) ≃ H3(C,ΓB(C,P, 3)).

For a sheaf of complexes F•, let Ȟ•(C,F•) denote the colimit of all the Čech cohomology
groups over all Zariski covers of C. For a sheaf F , the natural map Ȟi(C,F ) → Hi(C,F ) is an
isomorphism for i = 0, 1. By the same argument, it follows that the same is true for a complex of
sheaves F• which is concentrated in degrees 0 and 1. This applied to the complex above implies
that the natural map

Ȟ3(C,Γ′
B(C,P, 3)) ≃ H3(C,Γ′

B(C,P, 3))

is an isomorphism. Therefore, it is enough to construct the map Ȟ3(C,Γ′
B(C,P, 3)) → k. We

will in fact construct the map as the composition

Ȟ3(C,Γ′
B(C,P, 3)) ↪→ Ȟ3(C,Γ′′

B(C,P, 3)) → k,

where Γ′′
B(C,P, 3) is the quotient complex:

B2(OC ,P)⊗ (OC ,P)× → ⊕c∈|C|ic∗(B2(k(c)))⊕ Λ3(OC ,P)×

of Γ′
B(C,P, 3).

Suppose that we are given a Zariski open cover U• of C, we will define a map from the
corresponding cocycle group Ž3(U•,Γ′′

B(C,P, 3)) to k, which will vanish on the coboundaries and
hence induce the map in the cohomology group that we are looking for. Suppose that we start
with a cocyle as above, given by the data:

(i) γi ∈ Λ3(OC ,P)×(Ui), for all i ∈ I.
(ii) εi,c ∈ B2(k(c)) for every c ∈ Ui all but finitely many of which are 0, for all i ∈ I
(iii) βij ∈ (B2(OC ,P)⊗ (OC ,P)×)(Uij), for all i, j ∈ I
These data are supposed to satisfy the following properties:
(i) δ(βij) = γj |Uij

− γi|Uij
,

(ii) resc(βij) = εj,c − εi,c, for c ∈ Uij ,
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(iii) βjk|Uijk
− βik|Uijk

+ βij |Uijk
= 0.

We will construct the image of the above element by making several choices and then proving
that the construction is independent of all the choices.

(i) Let Ãη/k∞ be a smooth lifting of OC,η and for every c ∈ |C|, let Ãc/k∞ be a smooth

lifting of the completion ÔC,c of the local ring of C at c, together with a smooth lifting c̃ of c as
in the previous section. Moreover, choose:

(ii) an arbitrary i ∈ I and for each c choose a jc ∈ I such that c ∈ Ujc
(iii) an arbitrary lifting γ̃iη ∈ Λ3Ã×

η of the germ γiη ∈ Λ3O×
C,η of γi at the generic point η

(iii) a good lifting γ̃jc ∈ Λ3(Ãc, c̃)
× of the image γ̂jc,c of γjc in Λ3(ÔC,c, c)

×, for every c ∈ |C|,
(iv) an arbitrary lifting β̃jci,η ∈ B2(Ãη) ⊗ Ãη of the image βjci,η ∈ B2(OC,η) ⊗O×

C,η of βjci,

for every c ∈ |C|.
Note that it does not make sense to require that γ̃iη be a good lifting since in this context

there is no a fixed specialization of the generic point. Similarly, we cannot require that β̃jci,η be

a good lifting, since we know that δ(β̃jci,η) is a lifting of δ(βjci,η) = γi − γjc and even this last
expression need not be good at c as γi need not be good at c.

We define the value of the regulator ρm,r on the above element by the expression∑
c∈|C|

Trk
(
ℓm,r(resc̃γ̃jc)− ℓim,r(εjc,c) + rescωm,r(γ̃iη − δ(β̃jci,η), γ̃jc)

)
.(8.1.1)

Let us first explain what we mean by the above expression. Since γ̃jc is c̃-good, the residue
resc̃γ̃jc along c̃ is defined as an element of Λ2k(c̃)×. The étaleness of c̃ over k∞, implies that we
have a canonical isomorphism k(c̃) ≃ k(c)∞ of k∞-algebras. Using this isomorphism and the
map ℓm,r : Λ2k(c)×∞ → k(c) in Definition 3.0.2, we obtain ℓm,r(resc̃γ̃jc) ∈ k(c). For the second
term, note that, as above, there is a canonical isomorphism k(c) ≃ k(c)m of km algebras using
which we can view εjc,c ∈ B2(k(c)m). Applying ℓim,r : B2(k(c)m) → k(c) to this element gives

ℓim,r(εjc,c) ∈ k(c). For the last term, note that γ̃iη−δ(β̃jci,η) is a lifting of γiη−δ(βjci,η) = γjc to

Λ3Ã×
η and so is γ̃jc a lifting of γjc to Λ3Ã×

c . Using the theory of §6.5, we see that the last term

rescωm,r(γ̃iη−δ(β̃jci,η), γ̃jc) ∈ k(c) is unambiguously defined. Letting Trk denote the normalized
trace to k, the summands above are defined.

In order to show that the sum makes sense, we also need to show that the sum is finite. Below
we will show that the sum is independent of all the choices, therefore it will be enough to show
that the sum is finite for a particular choice. First by shrinking Ui if necessary, and choosing
a refinement of the cover, we will assume that γi ∈ Λ3O×

C (Ui). Similarly, by shrinking Ui even
further, we will assume that the lifting γ̃i is good on Ui. Therefore, for c ∈ Ui, we can choose
jc = i and γ̃jc = γ̃i. Since for these c, βjci = 0 we can choose β̃jci = 0. In order to show that
the sum in (8.1.1) is finite, we can concentrate on c ∈ Ui, as |C| \ |Ui| is finite. For c ∈ Ui,
rescγ̃jc = rescγ̃i = 0, since γi is invertible on Ui by assumption. Also for the residues we have

rescωm,r(γ̃iη − δ(β̃jci,η), γ̃jc) = rescωm,r(γ̃i, γ̃i) = 0 since i = jc, γ̃jc = γ̃i and β̃jci = 0. Therefore
the summand, for c ∈ Ui, is equal to Trk(−ℓim,r(εjc,c)) = Trk(−ℓim,r(εi,c)). Since εi,c = 0, for
all but a finite number of c ∈ Ui, we are done.

We now show that the expression makes sense and is independent of all the choices. Note that
there are many of them.

Theorem 8.1.1. For every m < r < 2m, the above formula (8.1.1) gives a well-defined regulator
map ρm,r : Ž3(U•,Γ′′

B(C,P, 3)) → k, independent of all the choices. This map vanishes on the
coboundaries and hence induces the regulator map

ρm,r : H
3
B(C,Q(3)) → k

of ⋆-weight r.
Specializing to the case when C is the projective line P1

km
, with coordinate function z, we fix

an a ∈ k♭m. If we choose P such that that z, 1− z and z− a are all good with respect to P, then
(1− z) ∧ z ∧ (z − a) ∈ Γ(Λ3(OP1 ,P)×) and

ρm,r((1− z) ∧ z ∧ (z − a)) = ℓim,r([a]).
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Proof. We first show the independence of the definition from the various choices. For readability,
we separate these into parts.

Independence of the choice of jc and the liftings β̃jci and γ̃jc . Suppose that we choose a different

j′c with c ∈ Uj′c ; a different lifting Ã′
c of ÔC,c, together with c̃′ as above; a c̃′-good lifting γ̃′j′c of γj′c

to Ã′
c; and a lifting β̃′

j′ci
of βj′ci to Ãη. Since Ãc ≃ k(c)[[s̃]]∞, where s̃ is a choice of a uniformizer

associated to c̃ and similarly for Ã′
c, we choose and fix a k∞-algebra isomorphism between Ãc

and Ã′
c which is identity modulo (tm) and which sends s̃ to s̃′. This last condition is possible to

impose since both s̃ and s̃′ lift s by assumption. Below we identify these two algebras using this
isomorphism.

We need to compare the two expressions

ℓm,r(resc̃γ̃jc)− ℓim,r(εjc,c) + rescωm,r(γ̃iη − δ(β̃jci), γ̃jc)(8.1.2)

and

ℓm,r(resc̃′ γ̃
′
j′c
)− ℓim,r(εj′c,c) + rescωm,r(γ̃iη − δ(β̃′

j′ci
), γ̃′j′c).(8.1.3)

By linearity we have

rescωm,r(γ̃iη − δ(β̃′
j′ci

), γ̃′j′c)− rescωm,r(γ̃iη − δ(β̃jci), γ̃jc) = rescωm,r(γ̃jc − γ̃′j′c , δ(β̃
′
j′ci

− β̃jci)).

Let β̃j′cjc be a c̃-good lifting of βj′cjc to Ãc. Since βj′cjc itself is c-good such a lifting exists. We
have the identity βj′cjc = βj′ci − βjci on Uijcj′c , which might not contain c, but does of course

contain the generic point η. We deduce that β̃j′cjc,η and β̃′
j′ci,η

− β̃jci,η have the same reduction
βj′cjc,η. Now by Corollary 6.5.3, we conclude that

rescωm,r(δ(β̃j′cjc,η), δ(β̃
′
j′ci,η

− β̃jci,η)) = 0.

This implies that, using transitivity and linearity, we have:

rescωm,r(γ̃jc−γ̃′j′c , δ(β̃
′
j′ci

−β̃jci)) = rescωm,r(γ̃jc−γ̃′j′c , δ(β̃j′cjc,η)) = rescωm,r(γ̃jc−δ(β̃j′cjc,η), γ̃
′
j′c
).

In this expression, γ̃jc − δ(β̃j′cjc) is a c̃-good lifting to Ãc and γ̃
′
j′c

is a c̃′-good lifting to Ã′
c. Then

Proposition 7.0.3 implies that

rescωm,r(γ̃jc − δ(β̃j′cjc), γ̃
′
j′c
) = ℓm,r(resc̃(γ̃jc − δ(β̃j′cjc)))− ℓm,r(resc̃′(γ̃

′
j′c
)).(8.1.4)

On the other hand,

ℓm,r(resc̃(δ(β̃j′cjc))) = ℓm,r(δ(resc̃(β̃j′cjc))) = ℓim,r(resc(βj′cjc)),

by the definition of ℓim,r. Since by assumption resc(βj′cjc) = εjc,c−εj′c,c, we can rewrite the right
hand side of (8.1.4) as

ℓm,r(resc̃(γ̃jc))− ℓm,r(resc̃′(γ̃
′
j′c
))− ℓim,r(εjc,c) + ℓim,r(εj′c,c).

Combining all of the above, we see that the last expression is equal to the difference

rescωm,r(γ̃iη − δ(β̃′
j′ci

), γ̃′j′c)− rescωm,r(γ̃iη − δ(β̃jci), γ̃jc),

which implies the equality of the two expressions (8.1.2) and (8.1.3) and thus proves the inde-
pendence we were looking for.

Independence of the choice of i and the liftings γ̃iη and β̃jci. Let us choose an i′, a lifting Ã′
η

of OC,η and liftings γ̃′i′η and β̃′
jci′

to Ã′
η, for each c ∈ |C|.

We need to compare

∑
c∈|C|

Trk
(
ℓm,r(resc̃γ̃jc)− ℓim,r(εjc,c) + rescωm,r(γ̃iη − δ(β̃jci), γ̃jc)

)
(8.1.5)

and ∑
c∈|C|

Trk
(
ℓm,r(resc̃γ̃jc)− ℓim,r(εjc,c) + rescωm,r(γ̃

′
i′η − δ(β̃′

jci′), γ̃jc)
)
.(8.1.6)
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The difference between the above expressions is∑
c∈|C|

Trkrescωm,r(γ̃
′
i′η − δ(β̃′

jci′), γ̃iη − δ(β̃jci)).

Choosing an isomorphism Ãη ≃ Ã′
η of k∞-algebras which lifts the given one modulo (tm), we

identify Ãη and Ã′
η. The above sum can then be rewritten as:∑

c∈|C|

Trkrescωm,r(γ̃
′
i′η − γ̃iη, δ(β̃

′
jci′ − β̃jci)).

As in the above argument since β̃ii′ has the same reduction modulo (tm) as β̃′
jci′

− β̃jci for any

jc, we have rescωm,r(δ(β̃
′
jci′

− β̃jci), δ(β̃ii′)) = 0 by Corollary 6.5.3. So we can rewrite the above
sum as: ∑

c∈|C|

Trkrescωm,r(γ̃
′
i′η − γ̃iη, δ(β̃ii′)).

Choosing a splitting of Ãη, we identify this algebra with (Ãη)∞ = (OC,η)∞. Using this identifica-

tion, the last expression is the sum of residues of the meromorphic 1-form Ωm,r(γ̃
′
i′η−γ̃iη−δ(β̃ii′))

on C and therefore is equal to 0.
Vanishing on coboundaries. Suppose that we start with sections

αi ∈ (B2(OC ,P)⊗ (OC ,P)×)(Ui),

for all i ∈ I. Then we need to show that the value of the regulator on the data

({γi}i∈I , {εi,c|i ∈ I, c ∈ Ui}, {βij}i,j∈I)

is 0. Here γi := δ(αi), εi,c := resc(αi) and βij := αj |Uij − αi|Uij .

We fix an i ∈ I and jc ∈ I, with c ∈ Ujc , for every c ∈ |C|; and local and generic liftings Ãc,

and Ãη of the curve, as above, together with liftings c̃ of c to Ãc. We need to choose liftings of
the data in order to compute the value of the regulator on the above element.

We choose a lifting α̃iη of αiη to Ãη and let γ̃iη := δ(α̃iη). For each c ∈ |C|, we choose a c̃-good

lifting α̃jc of αjc and let γ̃jc := δ(α̃jc). Finally, we choose an arbitrary lifting α̃jcη of αjcη to Ãη,

for every c ∈ |C|, and let β̃jci,η := α̃iη − α̃jcη. Then the value of the regulator (8.1.1) is the sum
of traces of the terms:

ℓm,r(resc̃γ̃jc)− ℓim,r(εjc,c) + rescωm,r(γ̃iη − δ(β̃jci,η), γ̃jc)

=ℓm,r(resc̃δ(α̃jc))− ℓim,r(εjc,c) + rescωm,r(δ(α̃jcη), δ(α̃jc))

=ℓm,r(resc̃δ(α̃jc))− ℓim,r(εjc,c)

by Corollary 6.5.3. Since resc̃δ(α̃jc) = δ(resc̃α̃jc), we have ℓm,r(resc̃δ(α̃jc)) = ℓm,r(δ(resc̃α̃jc)).
By the definition of ℓim,r, we have ℓm,r(δ(resc̃α̃jc)) = ℓim,r(rescαjc) = ℓim,r(εjc,c). This implies
that all the summands in the formula for the regulator (8.1.1) are 0 finishing the proof of the
first part of the theorem.

A more general version of the computation for P1
km

will be done in §9.2. □

8.2. Infinitesimal Chow Dilogarithm. Specializing the above construction to global sections
of Λ3(OC ,P)× gives us the generalization of the infinitesimal Chow dilogarithm in [21] to higher
moduli.

Let us denote the global sections Γ(C, (OC ,P)×) of (OC ,P)× by k(C,P)×. Suppose that
we start with γ ∈ Λ3k(C,P)×. Specializing the construction in the previous section, we have
ρm,r(γ) ∈ k, which can be computed as follows.

Choose a lifting Ãη/k∞ of OC,η and local liftings Ãc of ÔC,c, for every c ∈ |C|, together with
liftings c̃ of c. Choose an arbitrary lifting γ̃η of γη to Ãη and c̃-good liftings γ̃c of the germ of γ

at c to Ãc, for every c ∈ |C|.
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By the definition in the previous section, we have

ρm,r(γ) :=
∑
c∈|C|

Trk(ℓm,r(resc̃(γ̃c)) + rescωm,r(γ̃η, γ̃c)),(8.2.1)

for every m < r < 2m.

Corollary 8.2.1. The definition in (8.2.1) of the infinitesimal Chow dilogarithm of modulus m
and ⋆-weight r gives a map

ρm,r : Λ
3k(C,P)× → k,

independent of all the choices and generalizing the construction in [21] to arbitrary m and r with
2 ≤ m < r < 2m.

9. Applications and examples

9.1. Strong reciprocity conjecture. The infinitesimal Chow dilogarithm can be used to give
a proof of an infinitesimal version of Goncharov’s strong reciprocity conjecture for the curve
C/km, exactly as in [21, Theorem 3.4.4]. In this section, in addition to our previous hypotheses,
we assume that k is algebraically closed.

Taking the infinitesimal part of the sum of the residues at all closed points of C, we have a
map:

resC : Λ3k(C,P)× → (Λ2k×m)◦.

Similarly, letting B2(k(C,P)) denote the set of global sections of B2(OC ,P), we have a map

resC : B2(k(C,P))⊗ k(C,P)× → B2(km)◦.

The explicit version of the strong reciprocity conjecture expresses both of these maps in terms
of a single map h :

Theorem 9.1.1. There is a map h : Λ3k(C,P)× → B2(km)◦, which makes the diagram

B2(k(C,P))⊗ k(C,P)×
δ //

resC

��

Λ3k(C,P)×

resC

��

h

uu
B2(km)◦

δ◦ // (Λ2k×m)◦

commute and has the property that h(k×m ∧ Λ2k(C,P)×) = 0.

Proof. The proof, using the maps ρm,r constructed above, is exactly the same as that of [21,
Theorem 3.4.4] and is omitted. □

The theorem above, in essence, states that the residue map from the Bloch complex of weight
3 on C to the Bloch complex of weight 2 on km is homotopic to 0, cf. [21, §3.4].

9.2. The special case of the projective line. As a first example, let us look at the infinitesimal
Chow dilogarithm in the case of the projective line P1 over km with k algebraically closed.

For each point c ∈ P1
k let us choose a smooth lifting c ∈ P1(km). Considering a lifting as

a map Spec(km) → P1
km
, if the projection Spec(km) → P1

k factors through the structure map
Spec(km) → Spec(k), we call that lifting a constant lifting. In the following, we will always
choose the constant liftings of the points 0, 1 and ∞, for the other points in P1

k the choices will
be arbitrary. We denote the set of these liftings by P as usual.

Letting a ∈ P be the chosen lifting of an element in k♭, the element (1 − z) ∧ z ∧ (z − a)
satisfies our goodness hypothesis. We will compute the value of ρm,r on this element.

We will use the formula (1.3.1) directly. In order to do this first let us choose a set P̃ of
liftings to P1

k∞
of elements in P. Again for the elements 0, 1, and ∞, we choose the constant

liftings. Let us denote the lifting of a ∈ P by ã ∈ P̃. Then the functions z, 1− z, and z − ã are
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liftings of z, 1− z, and z − a to functions on P1
k∞
, which are good with respect to P̃. Using the

definition of ρm,r, we obtain

ρm,r((1− z) ∧ z ∧ (z − a)) =
∑
c̃∈P̃

ℓm,r(resc̃((1− z) ∧ z ∧ (z − ã))).

The only contribution to the sum above comes from the residue at ã. Therefore the last expression
is equal to ℓm,r((1− ã)∧ ã). Using the definition of ℓim,r we can rewrite this as ℓm,r((1− ã)∧ ã) =
ℓm,r(δ[ã]) = ℓim,r([a]).

Let f, g and h be arbitrary functions on P1
km

which are good with respect to P. Then we can
write

f = λ
∏

1≤i≤l

(z − αi)
δi , g = µ

∏
1≤j≤m

(z − βj)
εj , and, h = ν

∏
1≤k≤n

(z − γk)
ηk ,

for some αi, βj , γk ∈ P, λ, µ, ν ∈ k×m and δi, εj , ηk ∈ Z. Using exactly the same argument at
the end of §2.2, we find that ρm,r(f ∧ g ∧ h) is equal to∑

i,j,k

δiεjηk · ℓim,r([
γk − βj
αi − βj

])(9.2.1)

where the summation is on 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n. In this notation, we use the

convention that ℓim,r([
γk−βj

αi−βj
]) = 0, if at least two of αi, βj and γk are the same. Note that

because of the goodness with respect to P hypothesis, if αi, βj and γk are pairwise distinct then

their reductions to k have to be distinct as well. This, then, implies that
γk−βj

αi−βj
∈ k♭m and the

expression (9.2.1) is well-defined.

9.3. The special case of elliptic curves. As a second example, we will consider the infinites-
imal Chow dilogarithm in the case of an elliptic curve. Again, for simplicity, we assume that k is
algebraically closed. Suppose that E/km is an elliptic curve. Suppose that E ⊆ P2

km
is given by a

Weierstrass equation y2 = x3 +Ax+B, with A,B ∈ km, in the affine coordinates with x = X/Z
and y = Y/Z, where X,Y, and Z are the homogeneous coordinates on P2. Suppose further that

we have a lifting Ẽ ⊆ P2
k∞

which is also given by a Weierstrass equation y2 = x3 + Ãx+ B̃, with

Ã, B̃ ∈ k∞. Note that these hypotheses are satisfied when E is constant curve, in other words
E = E ×k km, for some elliptic curve E/k. In this case, we can of course choose the lifting as
E×k k∞. In the following, we will not assume that our curve is a constant curve. Suppose we fix
a choice of smooth liftings P as above for each point in E(k) such that the lifting of the origin
in E(k) is the origin in E(km).

Let l0 be the line which intersects the curve at the origin O with multiplicity 3. It is the line
given by the equation Z = 0. For each 1 ≤ i ≤ 3 let li be the line given by aiX + biY + ciZ = 0,
with ai, bi, ci ∈ km. Denote the intersection points of the line li with the elliptic curve by αi1, αi2
and αi3. Note that the group law on E gives that αi1+αi2+αi3 = 0. Suppose that the intersection
points αi1, αi2, αi3 lie in the chosen set of liftings P. Let fi denote the function on E given by
li/l0. For a generic choice of the lines, let us compute ρm,r(f1 ∧ f2 ∧ f3).

Let l̃0 be the line in P2
k∞

given by Z = 0 and l̃i be the line given by ãiX + b̃iY + c̃iZ = 0 for

some liftings ãi, b̃i, c̃i ∈ k∞ of ai, bi, ci ∈ km. Then the functions f̃i := l̃i/l̃0 are liftings of fi.

If α̃i1, α̃i2, α̃i3 are the intersections of l̃i with Ẽ, then we can compute the above regulator as
follows. Choose a smooth lifting to Ẽ of each element in P, such that:

(i) the origin in Ẽ(k∞) is the lifting of the origin in E(km)
(ii) the elements α̃i1, α̃i2, α̃i3 are the liftings of αi1, αi2, αi3 for 1 ≤ i ≤ 3.

Denote the set of these liftings by P̃. By our formula, we have

ρm,r(f1 ∧ f2 ∧ f3) =
∑
c̃∈P̃

ℓm,r(resc̃(f̃1 ∧ f̃2 ∧ f̃3)).

Since we assume that the lines are generic, there are no common zeros of the functions f̃i. On
the other hand,

resO(f̃1 ∧ f̃2 ∧ f̃3) = −3(b̃2 ∧ b̃3 − b̃1 ∧ b̃3 + b̃1 ∧ b̃2).
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Combining these, we obtain that the value ρm,r(f1 ∧ f2 ∧ f3) is equal to

ℓm,r

( ∑
σ∈C3

(−1)|σ|
(
− 3b̃σ(2) ∧ b̃σ(3) +

∑
1≤j≤3

f̃σ(2)(α̃σ(1)j) ∧ f̃σ(3)(α̃σ(1)j)
))
,(9.3.1)

where C3 is the subgroup of S3 generated by the 3-cycle (123).
In fact, the above expression gives an explicit computation for ρm,r(f1∧f2∧f3) for any generic

choice of functions f1, f2, f3 which are good with respect to P. The group law on the elliptic
curve has the property that a divisor of degree 0 is the divisor of a rational function if and only
if the divisor adds to 0 under the group law. This implies that the functions fi can be written
as products of functions of the form l/l0, where l is a line, and an element in k×m. Since ρm,r
vanishes on elements of the form λ ∧ f ∧ g, with λ ∈ k×m, using the additivity of ρm,r we obtain
the expression for ρm,r(f1 ∧ f2 ∧ f3) using the one for ρm,r((l1/l0) ∧ (l2/l0) ∧ (l3/l0)).

Our main theorem implies that the expression (9.3.1) is independent of the choices of the
liftings of both E and the fi’s. When such global liftings of either the elliptic curve or the
functions do not exist, we need to choose local liftings and add the defect for choosing different
liftings on the intersections as in the formula (1.3.1).

9.4. Invariants of cycles on km. As in [21], this construction gives us an invariant of cycles.
For a cycle of modulus m we expect the combination of ρm,r for all m < r < 2m to be a complete
set of invariants for the rational equivalence class of a cycle. For the appropriate, yet to be defined,
Chow group CH2(km, 3), we expect that our regulators ρm,r to give complete invariants for the

infinitesimal part CH2(km, 3)
◦. This section also generalizes Park’s construction of regulators

[15], where the case of r = m+1 is dealt with. Since this section is more or less a generalization
of [21, §4], we do not go into the details and explain certain constructions in a slighty alternate
way.

First, let us recall the definition of cubical higher Chow groups over a smooth k-scheme X/k
[2]. Let □k := P1

k \ {1} and □nk the n-fold product of □k with itself over k, with the coordinate
functions y1, · · · , yn. For a smooth k-scheme X, we let □nX := X ×k □nk . A codimension 1 face
of □nX is a divisor F ai of the form yi = a, for 1 ≤ i ≤ n, and a ∈ {0,∞}. A face of □nX is either
the whole scheme □nX or an arbitrary intersection of codimension 1 faces. Let zq(X,n) be the
free abelian group on the set of codimension q, integral, closed subschemes Z ⊆ □nX which are
admissable, i.e. which intersect each face properly on □nX . For each codimension one face F ai ,
and irreducible Z ∈ zq(X,n), we let ∂ai (Z) be the cycle associated to the scheme Z ∩ F ai . We
let ∂ :=

∑n
i=1(−1)n(∂∞i − ∂0i ) on zq(X,n), which gives a complex (zq(X, ·), ∂). Dividing this

complex by the subcomplex of degenerate cycles, we obtain Bloch’s higher Chow group complex
whose homology CHq(X,n) := Hn(z

q(X, ·)) is the higher Chow group of X.
In order to work with a candidate for Chow groups of cycles on km, we need to work with

cycles over k∞ which have a certain finite reduction property. The following definitions are
essentially from [21, §4.2]. Let □k := P1

k, □
n

k , the n-fold product of □k with itself over k, and

□
n
k∞ := □

n
k ×k k∞. We define a subcomplex zqf (k∞, ·) ⊆ zq(k∞, ·), as the subgroup generated by

integral, closed subschemes Z ⊆ □nk∞ which are admissible in the above sense and have finite

reduction, i.e. Z intersects each s×F properly on □
n

k∞ , for every face F of □nk∞ . Here s denotes

the closed point of the spectrum of k∞ and for a subscheme Y ⊆ □nk∞ , Y denotes its closure in

□
n
k∞ . Modding out by degenerate cycles, we have a complex zqf (k∞, ·).
Fix 2 ≤ m < r < 2m. Let η denote the generic point of the spectrum of k∞. An irreducible

cycle p in z2f (k∞, 2) is given by a closed point pη of □2
η whose closure p in □

2
k∞ does not meet

({0,∞}×□k∞)∪(□k∞×{0,∞}). Let p̃ denote the normalisation of p and T denote the underlying

set of the closed fiber p̃ ×k∞ s of p̃. For every s′ ∈ T, and 1 ≤ i, define ℓp̃,s′,i : Ô×
p̃,s′ → k(s′) by

the formula:

ℓp̃,s′,i(y) :=
1

i
resp̃,s′

1

ti
d log(y).

Let

lm,r(p) :=
∑
s′∈T

Trk
∑

1≤i≤r−m

i · (ℓp̃,s′,r−i ∧ ℓp̃,s′,i)(y1 ∧ y2).(9.4.1)
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Note the similarity with Definition 3.0.2.

Definition 9.4.1. We define the regulator ρm,r : z
2
f (k∞, 3) → k as the composition lm,r ◦ ∂.

Exactly as in [21], one proves that the regulator above vanishes on boundaries and products,
is alternating and has the same value on cycles which are congruent modulo (tm). We state only
this last property, which is the most important one, in detail.

Suppose that Zi for i = 1, 2 are two irreducible cycles in z2f (k∞, 3). We say that Z1 and Z2

are equivalent modulo tm if the following condition (Mm) holds:
(i) Zi/k∞ are smooth with (Zi)s ∪ (∪j,a|∂aj Zi|) a strict normal crossings divisor on Zi.
and
(ii) Z1|tm = Z2|tm .
Then we have:

Theorem 9.4.2. For m < r < 2m, we define a regulator ρm,r : z
2
f (k∞, 3) → k. If Za, for a ∈ k♭∞

is the dilogarithmic cycle given by the parametric equation (1− z, z, z − a) then

ρm,r(Za) = ℓim,r([a]).

If Zi ∈ z2f (k∞, 3), for i = 1, 2, satisfy the condition (Mm), then they have the same infinitesimal
regulator value:

ρm,r(Z1) = ρm,r(Z2).

Proof. The second part of the proof is exactly as in [21] and is based on Corollary 8.2.1.
In order to compute ρm,r(Za), we note that ∂(Za) = (1− a, a) and ρm,r(Za) =

(lm,r ◦ ∂)(Za) = lm,r(1− a, a) =
∑

1≤i≤r−m

i(ℓr−i ∧ ℓi)(1− a, a) = (ℓm,r ◦ δ)(a) = ℓim,r([a]).

□

As we remarked above, we expect the invariants ρm,r for m < r < 2m to give a full set of

invariants in the infinitesimal part of a yet to be defined Chow group CH2(km, 3).
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