
Energy Efficient Video Decoding on Multi-Core Devices

Damla Kılıçarslan1, 2, Göktuğ Gürler1, Öznur Özkasap1 and A. Murat Tekalp1
{dkilicarslan, cgurler, oozkasap, mtekalp}@ku.edu.tr

ABSTRACT

Emergence of high quality media applications results in larger
data sizes as well as higher bitrates of digital multimedia contents,
and their significant share on the overall Internet traffic. These
lead to an increase in the energy consumption rates and
performance requirements for real-time video decoding. In this
study, we propose parallel video decoding solutions to provide
real-time decoding performance with reduced energy consumption
on multi-core devices. Various approaches of parallelism at data
and task levels can be incorporated in video decoders, bringing
efficiency in energy consumption rates and/or performance. We
offer and develop two approaches for the H.264 standard. The
former is based on a coarse-grained frame level, and the latter is a
fine-grained macroblock level parallelism. The implementations
were conducted on a shared memory multi-core platform as an all
software solution for real-time scalable video decoding. We also
discuss energy efficiency as well as performance results. As part
of our ongoing work, further parallelization methods such as
parallelism at slice level, and parallel decoding of consecutive
groups of pictures on the H.264/SVC decoder are discussed. 1 2

Keywords
Energy efficiency, parallel video decoding, multi-threaded video
decoding.

1. INTRODUCTION
Video streaming applications have become the major constituent
of the global Internet traffic. Video traffic is expected to exceed
91% of global consumer traffic by 2014 [1]. Introduction of
higher resolutions and 3D media contents result in more
demanding computation power and energy requirements in video
codecs. For instance, real-time multi-view video
encoding/decoding can be a significantly timely and energy
demanding process that requires multiple processors at a time [2].
Energy demanding video decoders can be inefficient in terms of
users’ playback experience especially on battery constraint mobile
devices. The current trend in designing more powerful processors
is based on multi-core architectures [3] and the gap between
desktop and mobile processors is narrowing rapidly [4]. The
effective software design is the key factor to divide the workload
efficiently on multiple cores. It is a well-known fact that multi-
core technologies can deliver noticeable levels of energy and
performance gain. The motivation in this study is that significant
amounts of energy savings can be achieved by exploiting multi-
core technologies on the decoder side of video applications.

1 Koç University College of Engineering 34450 Sarıyer Istanbul
2 Türk Telekom Group R&D Directorate İTÜ Ayazağa Kampüsü

Maslak 34469 Istanbul

For video decoding, various software implementations on multi-
core systems such as task-based parallelism and thread/data based
parallelism are possible. The choice of an efficient parallelism
approach is a matter of optimization between the overhead
introduced and the performance gain achieved. The decoding
process in the H.264 video decoder has several levels dependent
on each other that lead to constraints for parallelization.
Parallelization can be achieved at various levels: (1) the coarsest
grain being the parallel decoding of parts of the video sequence on
different cores, (2) parallelism of hierarchical decoding levels of
group of pictures (GOPs), (3) parallel decoding of independent
slices within each frame, and (4) the finest grain being the parallel
decoding at the macroblock level on I and B frames. In this study,
we address two of these parallel video decoding approaches,
namely frame level and macroblock level parallelism.

Other related research conducted on parallel video decoders
involves parallelization of real-time MPEG-2 decoding [5].
Various parallelization techniques for the H.264 standard were
also examined in the macroblock level [6],[7],[8]. Coarser grain
implementations were carried out at slice, GOP and frame levels
[9]. Hardware based application-specific integrated circuit
architecture was presented in [10]. In contrast to our current
study, the results and evaluations of the all-software solutions
have been focused more on performance rather than energy-
efficiency.

In this study, we develop two parallel decoding approaches for the
H.264 standard that are applicable on multi-core devices, one
based on a coarse-grained frame level, and the other based on a
fine-grained macroblock level. The aim is to keep the energy
consumption of video decoding low without degrading its
performance. We discuss the benefits and shortcomings of these
approaches with results. Our results demonstrate that multi-
threaded decoding at various levels not only provides speed-up in
performance but also reduces energy consumption.

This paper is organized as follows: Section 2 describes the data
based parallelism technique carried out at the frame level of the
decoding process. Section 3 explains the task based parallelism
applied at macroblock level and its implementation details.
Section 4 presents the energy consumption and performance
measurements of the two approaches implemented in this work.
The overall design features and outcomes are discussed in Section
5. The ongoing research being carried out to achieve better
performance and lower energy requirements for the SVC
extension of the H.264/AVC video decoder are summarized in
Section 6.

2. FRAME LEVEL PARALLELISM
In this approach, the YUV format of the original video sequence
is split into n threads. This splitting pattern allows load balancing
over threads that perform the decoding process later on. Each

2nd International Conference on Energy-Efficient Computing and Networking 2011

63

individual split YUV sequence is encoded using the MPEG-4,
AVC/H.264 or SVC standard and decoded separately on different
cores simultaneously as depicted in Figure 1.

During the decoding process, a size 30 GOP buffer is used. Each
independently decodable stream is merged into one video
sequence inside the frame buffer during the course of decoding.
When the buffer is full, the threads are put to sleep for one second
since there is no need to decode more frames until the previous
ones are played. This method allows the decoding process to slow
down whenever it goes over the speed of the actual display rate.
Therefore, it avoids unnecessary CPU usage allowing further
decrease in the overall energy consumption. This approach trades
off increased parallelism with the encoding efficiency because
consecutive frames are distributed over different cores. On the
other hand, if frame level parallelism is ordered according to the
levels of hierarchy in hierarchical B-pictures encoding, then the
encoding efficiency will not be affected at the cost of slightly
reduced parallelism.

Figure 1: Splitting the original video in multiple threads to be

decoded individually with four threads

3. MACROBLOCK LEVEL
PARALLELISM
H.264/AVC performs block-based video coding approach in
which frames are partitioned into rectangular areas, known as
macroblocks (MB). The size of a MB is 16x16 pixels for a/the
luma layer and 8x8 chroma layers for source sequences in 4:2:0
YUV format. A MB is either spatially or temporally predicted
depending on the type of the frame [11]. MBs of predictive (P) or
bi-direction predictive (B) frames can be both spatially or
temporally predicted whereas the prediction for MBs in intra
coded (I) frames is restricted to spatial prediction.

A certain decoding order was applied for spatially predicted MBs,
as depicted in Figure 2. Since encoding is performed in raster scan
order, MBs can be decoded in the same order. However, it is
possible to decode the MBs in a different order as long as all the
dependent MBs are decoded prior to the current MB. Note that if
MBs are temporally predicted, there are no such restrictions for
the decoding order of the remaining MBs.

The dependency hierarchy enables decoding of multiple MBs
simultaneously. One such possibility is depicted in Figure 3(a),
revealing that if MBs with decoding order 1 and 2 are processed
then two MBs (numbered as 3) can be decoded simultaneously.
Note that the number of MBs that can be processed in parallel
increases in the later stages of the decoding process.
In contrast to the frame level parallelism (described in Section 2),
macroblock level parallelism is a lot finer grain and requires
considerable modifications on the decoder source code. The Intel
Thread Building Blocks (TBB) library was chosen to implement
the parallel algorithm [12]. Due to the dependencies shown in

Figure 2 left, top-left, top and top-right MBs should be fully
decoded before the current MB can be started. The decoding of
MBs can be represented as a directed acyclic graph with each
node of the graph representing the corresponding decoding of that
MB by one processor.

Decoding of each MB is considered as a task and the numbers in
Figure 3(b) represents the number of references required to start
processing that task. Consequently, the upper left most MB can be
initiated as the first MB. Since it is the only MB with no
requirements, its reference count is set to zero. Upon completion
of a task, the reference count of the successor MB(s), which are
represented with the arrows in Figure 3(a), is decremented. Thus,
once the first MB is decoded, the second task (the MB next to it)
becomes available. Likewise, upon completion of the second MB,
reference count of two successor MBs is decremented making
them available parallel decoding. The process continues until all
MBs are decoded in that frame.

Figure 2: Spatial dependencies between neighboring MBs

a) b)

Figure 3: For a frame with MxN (width x height in MB)
a) Decoding order for MBs and their successor(s)

b) Number of references for MBs

4. MEASUREMENTS AND RESULTS
4.1 Evaluation Platform and Benchmarks
The performance and energy consumption measurement tests
were carried out on a laptop running on Intel® CoreTM i7 720-QM
quad-core processor at 1.60 GHz with 6M cache. The Enhanced
Intel Speedstep® Technology (EIST), Turbo Boost Technology
and the Intel® Hyper-Threading Technology offered with this
processor provide the adjustability on the processor performance
to observe the changes in the energy consumption for a given task.
Tests were conducted on input videos Iceberg (video with still
background and moving camera), Race (video with fast-moving
objects and moving camera) and Rena (video with still camera
and background with moving figure) for the frame level
parallelism approach, and on input videos Adile (animation video
with still back ground and slow moving objects), Flower (video

64

with moving figures and camera) and Train (video with fast-
moving objects with still camera and background) for the MB
level parallelism approach.
In order to measure the overall energy consumption of the whole
device, its instantaneous outlet power consumption was measured
over the time span while the decoding takes place by making use
of a commercially available power meter called WattsUp PRO
power meter [13]. The timing measurements were carried out by
the tick_count class of the Intel TBB library.

4.2 Frame Level Parallelism Results
The three input videos Iceberg, Race and Rena were encoded
from n split video sequences using the MVC mode with a
quantization parameter of 22 and frame rate of 30 fps. The power
consumption rate measurements were carried out by a power
meter over the course of the whole decoding process as the
decoded frames were being played at the same time.

The average idle power consumption rate of the laptop was taken
to be 50 watts throughout the measurements. Figure 4 shows net
power consumption rates per number of threads that are calculated
by subtracting the idle power from the average instantaneous
power consumption rates throughout the decoding process.

This approach trades off increased parallelism with the encoding
efficiency since consecutive frames of the original video sequence
need to be distributed over different cores. However, this
approach offers better load balancing among threads. Since
similar frames are decoded over different cores, each core gets a
balanced amount of tasks bringing a more efficient parallelism
approach. The energy measurement results indicate that with 8
threads 20% energy efficiency can be achieved using this
technique and elapsed times for the complete decoding process
decrease considerably.

To observe the true effect of parallelism, the elapsed times
included only the time span for the decoding portion of the whole
process excluding the frame buffer storage time and display times.
Speedups computed for decoder running on 2, 4 and 8 threads are
shown in Figure 5.

Figure 4: Net instantaneous power consumption rates in
frame level parallelism

Figure 5: Speedups achieved in frame level parallelism

4.3 Macroblock Level Parallelism Results
The three input videos Adile, Flower and Train were encoded
using the SVC extension of the H.264/AVC encoder with base
and enhancement layers. The frame rate was set to 30 fps and
quantization parameters of level 0 and 1 were 46 and 34
respectively. Figure 6 shows the power consumption of the
decoding process measured using a power meter when the player
is switched off.

The macroblock level parallelism approach offered a relatively
smaller energy efficiency difference compared to frame level
parallelism since the overall effect of the region parallelized in
decoding of MBs had a minor impact on the overall decoding
performance. When compared to previous work carried out in MB
level parallel decoding methods our speedups are consistent with
the static scheduling average speedup results up to 8 cores
presented in [6] and [7]. This resulted in a smaller improvement
on percentage changes of the energy consumption rates of the
decoder. Our ongoing research to improve this approach is
explained in further detail in section 6.

Figure 6: Net instantaneous power consumption rates in MB
level parallelism

The timing measurement sets carried out in this section observe
the performance change introduced with parallel MB decoding.
Speedups calculated with respect to the original Open SVC
decoder running of sequential MB decoding algorithm for 2, 4 and
8 threads are shown in Figure 7.

65

Figure 7: Speedups achieved in MB level parallelism

5. DISCUSSION
Frame level and macroblock level parallelization techniques
described in this work are at the two extremes of granularity scale
of parallelism for video decoding. The Frame level approach is
based more on data-level parallelism which is coarse-grained and
relatively simpler compared to other task-based parallelism
techniques. On the other hand, the macroblock level parallelism
approach is a lot finer grain and thus requires more complicated
algorithms to achieve similar or better performance speed-up and
energy savings.

Parallelization of video decoders at the software level requires
careful synchronization between the dependent tasks in a video
decoder. Most of the time, high level implementations are not
sufficient and major modifications on the original video decoder
source code are required. The key strategy for determining the
regions to parallelize inside the decoder relies on careful
assessment of the function declarations and the execution flow of
the program.

A careful optimization between the choice of level at which
parallelism will be applied and the overhead caused after it, can
lead to great impacts both in terms of performance and energy
efficiency in video decoders. Since video applications have
become a major part of the global Internet traffic, developing
better performing and more energy efficient video decoders will
lead to a more fulfilling playback experience at the user-end,
longer battery life sustained on mobile devices and, most
importantly, massive amounts of energy saving on the global
video traffic per user each year.

6. FUTURE WORK
Our ongoing research involves enhancements on the
parallelization techniques analyzed in this paper as well as
parallelization on different levels of the Open SVC H.264 video
decoding standard. Further enhancements on the macroblock level
of parallelism include parallelizing B-frames’ macroblock
decoding functionality. Since B- frames are not intra-predictable
frames, the dependencies of MBs on other frames will be more
challenging than parallel MB decoding on I-frames only. This
feature will surely bring additional performance and energy
efficiency when implemented with low overhead and careful load-
balancing. Moving on to higher levels from the macroblock
decoding region, we aim to look into the slice level parallelism
that is parallel decoding of independent slices within each frame.

Various challenges may occur when synchronizing the use of
shared variables while decoding several slices at a time.

Another alternative approach is the GOP level parallelism that
corresponds to the hierarchical parallelization of consecutive
GOPs by exploiting the fact that each GOP consists of
independently decodable I-frames and consecutive GOP’s I-
frames can be decoded at the same time on different cores.
However, since the arrival order of the decoded frames to the
frame buffer may vary when running on multiple cores, this
method will bring some challenges on the management of the
frame buffer of the H.264 decoder standard.

7. ACKNOWLEDGMENTS
This work was partially supported by the COST (European
Cooperation in Science and Technology) framework, under
Action IC0804, and by TUBITAK (The Scientific and Technical
Research Council of Turkey) under Grant 109M761. A. Murat
Tekalp also acknowledges support from Turkish Academy of
Sciences (TUBA).

8. REFERENCES
[1] Cisco Visual Networking Index: Forecast and Methodology, 2009-

2014, White paper, CISCO, June 2, 2010, [Online]
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/white_paper_c11-481360.pdf

[2] Gurler C.G., Aksay A., Akar G.B., Tekalp A.M., 2010, Architectures
for multi-threaded MVC-compliant multi-view video decoding and
benchmark tests, Signal Processing: Image Communication, 25(5),
pp. 325-334

[3] Geer D., 2005, Industry trends: Chip makers turn to
multicoreprocessors, Computer, 38(5), pp. 11-13.

[4] Rintaluoma, T., Silven, O., Energy efficiency of mobile video
decoding, 2007, International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, IC-SAMOS,
pp.103-109.

[5] Bilas, A., Fritts, J., Pal J., and Paper, S., 1997, Real-Time Parallel
MPEG-2 Decoding in Software, 11th International Parallel
Processing Symposium (IPPS).

[6] Jike C., Satish, N., Catanzaro, B., Ravindran, K. Keutzer, K., 2007,
Efficient Parallelization of H.264 Decoding with Macro Block Level
Scheduling, IEEE International Conference on Multimedia and
Expo, pp.1874-1877.

[7] Alvarez, M., Ramirez, A., Martorell, X., Ayguade, E., and Valero,
M., 2008, Scalability of Macroblock-level Parallelism for H.264
Decoding, In ACACES.

[8] C.H. Meenderinck, A. Azevedo, M. Alvarez, B.H.H. Juurlink, A.
Ramirez. 2008. Parallel Scalability of H.264, in: Proceedings of the
first Workshop on Programmability Issues for Multi-Core
Computers, Geteborg, Sweden.

[9] Rodriguez, A.; Gonzalez, A.; Malumbres, M.P., 2006. Hierarchical
Parallelization of an H.264/AVC Video Encoder Parallel Computing
in Electrical Engineering, PAR ELEC, pp.363-368.

[10] Finchelstein D.F., 2009, Low-Power Techniques for Video Decoding,
Doctoral Thesis, MIT.

[11] Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A., 2003.
Overview of the H.264/AVC video coding standard IEEE
Transactions on Circuits and Systems for Video Technology, 13(7),
pp.560-576.

[12] Intel ® Threading Building Blocks Tutorial [Online]
http://www.threadingbuildingblocks.org/documentation.php

[13] WattsUp Products. [Online]
https://www.wattsupmeters.com/secure/products.php?pn=0

66

