Task Allocation in Volunteer Computing Networks
under Monetary Budget Constraints

Huseyin Guler
Koc University
Istanbul, Turkey

ABSTRACT

We propose using monetary budget constraints in volunteer
computing networks so that the peers can limit the financial
burden incurred on them due the usage of their computa-
tional resources by the network. Under the assumption that
the price of the electricity consumed by the peers has tempo-
ral variation, we show that our approach leads to an interest-
ing task allocation problem, where the goal is to maximize
the amount of work done by the peers without violating the
monetary budget constraints set by the peers. We propose
various heuristics as solution to the problem, which is NP-
hard. Our extensive simulations using realistic data traces
and real-life electricity prices demonstrate that the proposed
techniques considerably increase the amount of useful work
done by the peers, compared to a baseline technique.

1. INTRODUCTION

The focus of this work is on volunteer computing networks,
where the goal is to solve a computationally expensive prob-
lem by using the resources provided by a large number of
geographically distributed peers. In such networks, a central
authority (dispatcher) is responsible for the management of
the network. Typically, the dispatcher divides a large prob-
lem instance into smaller tasks and distributes them among
the peers for processing. The peers join the network on a
volunteer basis and provide their computational resources to
help the processing without receiving any immediate finan-
cial benefit. Since the provided resources consume energy,
the peers even end up with increased electricity bills. This
may create an obstacle for growing the volunteer computing
network as peers will be less motivated to join the network.

In some volunteer computing networks, peers are allowed
to specify an upper bound on the number of tasks they are
willing to process in a given period of time or they may
specify the fraction of time their resources can be used [1,
5]. In this work, we go one step beyond and propose an
alternative where peers can explicitly specify the maximum
amount of money they can afford to spend in a time period

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

B. Barla Cambazoglu
Yahoo! Research
Barcelona, Spain

Oznur Ozkasap
Koc University
Istanbul, Turkey

while their resources are used. The incentive behind this
approach is that allowing such monetary constraints may
motivate more peers to contribute to the network since the
peers will have a guarantee that the financial overhead in-
curred by the network will be limited.

From the perspective of the volunteer computing network,
having such monetary constraints leads to an interesting
task allocation problem. Obviously, the goal of the network
is still to maximize the amount of work done in a given time
period. However, under the assumption that the electricity
prices show temporal variation [4, 7, 8], the dispatcher now
needs to decide when to assign a task to a peer for process-
ing. Assigning tasks to a peer when the peer is consuming
electricity at high prices will lead to quick exhaustion of the
peer’s monetary budget. Hence, it is important for the dis-
patcher to estimate the time periods where the peers are
consuming cheap electricity and assign the tasks to them
accordingly, trying to exhaust peers’ monetary budgets as
much as possible but without exceeding them.

Our contributions are the following. We investigate the
problem of allocating tasks in a volunteer computing net-
work under monetary budget constraints that are set by the
peers. We formally state the problem and propose various
heuristic solutions. Through simulations based on realistic
data traces and real-life electricity prices, we investigate the
performance of the proposed heuristics. The empirical re-
sults indicate significant improvement in the task processing
capacity of the network relative to a realistic baseline.

2. PROBLEM SPECIFICATION

We consider a volunteer computing network consisting of
N peers and a central dispatcher. The dispatcher can exploit
the computational resources of the peers to perform certain
tasks. We assume that the main computational overhead is
in the processing of the tasks by the peers and the commu-
nication overheads are negligible (this is typically the case
in practice). We also do not take into account the financial
costs potentially incurred by the Internet service provider of
the peer due to the allocated bandwidth.

Each peer i, when joining the network for the first time,
specifies a personal monetary budget B;, which indicates the
maximum electricity bill increase that the peer can afford
while it contributes to the processing of the tasks. The bud-
gets are defined over time periods, each with a fixed length
of T units of time.! The dispatcher keeps track of an esti-
mate of the monetary cost incurred on each peer during the

!We assume that the budgets are set on a weekly basis.

current time period. The cost estimates are reset to zero at
the end of every time period. The resources of a peer can be
used only if its monetary budget is not yet fully consumed
within the current time period.

To simplify the problem definition, we assume that the
time is partitioned into unit time intervals, i.e., the time
is not continuous but discrete. More specifically, the time
period T is divided into T'/u time slots, each of length u
time unit. The dispatcher can allocate a time slot [¢,t+u)
either entirely or may decide not to allocate it at all. A peer
can process the tasks assigned to itself independent of the
other peers and tasks. Therefore, the allocation problem we
will describe can be optimized separately for each peer.

When subscribing to the network, the peers let the dis-
patcher know about the properties of their computational
resources (e.g., the number of cores and the CPU clock fre-
quency).? Also, the peers independently set a minimum and
a maximum CPU utilization threshold, which are denoted
by m; and M;, respectively. Moreover, at the beginning of
every time slot [¢,t+u), through a locally running daemon,
each peer i lets the dispatcher know about its expected CPU
utilization U, (¢) in that time slot. The CPU utilization U (t)
due to the tasks assigned by the dispatcher is bounded by
max(M;—U;(t),0), i.e., the dispatcher fully utilizes the CPU
of the peer without exceeding M; —U;(t). The tasks can be
allocated on the computational resources of peer i only if
U;(t) <m,;. Under these constraints, we have

U (t) =

—~ {MZ — Ui(t), Ul(t) <m; < M;, (1)

0, otherwise.

We assume that the dispatcher has access to the informa-
tion about the current and historical unit electricity prices of
each peer and assume that the electricity prices show tempo-
ral variation [4, 7]. The dispatcher, however, has no knowl-
edge of the future electricity prices. We denote by E;(t) the
price of the electricity for peer 4 in time slot [¢,t4u). If
the computational resources of peer i are used by the net-
work during the time slot [t,t+u), the increase I;(t) in the
electricity bill of peer i is estimated by

Li(t) = Ui(t) x Wi x Ei(t) X u, (2)

For a given peer and a time slot, the benefit is measured
by the computational work done by the peer in the specified
time slot. The computational work is defined in terms of the
clock frequency of the peer and the expected CPU utiliza-
tion allocated by the network in the given time slot. More
formally, the computational work done at peer ¢ in time slot
[t,t + u) is denoted by J;(t) and defined as

Ji(t) =Usi(t) x Fy, 3)

Given the above-mentioned definitions and notation, which
is summarized in Table 1, our objective is to maximize

N |T/u]
>), (4)
i=1 t=0
subject to
[T/ u]
> L(t)<Bi, for1<i<N. (5)
t=0

2We assume that each peer has a single CPU with varying
clock frequencies.

Table 1: System Parameters

Parameters Symbol
Number of peers in the network N
Monetary budget of peer i B;
Time period for resetting peer budgets T
Length of a unit time slot U

Electricity cost of peer ¢ in time slot [¢, t+u) Li(t)
Electricity price for peer i in time slot [t,t+u) F;(
CPU utilization of peer ¢ in time slot [t,t+u) Us(t
Maximum CPU utilization threshold for peer i M;
Minimum CPU utilization threshold for peer i m;
CPU frequency of peer i F;
Power consumption of peer i’s CPU in watts W

3. SOLUTIONS

In order to simplify the presentation, we refer to the time
slots as tasks. This is because, in our problem definition,
the time is discretized into time slots and each time slot is
either fully allocated for processing tasks or not allocated by
the dispatcher. In particular, we assume that the dispatcher
has infinitely many tasks and the goal is to determine in
which time slots to allocate the computational resources of
the peers, rather than how to schedule individual computa-
tional tasks for execution.

If there is a perfect knowledge of the future electricity
prices, our task allocation problem can be formulated as the
0-1 knapsack problem. In this formulation, the knapsack
value corresponds to the monetary budget of the peer and
the items correspond to the tasks (time slots). An item’s
weight corresponds to the cost of allocating the respective
task (see Eq. 2). The value of an item is determined accord-
ing to the work done in the respective time slot (see Eq. 3).
Naturally, in our scenario, the dispatcher has no informa-
tion about the future electricity prices. The time slots can
be allocated on-the-fly using only the past electricity price
information. Consequently, our problem reduces to the on-
line knapsack problem, where the item weights and values
are not known beforehand. We also have the additional peer
availability constraint in our case.

The online knapsack problem is first studied in [6] and
its solution is applied to different problems, including the
auction bidding problem [9, 10] and the knapsack secretary
problem [2]. The problem is known to be NP-hard [2] and
hence there is no polynomial-time algorithm for an optimal
solution. Since the online knapsack problem is NP-hard, our
task allocation problem is also NP-hard. Hence, heuristics
play an important role in finding solutions.

3.1 Algorithms

Naive baseline (Baseline). This is a very naive approach,
which does not take into account the temporal variation in
the electricity prices. A time slot is allocated by the dis-
patcher if the peer’s computational resources are available
in that time slot, i.e., whenever the peer is online and the
minimum CPU utilization constraint set by the peer is sat-
isfied (U;i(t) <m; must hold).

Solutions based on expected electricity price. This
class of heuristics exploit the past electricity prices to decide
whether the current price of the electricity consumed by the
peer is relatively high or not. The techniques compute an
expected electricity price value based on the electricity price

data observed in the past. If the current electricity price is
lower than a certain fraction of the expected price,® the time
slot is allocated; otherwise, it is not allocated. We evaluate
three simple approaches for computing the price.

Average of yesterday (Yesterday). The expected electric-
ity price is computed by averaging the sample price values
observed on the previous day. This technique is based on
the expectation that the prices will not differ much between
two consecutive days, i.e., it exploits the recency.

Past average of today (SameDayHistory). The price is as-
sumed to be the average of the prices observed on the previ-
ous occurrences of the current day of the week. The expec-
tation here is that the electricity prices tend to be similar on
the same days of the week, i.e., the periodicity is exploited.

Average of entire history (EntireHistory). The average
price value over the entire price history is used.

History repeats (HistoryRepeats). This heuristic tries
to exploit the weekly repetition in the electricity prices. We
compress the entire price data into a single week of data by
computing an average value for each hour in a week. Then
time slots of the current week are sorted in increasing order
and stored in a candidate list. Then, the candidate list is
traversed starting from the time slot with the lowest price
towards the time slot with the highest price and the time
slots whose cost sum do not exceed the remaining monetary
budget of the peer are marked, indicating their suitability
in terms of the electricity price. The traversal stops when
the sum exceeds the remaining monetary budget. Then, the
current time slot is allocated for running tasks only if it is
among the marked slots in the candidate list. The candidate
list is periodically updated since it becomes outdated in time
and needs to be refreshed.

Online knapsack (OnlineKnapsack). As another solu-
tion, we adapt the algorithm proposed in [9], which has
two assumptions about the input data. First, the weight
of each item is much smaller than the capacity of the knap-
sack, i.e., I;(t) < B;, and the second the value/weight ra-
tio of each item is both upper- and lower-bounded, i.e.,
L < Ji(t)/I:i(t) < U,Vt. These assumptions enable the
proposed algorithm to have a constant competitive ratio of
In(U/L)+1. We also have the peer availability constraint
in Eq. 5. To capture this constraint, we modify the origi-
nal algorithm such that the U and L values are used along
with the remaining budget in order to determine a thresh-
old value. The decision of allocating the current time slot is
made based on a comparison between the gain ratio in the
current time slot and the threshold value calculated by the
function given in [9]. The algorithm allows the system to
aggressively allocate time slots at the beginning while most
of the budget is available. The system becomes more selec-
tive in time as the remaining budget gets smaller.

Oracle (Oracle). In order to set an upper bound on the
performance of the proposed heuristics, we design an Oracle
algorithm that has access to the future electricity prices and
the future CPU usage patterns of the peers. As explained
before, the optimum solution of our problem cannot be found
in polynomial time. However, since Oracle is assumed to
have access to the future electricity prices, the problem is
transformed into the traditional 0-1 knapsack problem, for
which there is a pseudo-polynomial algorithm that finds an
optimum solution.

3This fraction is a parameter that needs to be tuned.

4. SIMULATION SETUP

To evaluate the performance of the heuristics, we simulate
a volunteer computing network. In our simulations, we use
real-time electricity prices obtained from ComEd, an elec-
tricity provider located in the USA. The historical electricity
prices are sampled on an hourly basis over a period from 3
September 2012 to 2 December 2012. The simulation is run
on the last week while earlier weeks provide the historical
price data for some of the heuristics. We assume that the
peers are located in six different countries: USA, Germany,
Russia, Turkey, China, and UK. Since the obtained electric-
ity price distribution is representative only for the USA, for
each of the remaining countries, we linearly scaled this dis-
tribution by considering their average electricity prices (ob-
tained from the U.S. Energy Information Administration).

We simulated a volunteer computing network consisting
of 10,000 peers. The peers are assumed to be distributed in
the previously mentioned countries such that each country
receives peers proportional to its Internet user population.
The minimum and maximum CPU usage constraints (i.e.,
m; and M; values) of the peers are selected from a uniform
distribution within a range of 15%—20% and 60%-75%, re-
spectively. The CPU clock frequency values (F;) are sam-
pled from a uniform distribution in the range of 1.7GHz and
3.2GHz. The power consumption values (W;) are taken from
Intel’s website, taking into account the clock frequencies.

We also simulate the peers’ availability in the network.
We assume that this mainly depends on the time of the day
and rely on the measurements provided in [3], where the peer
availability is shown to have a diurnal pattern. In Fig. 1, we
display the hourly change in the electricity prices together
with the fraction of peers that are online. According to
the figure, during day times, there is some positive correla-
tion between the availability of the peers and the electricity
prices. However, we observe a negative correlation in night
hours, where the number of online peers increases while the
electricity price starts to decrease until the midnight.

An important parameter in our problem is the monetary
budgets set by the peers. In practice, the budgets may be
affected by many factors, the socio-economic and cultural
factors being the most prominent. In this work, since there
are many factors independently affecting the peers’ budgets,
we set the budgets according to a normal distribution with
varying mean values. In particular, we use budget values
between three to ten cents. This range is obtained by a user
study performed among the students of Koc University.

S. EXPERIMENTAL RESULTS

In Fig. 2, we compare the performance of our heuristics in
terms of the amount of work done by the peers for varying
monetary budget values (the reported results are averages
of five runs). As expected, all of the proposed heuristics
perform better than Baseline and worse than Oracle. All
three threshold-based heuristics (Yesterday, SameDayHis-
tory, and EntireHistory) achieve better performance com-
pared to the OnlineKnapsack and HistoryRepeats. In par-
ticular, the amount of work done by the Yesterday heuristic
is 30% higher than the work done by Baseline and is 7%
less than the work done by Oracle, on average.

As the budget values increase, the performance gap be-
tween the proposed heuristics and the baseline starts to di-
minish. This is because higher budget values imply more

10T 717717171717 717 717110

09 ; +—+ Active peers‘ ‘H Electricity price] 9

0.8 8 =
207 7 g
2os 6 8
b =
< 05 5 8
°© a
5 04 4 ?
303 2
=
= 0.2 g

’ m

0.1 1

00 [L L L P A Y N i 0

!
6 8 10 12 14 16 18 20 22
Hour of the day

| |
2 4

|
0

Figure 1: The electricity prices and
the fraction of peers that are active
at a certain hour of the day.

30 \ \ \
| | %—X Baseline 4
@—@ Yesterday
25 @3 SameDayHistory |
€—@ EntircHistory
P | | &—A HistoryRepeats]
g << OnlineKnapsack
= 20 (| ¥—% Oracle -
g
= | 4
2 15 e
=]
z | |
10— =
5 | | | | | | | |
3 4 5 6 7 8 9 10
Budget (cents/week)
Figure 2: The computational

work distribution with respect to
the weekly budgets.

18 T T

[| X Baseline 1

171~ | @ Yesterday !

r | [SameDayHistory 7
~ 16— | @ EntireHistory * =
5 HlA HistoryRepeats q
E 15 = | <] OnlineKnapsack 'S —
9 F % Oracle 4
=z]

14 =
=

o L 4
= 13- A -

N]

12 X -
1 TR I T IS NS T M AT A B
4170 475 480 485 490 495 500 505
Total electricity bill ($)
Figure 3: The total electricity

bill of the peers versus the total
amount of work done.

flexibility in allocating the time slots and it becomes less im-
portant to allocate time slots in which the electricity prices
are low. In an extreme case, if we set the budget value to
infinite, Baseline will attain the optimum result since it will
allocate all available slots without any budget constraint.

In Fig. 3, we show the trade-off between the total amount
of work done and the total electricity bill of the peers (the
budget is set to three cents). As expected, Baseline leads
to the lowest amount of work and the highest electricity bill
since it is completely blind to the variation in electricity
prices. As observed in Fig. 2, the Yesterday, SameDayHis-
tory, and EntireHistory heuristics yield the largest amount
of work. The HistoryRepeats heuristic, however, achieves
closer performance to the heuristics while leading to a much
lower electricity bill. It is interesting to note that, although
Oracle attains good performance in terms of the amount
of work done, it has a rather poor performance in reduc-
ing the total electricity bill, which is not considered as an
optimization objective in our problem definition.

Although our main objective is to maximize the total com-
putational work done by the peers, we observed that, as a by-
product, some heuristics also decreased the electricity bill of
the peers relative to the baseline heuristic. For example, in
our simulations involving 10,000 peers, the HistoryRepeats
heuristic led to a $27 decrease in the weekly electricity bill of
the peers when compared to Baseline. Assuming a network
involving one million participants (e.g., SETIQHome), this
implies $27x100=$2, 700 saving per week. Projecting this to
a whole year, the saving becomes $2, 700x52 =$140, 400 per
year, i.e., the total electricity bill of the peers in the network
can be significantly reduced by the proposed heuristics.

6. CONCLUSION

‘We proposed setting monetary budgets in volunteer com-
puting networks, limiting the financial burden incurred on
the peers due to the usage of their computational resources
by the network. We showed that, under the assumption of
temporal volatility in electricity prices, this idea leads to a
particular task allocation problem. We formally specified
this task allocation problem and proposed various heuristics
as potential solutions. Simulations using real-life electricity
price data demonstrated that the proposed heuristics can in-
crease the amount of useful work done in the network while

respecting the peers’ budget, compared to a naive baseline
and a competitive online algorithm from literature. In par-
ticular, the amount of work done by our best performing
heuristic is 30% higher than the work done by Baseline
and 7% less than the work done by Oracle, on average.

7. REFERENCES

[1] D. P. Anderson. Emulating volunteer vomputing scheduling
policies. In Proc. 2011 IEEE Int’l Symp. Parallel and
Distributed Processing Workshops and PhD Forum, pages
1839-1846, 2011.

[2] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A
knapsack secretary problem with applications. In Proc.
10th Int’l Workshop on Approximation and 11th Int’l
Workshop on Randomization, and Combinatorial
Optimization, pages 16—28, 2007.

[3] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding
availability. In Proc. 2nd Int’l Workshop on Peer-to-Peer
Systems, pages 256-267, 2003.

[4] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P.
Junqueira, and C. Aykanat. Energy-price-driven query
processing in multi-center web search engines. In Proc. 34th
Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval, pages 983-992, 2011.

(5] D. Kondo, D. P. Anderson, and J. M. Vii. Performance
evaluation of scheduling policies for volunteer computing.
In Proc. 8rd IEEE Int’l Conf. e-Science and Grid
Computing, pages 415-422, 2007.

6] A. Marchetti-Spaccamela and C. Vercellis. Stochastic
on-line knapsack problems. Mathematical Programming,
68:73-104, 1995.

(7] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and
B. Maggs. Cutting the electric bill for Internet-scale
systems. In Proc. ACM SIGCOMM 2009 Conf. Data
Communication, pages 123-134, 2009.

[8] L. Rao, X. Liu, L. Xie, and W. Liu. Minimizing electricity
cost: optimization of distributed Internet data centers in a
multi-electricity-market environment. In Proc. 29th IEEE
Int’l Conf. Computer Communications, pages 1145-1153,
2010.

[9] Y. Zhou, D. Chakrabarty, and R. Lukose. Budget
constrained bidding in keyword auctions and online
knapsack problems. In Proc. 17th Int’l Conf. World Wide
Web, pages 1243-1244, 2008.

[10] Y. Zhou and V. Naroditskiy. Algorithm for stochastic
multiple-choice knapsack problem and application to
keywords bidding. In Proc. 17th Int’l Conf. World Wide
Web, pages 1175-1176, 2008.

