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Abstract

Data replication protocols proposed for MANETs are
often prone to the scalability problems due to their defi-
nitions or underlying routing protocols they are based on.
In particular, they exhibit poor performance when the net-
work size is scaled up. However, scalability is an impor-
tant criterion for several MANET applications. We propose
a scalable and reactive data replication approach, named
SCALAR, combined with a low-cost data lookup protocol.
SCALAR is a virtual backbone based solution, in which the
network nodes construct a connected dominating set based
on network topology graph. Extensive simulations are per-
formed to analyze and compare the behavior of this frame-
work. It is demonstrated as an efficient solution for high-
density, high-load, large scale mobile ad hoc networks.

1 Introduction

A Mobile Ad Hoc Network (MANET) is a self-
organizing, infrastructureless, dynamic wireless network of
autonomous mobile devices (nodes). MANETSs are adap-
tive networks, which are reconstructed in the case of net-
work changes due to mobility. In MANET research, most
of the effort has focused on the creation of routing protocols
that aim to find multi-hop paths between two nodes. Be-
sides routing, accessing to a remote data is equally impor-
tant since the goal of an ad hoc network structure may be to
provide the necessary data items to requester nodes. Differ-
ent than static, infrastructure-based conventional networks,
locating and accessing the remote data (data lookup) is a
challenging problem in ad hoc environments. In this case,
mobile users need to learn the availability of data items in
an ad hoc manner without the help of any central server.
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Moreover, due to the unpredictable mobility behaviors of
nodes, a rapid change in the MANET topology is presum-
able. This change can result in partitioning, dividing the
network into isolated sub-networks. Thus, data availabil-
ity in MANETS is lower than static networks. One possible
solution to this problem can be replication of popular data
items in the network. In conventional distributed systems,
replication not only increases availability, but also helps for
load balancing and fault-tolerance. Also, in geographically
widely dispersed systems, having a copy at a nearby loca-
tion can solve most of the communication latency related
problems. On the other hand, due to limited resources or
power considerations of network nodes, it is important to
define good replication criteria that can select the most ap-
propriate data items and best hosts for replication.

Possible solutions to replication problem can be very
complex if the size of the network increases. Existing pro-
tocols for data lookup and replication in MANETS do not
consider large scale networks. In [6], Hara et al. proposes
three replica allocation schemes, in which the main parame-
ter for replication decision is the access frequencies of data
items. However, that study does not consider large-scale
networks. Other replication schemes, such as [7], [8], [9]
also do not address the scalability problem by definition.

Our motivation in this work is that a scalable and effi-
cient solution for data lookup and replication is necessary.
For this purpose, we propose a SCAlable data Lookup And
Replication framework, called SCALAR, which does not de-
pend on the existence of an underlying MANET routing
protocol, that may be prone to scalability problems [12].
In order to minimize the number of nodes involved in the
data lookup process, SCALAR constructs a dynamic vir-
tual backbone structure among the mobile nodes. The data
lookup protocol takes advantage of this virtual backbone for
low-cost data requests. Lastly, we extend the data lookup
protocol with a data replication approach, which aims to
replicate frequently accessed data items from distant places.



SCALAR is a complete solution for large-scale, low-speed
and highly connected ad hoc networks, in which dissemi-
nating request packets does not require an underlying rout-
ing protocol. The rest of this paper is organized as follows:
Section 2 presents our SCALAR framework. Simulation re-
sults and analysis of them are given in Section 3. Finally,
Section 4 concludes the paper and gives future directions.

2 SCALAR

SCALAR framework is composed of a virtual backbone
construction algorithm, a scalable data lookup protocol,
and a reactive replication scheme. Our solution is scalable
since it does not create too much message overhead to the
network with the increasing number of nodes, and it per-
forms well in means of data accessability. The idea is con-
structing a virtual and dynamic backbone that minimizes
the number of nodes in the network involved in searching
a specific data item. Virtual backbone construction algo-
rithm is based on an approximation of minimum connected
dominating set (CDS) construction problem in graph theory
and proposed for ad hoc wireless networks [11]. Scalable
data lookup protocol takes the advantage of using a back-
bone which dominates the set of connected network nodes.
The distributed data replication scheme, constructed on top
of the scalable data lookup protocol, increases data avail-
ability and provides lower message overhead to the sys-
tem without putting any extra message cost. It runs in a
passive mode, which means it does not use any dedicated
replication-protocol-specific control packets. Thus, it can
completely eliminate the control overhead caused by active
replication protocols.

2.1 System Model

System environment is assumed to be a meso-scale to
large-scale mobile ad hoc network. We assign a unique host
identifier to each node in the system. The set of all nodes in
the system is denoted as M = {M;, Ms, ..., M} , where
N is the total number of nodes in the network. Initially,
each node M; is the owner of data item d;, where the set of
all data items are denoted as D = {dy, da, ...,dx}. For the
sake of simplicity, we assumed that all data items are of the
same size and can be put into one network layer packet, i.e.
data size < path MTU (maximum transmission unit). Every
M; can save replicas of data items in set D, limited with
its memory capacity. Nodes are assumed to be identical
with equal memory capacity and cannot be in any kind of
selfishness. Every node, M; is aware of existing data set,
D, in the network and can request every data item, d; at any
time. We assume an environment where every data item
is unchangeable, so that updates to data items and related
consistency problems are not considered.

2.2 Virtual Backbone Construction

MANETS assume wireless communication between mo-
bile nodes without any physical infrastructure support.
However, this infrastructureless communication causes in-
creased communication costs. A common message over-
head source in a MANET environment is blind flood-
ing/broadcasting. Flooding is used in the route discovery
phases of several routing protocols developed for MANETSs
[3]. Such flooding/broadcasting packets in the network
cause the creation of excessive redundant packets (broad-
cast storm problem [10]) and collision/contention problem
in wireless channel. In large scale MANETS, problems
become more pronounced [12]. To maximize the utiliza-
tion of incapacitated node resources and to minimize draw-
backs caused by flooding, many researchers proposed vir-
tual backbone (or spine) structures which are inspired by
physical internet backbones. Virtual backbones are used
in topology management and routing protocol design in
MANETs. They help to avoid the excessive use of broad-
cast flooding in large scale ad hoc networks. In this work,
we utilize a simple and easily maintainable CDS construc-
tion algorithm [11] as the virtual backbone construction
mechanism. For the construction of a virtual backbone,
a CDS of the unit-disk graph of a corresponding network
topology is used.

Connected Dominating Set A dominating set (DS) of a
graph G=(V,E) is a subset of vertices S€V in the graph G,
where every vertex veV is either in the subset S or adja-
cent to a vertex in the subset S. A connected dominating
set (CDS) is a dominating set whose induced subgraph is
connected. Finding a minimum size dominating set of G is
proven to be NP-Complete by a reduction from the vertex
cover problem [5].

CDS construction algorithm Basically, the algorithm
[11] first finds an initial CDS, I, and then prune certain re-
dundant nodes from this CDS. I consists of all nodes which
have at least two non-adjacent neighbors. Then all nodes
in I, which has either a neighbor in / with larger ID which
dominates all other neighbors of this node, or two adjacent
neighbors with larger IDs which together dominate all other
neighbors of this node, are dropped from this initial CDS, I.

Our distributed implementation of above algorithm is as
follows: Each node first broadcasts its neighbor informa-
tion to all of its one-hop neighbors, and after receiving the
same information from all its neighbors, it declares itself as
dominator (a member of CDS) if and only if it has two non-
adjacent neighbors. Then it goes into pruning phase, and
drops itself from the CDS, if the rules mentioned in above
algorithm applies. Message complexity of this implementa-
tion is ©(n), where n is the number of nodes in the network.



2.3 Scalable Data Lookup Protocol

Scalable data lookup protocol searches a data item in the
entire system by sending the request to the virtual backbone
members, to which every other node is directly connected.
Requests are only forwarded between the backbone nodes,
and as a result the number of nodes involved in the lookup
process kept limited.

A straightforward solution to the data lookup problem
in ad hoc networks is flooding the request to the entire net-
work. Another solution may be requesting the data item
directly from a specific node, which every node in the sys-
tem can match the identification of the requested data item
with. This requires the execution of a routing protocol by all
network nodes (i.e. AODV [4]). Both of these solutions are
shown to result in serious contention and collision in large
scale wireless networks [10], [12].

Node Types There are two types of nodes in the network
classified based on their roles: (a) backbone (dominator)
node, and (b) end system (dominatee). The decision of be-
ing a backbone node purely depends on the nodes’ connec-
tivity information during the virtual backbone creation. End
systems are only allowed to send their data requests to one
of their neighbors in the backbone (request injection).

Search A backbone node participates in the search pro-
cess via one of the following:

1. sending a request generated by itself to a set of back-
bone nodes in its neighborhood.

2. forwarding a received request to a set of backbone
nodes in its neighborhood.

3. receiving a request generated from an end system or
backbone node.

4. receiving a request forwarded from a backbone node.

In 1 and 2, a backbone node injects a data request into
the backbone. A backbone node, M;, decides to inject a
new request for item d; if none of the cases are satisfied:
(a) d; is owned by the backbone node M;. (b) d; can be
found in two-hop vicinity of M;, where one-hop neighbors
are backbone nodes.

Recall that every node already knows its neighbors and
neighbors of its neighbors (or two-hop vicinity) from the
virtual backbone creation phase. If it is the first case, data is
sent directly to the node that the request is received from. If
it is the second case, the request is forwarded to the appro-
priate backbone neighbor who either owns the data or is on
the path to the owner.

End systems do not forward any request or data packets.
Basically, end systems inject their requests to the backbone

in order to search a data item in the entire connected net-
work by exploiting the dominating set property of the vir-
tual backbone structure. After a request is injected into the
backbone, it is the backbone’s responsibility to search the
requested item and transport the item to the requester, if it
exists. Similar to the backbone nodes, if a requested data
item exists in an end system node’s two hop vicinity, re-
quest is directly sent to the appropriate neighbor backbone
member. Otherwise, request is injected via randomly se-
lected backbone node.

During this request forwarding or new request injection,
every node involved in the process needs to save a <id of
requester node, hop distance to requester node> tuple of
every forwarded or created request into a data structure (i.e.
a hash table) with a unique key: <requested item, origi-
nator, packet id>. This data structure will then be used to
route the received data packet to the destination. Note that,
since each received request is kept in a hash table entry with
a unique key, a node can identify the previously received re-
quests and can ignore redundant requests.

Data Receive A backbone node participates in the data
receive process (a) if it receives a request for the data item,
which it owns or (b) if it receives a data packet from a back-
bone or end system node for which a data request is for-
warded during the searching phase or finally (¢) if it is the
originator of the request.

In the case (a), requested data is packed into a network
packet with a unique key and sent to the neighboring node
from which the request is received. The key of the sent data
packet is defined as a tuple of : <sent item id ,dest.of packet,
req.packet id>. If case (b) holds, backbone node checks its
requested items data structure (a hash table) using the key of
the received data packet (given above) in order to match the
received data with a requester node id. If such a requester
is found in the requested items data structure, then received
packet is directly forwarded to it and this request is removed
from the requested items list to avoid multiple transmissions
of same data packet. If it is not found, received packet is
ignored. Finally, if case (c) holds for a backbone node, it
checks the key of the received packet in its requested items
data structure. If requester is itself, it puts the data in its
memory space and completes the process.

In end systems, every received data should be this node’s
request. Multiple copy reception for one data is not possible
because it is handled by the backbone nodes before coming
to end systems. In SCALAR, obviously, backbone nodes
consume much more energy and bandwidth to support the
requests and data receives of other nodes. On the other
hand, as stated before, virtual backbone is dynamic and re-
constructed periodically to support the location changes of
nodes due to mobility. Thus, it is highly possible that some
of the end systems become backbone nodes at some period.



2.4 Reactive Replication

Reactive Replication (RR) is constructed on top of pro-
posed scalable data lookup protocol. It is reactive in the
sense that making replication decisions and replicating data
items is completed after a data packet is received. It
does not require the exchange of explicit replication control
packets. Thus, RR completely eliminates the control over-
head. Replication decision of data items is based on request
frequency of an item and the distance of the received data’s
owner. RR aims to replicate the distant data items in order
to decrease the number of requests propagated in the virtual
backbone. Besides the hop count, proposed replication ap-
proach also considers the request frequency of items during
its replica allocation decision. RR regulates the local caches
of the nodes so that costly requests are cached preferably.
Cost of a request to a requester node is calculated using a
common function for all node types as described next.

Cost Function The cost function aims to minimize the
cost of the data request to the system based on the previous
request frequency information and distance to the owner of
adata item. Closer the requested data items are to the nodes,
lower the message complexity of our lookup protocol is. RR
aims to replicate frequently accessed distant data by using
the cost function at node M; for data item d;:
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where «; is the local request frequency of data item d; until
that time and h;; is the number of hops between node M
and the node that data item d; is received from. D is the
set of all the data items available in the system. Basically,
this function gives higher costs to the data items that have
higher probability of being the next packet requested and
that are distant to the requester node.

cost(av, hij) * hij ey

Replication Decision A backbone node gives a data repli-
cation decision if one of the following cases is true, as illus-
trated in Figure 1(a) with the replication decision tree. In
either case, backbone nodes have a tendency to replicate
data items with higher cost more.

e if received data is the backbone node’s own request
(not a forwarded request) and cost of the received data
item is at least as large as the lowest-cost item repli-
cated in a full cache, then lowest-cost item is replaced
with the newly received data item. If cache space has
still vacant positions for a new item, then node does
not need to make a cost comparison before adding the
data item to its cache space.

e if the data item is received due to a forwarded request,
than receiving backbone node checks its position on
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Figure 1. Replication decision trees.

the path between receiver and sender of data (by com-
paring the hop counts of forwarded request and re-
ceived data packet). If it is the mid node in the path,
it may decide to replicate the data item. Decision of
replication is again based on the costs of received data
item and lowest-cost item in a full memory. If cache
space has still a vacant position, then node caches re-
ceived data without questioning.

End system’s replication decisions are similar to the ones
for backbones as illustrated in Figure 1(b). However, since
end systems are not allowed to forward data, they are not
supposed to give replication decisions about being on the
mid point of a data path, like backbone nodes do.

3 Results and Analysis

Network simulations have been performed using
SWANS (Scalable Wireless Ad hoc Network Simulation)
tool [2]. SWANS is built on Java-based simulation frame-
work JiST (Java in Simulation Time). Its capabilities are
similar to ns-2 or GloMoSim, morever it is able to simulate
much larger networks, thanks to JiST’s high performance
structure [2]. Simulation environment is a meso-scale (from
20 nodes) to large-scale (up to 400 nodes) mobile ad hoc
network. When we increase the number of nodes in the sim-



ulation, we also apply a proportional increase to the simu-
lation area while keeping the density of all areas constant.
Our motivation for a constant-density network is to avoid
from the side effects of possible collision and contention on
the shared wireless channel. Density of a network is calcu-
lated given as follows: density = NA*S , Where, N is the
total number of nodes in the simulation, S is size of the
coverage area of a mobile node and A indicates the total
simulation area size. Default simulation parameters are set
to Random Waypoint mobility model, 8§02.11b MAC proto-
col, 100m radio range, 1 to 3 m/s node speed, IP network
and UDP transport protocols.

We compare our results with a simple data request
scheme, in which the path between requester and data
source nodes is found using Ad-hoc On Demand Distance
Vector (AODV) routing protocol. Due to its popularity and
reactive property, we choose AODV routing as the under-
lying protocol for data lookup comparison. In our simula-
tions, we aim to examine the performance of SCALAR in
large-scale and high density network conditions, in which
most of the data lookup and replication approaches fail. Our
performance metrics are (a) success ratio,(b) average query
deepness, (c) packets sent per node. Success ratio is the ra-
tio of the number of successful access requests to the num-
ber of all access requests issued. The average number of
nodes (or hops) traversed by a successful query when find-
ing the requested data is called as average query deepness.
In our simulations, every node can save up to 5 data items,
and each simulation runs for 300 seconds.

Figure 2(a) shows that as the number of nodes in the
network scales up, in every data lookup approach the suc-
cess ratio decreases. This can explained by the increase
in the average query deepness as the number of nodes in-
creases (see Figure 2(b)). As the average query deepness
increases, the number of nodes involved in the transmission
of a data request increases. We know that nodes are mo-
bile and as the number of nodes involved in this process
increases, the probability of occurrence of a disconnection
in the path from requester to data source increases. This
disconnection probably will cost as an incomplete (or un-
successful) data request to the system. On the other hand, it
can be concluded that SCALAR performs better than AODV
based data request in terms of data accessibility. To un-
derstand why AODV based data request performs worse,
we need to check results in Figure 2(c), which the average
number of packets sent per node is given. It is obvious that
as the number of nodes increases in the network, message
overhead introduced by AODV routing protocol increases
exponentially. This causes a lot of contention and collision,
plus fills the message queues of nodes resulting in packet
drops at the MAC layer. On the other hand, SCALAR can
bound the message overhead to very low levels.

In Figure 3(a), SCALAR achieves considerable increase

in the success ratio as density increases. However, AODV
based data lookup scheme does not scale to the increasing
densities in terms of data accessibility. This is due to the
high message overhead introduced in AODV with the flood-
ing of routing packets. As the density increases, negative
side-effects of flooding broadcast messages become visible
in the performance values of AODV. An interesting result in
Figure 3(c) reveals that SCALAR tends to send fewer pack-
ets per node when the density of our network increases over
a threshold density value (which the number of backbone
nodes is at maximum), i.e. 3. This is because in dense net-
works, the size of connected dominating set is smaller due
to the characteristics of the algorithm used in virtual back-
bone construction. On the other side, Figure 3(b) shows
that replication achieves lower query deepness than without
replication. In fact, this is the target of RR in our proposed
method: to lower the query deepness of a request and hence
decreasing the delay and message cost of the system.

We also investigate the effects of varying data requests
per node which is called network load. It is observed that
in lower network loads, AODV performs better. When the
network is not highly loaded, number of packets transmitted
in the network at any given time is also low. As a result of
this, packet loss due to collision and contention in wireless
channel is at minimum in the network. In this case, AODV
performs better than SCALAR, since SCALAR performs a
probabilistic search method in the network. In terms of fair-
ness in load balancing, SCALAR have some known defi-
ciencies. For example, nodes with larger IDs have a higher
probability of becoming a backbone node, since the virtual
backbone construction algorithm used is tend to prune the
backbone nodes with smaller IDs. Also, nodes which are in
center of a network have more responsibility and load [1].
We have also investigated the effects of different mobility
models on the replication performance. Due to page limi-
tation of the current paper, we refer the interested reader to
[1] for details of these results.

4 Conclusions

We presented a scalable data lookup and reactive repli-
cation (SCALAR) framework for MANETSs. It is a low-
cost solution in terms of message overhead so that it can
be easily adapted to large scale network scenarios. On the
other hand, it is as successful as other high-cost lookup
solutions when searching the requested data in the net-
work. SCALAR consists of three main parts: virtual back-
bone construction, scalable data lookup protocol and reac-
tive replication approach. We compared the performance
of SCALAR with AODV-based data lookup process. It
is shown that, even in small networks, SCALAR outper-
formed in each of the performance metric defined. More-
over, SCALAR can perform quite well in very high node
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density networks. We observed that performance loss in
the AODV approach is due to the exponentially increasing
message traffic caused by increasing number of nodes. As
further work, mathematical modeling of the protocol and
network conditions can be developed in order to optimize
specific node or network parameters for better performance.
Another future work might be analyzing the effects of other
CDS construction algorithms to SCALAR’s performance.
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