
Analysis of Distributed Algorithms
for Density Estimation in VANETs (Poster)

Nabeel Akhtar∗, Sinem Coleri Ergen† and Oznur Ozkasap∗
∗Department of Computer Engineering

†Department of Electrical and Electronics Engineering
Koc University, Turkey

Email: nakhtar@ku.edu.tr, sergen@ku.edu.tr, oozkasap@ku.edu.tr

Abstract—Vehicle density is an important system metric used
in monitoring road traffic conditions. Most of the existing
methods for vehicular density estimation require either building
an infrastructure, such as pressure pads, inductive loop detec-
tor, roadside radar, cameras and wireless sensors, or using a
centralized approach based on counting the number of vehicles
in a particular geographical location via clustering or grouping
mechanisms. These techniques however suffer from low reliability
and limited coverage as well as high deployment and main-
tenance cost. In this paper, we propose fully distributed and
infrastructure-free mechanisms for the density estimation in ve-
hicular ad hoc networks. Unlike previous distributed approaches,
that either rely on group formation, or on vehicle flow and speed
information to calculate density, our study is inspired by the
mechanisms proposed for system size estimation in peer-to-peer
networks. We adapted and implemented three fully distributed
algorithms, namely Sample & Collide, Hop Sampling and Gossip-
based Aggregation. The extensive simulations of these algorithms
at different vehicle traffic densities and area sizes for both
highways and urban areas reveal that Hop Sampling provides
the highest accuracy in least convergence time and introduces
least overhead on the network, but at the cost of higher load on
the initiator node.

I. INTRODUCTION

Vehicular ad hoc network (VANET) is a promising Intelli-
gent Transportation System technology that aims to improve
the traffic safety via emergency message transmission to the
drivers and traffic efficiency by transferring road monitor-
ing and location information to traffic managers while also
providing a wide range of applications such as the Internet
access and entertainment content to passengers [1] [2] [3] [4].
The wireless communication standard IEEE 802.11p [5] has
been developed for VANETs as an improvement to the IEEE
802.11 family [6]. IEEE 802.11p particularly deals with the
physical and medium access control layers of the network
stack allowing communication among the vehicles without
relying on any infrastructure.

Vehicular density is one of the main metrics used for mon-
itoring road traffic conditions and provides a good estimate
for the congestion on the road. Various methods have been
used in the literature to estimate vehicular density [7]-[16].
Most of the methods rely on building an infrastructure, such
as pressure pads, inductive loop detectors deployed under the
road surface, roadside radar, infra-red counters, cameras, or
even manual counts, to measure the speed and flow of the
vehicles in the estimation of the vehicular density [7] [8] [9].

However, these techniques suffer from high deployment cost
and high rate of failures, resulting in high maintenance cost
and limited coverage.

The other group of methods adopt centralized or grouping
approaches (e.g. clustering in [10]) where data is gathered
at centralized locations for processing and then disseminated
across the network. However, the centralized approach not
only makes the system vulnerable to single point of failure,
but also makes it harder to implement such system for a
fully distributed and self organizing traffic information system,
where vehicles can only directly communicate with their
neighboring vehicles, and they do not rely on infrastructure or
centralized information system to establish communication.

The goal of this paper is to adapt fully distributed algorithms
developed for system size estimation in peer-to-peer (P2P)
networks, to the infrastructure-free vehicle density estimation
in highly mobile VANET, and analyze their performance
over a wide range of scenarios including both highways and
urban areas at different traffic densities and area sizes. The
main challenge of VANET is its highly dynamic and mobile
behavior compared to P2P networks where vehicles enter and
leave very quickly, and new connections are made and existing
connections are broken very often. Although some distributed
approaches have been previously proposed in literature, they
either rely on group formation [11], or vehicle speed and
flow information to calculate density of vehicles. We use
a completely different network size calculation technique to
estimate the density of vehicles on the road. To the best of
our knowledge, this approach has not been previously applied
for density estimation in VANETs. The main contributions of
this paper are summarized as follows:

• Three fully distributed algorithms for system size esti-
mation, namely Sample & Collide, Hop Sampling and
Gossip-based Aggregation, have been adapted and im-
plemented for density estimation in VANETs for the first
time.

• The algorithms have been rigorously tested for validity
and performance based on real life data across eight dif-
ferent traffic scenarios including different traffic densities
and different area sizes for both highway and urban roads.

The rest of the paper is organized as follows. Section II
provides an overview of the related work. Section III describes
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TABLE I: Related Work on Vehicle Density Estimation in VANETs

Ref Infrastruc-
ture used

Category Method used

[7] Yes Centralized Road-side camera images using
Kalman filtering

[8] Yes Centralized Neural networks
[9] Yes Centralized Capturing road video using cam-

eras and applying Kalman filtering
[12] No Distributed Local density used to estimate

global density
[10] No Clustering Extension of [12] by using clusters
[11] No Distributed Group formation
[13] No Distributed Traffic-flow model using vehicle’s

speed and flow
[14] No Distributed Random sampling of vehicles
[15] No Distributed Vehicle’s speed and acceleration

information
[16] No Distributed Fluid dynamics and car follow

model

the distributed algorithms used for the density estimation in
VANET. Section IV presents the simulation environment and
scenarios, the performance metrics used for the comparison of
the density estimation algorithms, and the simulation results.
Concluding remarks and future directions are given in Section
V.

II. RELATED WORK

The existing methods for density estimation in VANETs can
be broadly divided into two main categories: (1) Infrastructure-
based and (2) Infrastructure-free. A summary of these methods
are given in Table I.

In the infrastructure-based methods, dedicated infrastructure
such as loop detectors, roadside sensors or cameras are used
to determine the presence of the vehicles on the road [7], [9],
[8]. Road side camera images are used for traffic monitoring
and density estimation in [7]. Using Kalman filter-based
background estimation, the difference between the incoming
image and the calculated background is used to mark vehicles
and then to estimate the density of vehicles on the road. A
similar approach using data fusion has been proposed in [9]
in which the flow measured from video cameras on the road
and travel time measured from GPS are used to estimate the
density of vehicles. A neural network technique is applied on
the data collected using video monitoring system to estimate
the density of vehicles in [8].

In the infrastructure-free methods, vehicles co-operate with
each other to estimate the size of the network. A probe vehicle
uses information of number of its neighbors to calculate the
local density, which is then used to estimate the global density,
assuming that the inter-vehicular spacing is exponentially dis-
tributed in [12]. This work has been extended with a clustering
approach [10] where the cluster heads gather information
about the cluster members which is then used to estimate the
global density. A fully distributed grouping approach is used
for density estimation in [11] where group leader computes
vehicle density and disseminates this information among other
members of the group. In [13], a relationship between speed,

flow and density is used to estimate local density using traffic-
flow model. A similar approach is used in [15] where vehicle
tracks its own speed and acceleration patterns to estimate the
local density. In [14], vehicles are uniformly sampled from a
road section, and their neighbor information is then used to
estimate the density. Fluid dynamics and car follow models
are utilized to estimate the vehicle density in [16].

In this work, we propose fully distributed and infrastructure-
free mechanisms for the density estimation in VANETs. Unlike
previous distributed approaches which either use group for-
mation [11], or rely on vehicle speed and flow information to
calculate density of vehicles, we use network size information
(i.e. number of vehicles in a particular geographical location)
to estimate the density of vehicles on road. To the best of our
knowledge, network size estimation approach has not been
previously applied to VANETs for density estimation.

III. DENSITY ESTIMATION ALGORITHMS

Inspired by the mechanisms for system size estimation
in P2P networks, we adapted and implemented three fully
distributed algorithms, namely Sample & Collide, Hop Sam-
pling and Gossip-based Aggregation, for vehicular density
estimation. The algorithms are used in calculating the number
of vehicles within a particular geographical region specified
by the Global Positioning System (GPS) coordinates. Once
we calculate the network size (number of vehicles) within a
particular geographical region, we divide the network size by
the length of the roads in that area to estimate the density of
vehicles. Details of the algorithms are given next.

A. Sample & Collide

Sample & Collide algorithm is based on uniformly sampling
the nodes from a population, and then estimating the system
size depending on how many samples of the nodes are
collected, before an already sampled node is re-selected [17].

The approach is built upon the inverted birthday paradox.
According to the inverted birthday paradox, in a room of 57
or more people, the probability of two people having the same
birthday is at least 99%. We can calculate the probability
p(N,K) of at least two people having birthday on the same
date in a group of K people for N = 365 days. Sample &
Collide is built on inverting such evaluations. We determine
the number of people X(N) that needs to be sampled, one at a
time, until two people share the same birthday. It turns out that
for large N , value of X(N) converges to

√
2N . In the vehicle

density estimation, the number of days corresponds to the
number of nodes in the network, and sample of people having
the same birthday corresponds to the number of the nodes
selected until two samples coincide. The number of samples
that are obtained before this happens gives the estimate for
the number of nodes N , where N = X2/2.

The accuracy of the algorithm relies heavily on the sampling
technique used. Sampling technique of Sample & Collide
is asymptotically unbiased in contrast to the previously pro-
posed sampling techniques in graphs with heterogeneous node
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degrees [17]. The unbiased sampling of Sample & Collide
proceeds as follows.

• An initiator node sets timer T to some predefined value
(T > 0) in the sampling message, and sends the message
to one of its neighboring nodes.

• Upon receiving a sampling message, a node i does
the following operations. It picks a random number U
uniformly distributed between [0, 1]. It then decrements
T by log(1/U )/di (i.e. T ← T− log(1/U )/di), where di
is the degree of the current node i. If the updated value
T ≤ 0, then the current node i is selected as the sampled
node. Otherwise, it forwards the updated timer value T
to one of its neighbors selected uniformly at random, and
the sampling process continues.

• Samples are collected by the initiator node until a node,
which has already been sampled, is re-selected. Initiator
node counts the number of samples C obtained before the
same node is re-selected. Estimated value for the number
of nodes is given by N = C2/2.

• To improve the accuracy of the algorithm, the fixed
control parameter L is used. Initiator node picks an
integer L > 0 and starts the sampling process. The
process is continued until L collisions occur, i.e. same
nodes are re-selected L times. The initiator node counts
the number of samples CL obtained until L collisions
occur. Using inverted birthday paradox, size of the net-
work (i.e. number of vehicles) can then be estimated as
N = CL

2/2L [17].
Once we calculate size of network, we estimate the density of
vehicles Da within area of size a by Da = N/la, where N is
the number of vehicles on road, and la is the total length of
road within area of size a. As explained in the algorithm, we
introduced fixed control parameter L in our implementation
to improve the accuracy and performance of the algorithm for
dynamic networks like VANETs.
The value of T should also be carefully selected so that there
is negligible bias in selecting the samples from the pool of
nodes [17]. If a high T value is selected by the initiator
node, the system becomes more asymptotically unbiased while
increasing the communication overhead.

B. Hop Sampling

Hop Sampling algorithm is based on the principle of prob-
abilistic polling [18]. The initiator node spreads a message
to all the nodes in the network using gossiping. The nodes
reply back to the initiator probabilistically depending on their
distance from it. Based on the replies that the initiator node
gets from other nodes in the network, it estimates the size of
the network. The algorithm works as follows.

• The hopCount value is initialized to zero by the initiator,
and the message is sent to the neighboring nodes of the
initiator.

• Upon receiving a gossip message, a node checks if it
has previously received that gossip message. If the node
has not received the gossip message, it saves the value

for hopCount. Otherwise, the node compares the newly
received hopCount value with stored value of hopCount.
If the new value is less than the stored value, the node
replaces old hopCount value with the new value, and
forwards the message to its neighboring nodes with
hopCount value equal to hopCount+1. Otherwise, the
node ignores the message. Minimum value of hopCount
received by node represents the distance of the node from
the initiator node.

• Depending on the distance of the node from the ini-
tiator, each node probabilistically replies back to the
initiator. This is to save the initiator node from massive
flood of incoming messages. Message is sent back with
probability 1 if hopCount < minHopsReporting, and
with probability 1/gossipTohopCount−minHopsReporting

otherwise, where minHopsReporting and gossipTo are
system parameters and their values are set by the initiator
node.

• Upon receiving the messages from the nodes, the initiator
node calculates the size of the network depending on
the responses it gets back from the nodes at different
distances. For instance, if the value of minHopsReporting
and gossipTo is set to 2, only 1/24−2 fraction of the total
nodes (i.e. 25%) at distance 4 hops, will reply to the
initiator node.

In our simulations, the values of minHopsReporting and
gossipTo are set to 2. Density of vehicles Da within area of
size a is then obtained by Da = N/la, where N is the number
of vehicles on the road, and la is the total length of the road
within area of size a.

C. Gossip-based Aggregation

Gossip-based aggregation algorithm has been proposed for
large-scale overlay networks, where each peer periodically
exchanges information with one of its neighbours picked at
random to estimate the size of the network [19]. In this
study, gossip-based aggregation algorithm has been adapted
for dynamic VANETs. In the algorithm, if one node in the
system holds weight value equal to 1, and rest of the nodes
hold weight value equal to 0, then the average of the weight
values in the system would be 1/N , where N is the size of
the network. The algorithm works as follows.

• Initiator node samples K vehicles at random.
• These K vehicles then initialize their weight values to 1

and all other nodes in the system initialize their weight
to 0. K nodes then start gossiping with one of their
neighbors selected randomly.

• At each predefined cycle, the nodes which have previ-
ously received a gossip message, randomly select one of
their neighboring nodes, to exchange the values of their
weights. These nodes then update their weight by the
average of their current weight and the weight of their
neighbor as

weight← weightcurrentNode + weightneighborNode

2
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Fig. 1: Road Maps: a) Highway: Big Area (Red Line- 11.5 km of road), Small area (Blue Box- 2 km of road) b) Urban: Big Area (Red Lines- 12.9 km of
road), Small area (Blue Box- 1.8 km of road)

• The gossiping is repeated for a certain number of gos-
sipRounds until the value of the weight of the nodes
converges. The size of the network is then estimated at
each node by using equation N = K

weight .
One of the drawbacks of using gossip-based aggregation

algorithm in dynamic networks is that if the nodes leave
the network during the initial phase of the algorithm after
receiving the gossip message, the accuracy of the algorithm
decreases significantly. To make the algorithm perform better
in dynamic situations, we introduced the scheme of initiating
the algorithm by selecting K distinct vehicles at random,
instead of widely used approach of running the algorithm with
one initiator. Sampling technique we used for selecting K
vehicles at random by the initiator is similar to the technique
used for Sample & Collide. The initiator sets timer T to some
predefined value (T > 0) and sends message to one of its
neighbors. A node i, after receiving the message, decrements
T by log(1/U )/di (i.e. T ← T− log(1/U )/di), where di is
the degree of node i and U is uniformly distributed random
number between [0, 1]. If T ≤ 0, current node is selected as
one of the K nodes to start the gossip algorithm. This process
is repeated K times to select K initiator nodes for gossip
based algorithm.

The density of the vehicles Da within area of size a is then
obtained by Da = N/la, where N is the number of vehicles
on the road, and la is the total length of road within area of
size a.

IV. SIMULATION & RESULTS

A. Simulation Environment

For realistic analysis of the proposed algorithms, we used a
rational representation of vehicle mobility based on the accu-
rate microscopic mobility modeling, real-world road topology

TABLE II: Parameters for Highway and Urban Scenarios

Length of Density No. of Average Maximum Acce-
roads (km) Vehicles Speed Speed leration

(km/h) (km/h) (m/s2)
High- Small (2km) & Low 903 104 120 2

way Big (11.5km) High 4436 102 120 2

Small (1.8km) & Low 1566 52 60 2Urban
Big (12.9km) High 4666 47 60 2

and real-data based traffic demand modeling for both high-
way and urban environments. SUMO (Simulation of Urban
Mobility) [20] is used to simulate the microscopic mobility of
vehicles. SUMO is an open-source, space-continuous, discrete-
time traffic simulator developed by the German Aerospace
Center, capable of modeling the behavior of individual drivers.
The path of each driver is determined based on the ori-
gin/destination matrix provided as an input to the simulator.
The input of SUMO is determined for different scenarios at
low and high density in small and big areas for both highway
and urban environments as detailed next.

1) Highway Simulation: We used Performance Measure-
ment System (PeMS) data to create realistic vehicle simulation
for the highway. PeMS is developed by the department of
Electrical Engineering and Computer Science at the University
of California Berkeley in co-operation with the California
Department of Transportation, California Partners for Ad-
vanced Transit and Highways, and Berkeley Transportation
Systems [21]. The data is collected in real time from over
25,000 individual detectors. The system is deployed over all
major metropolitan areas of the state of California. PeMS data
provides information about the flow, speed and occupancy of
the road. These data are then input to SUMO for a realistic
flow of vehicles. For the purpose of our simulations, we
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Fig. 2: Density Estimation-Highway Scenarios a) Small Area-Low Density b) Small Area-High Density c) Big Area-Low Density d) Big Area-High Density

downloaded the data of 419 road sensors at highway I880-S in
Alameda County for both high traffic density, i.e. at 18 : 00,
and low traffic density, i.e. 01 : 00, as shown in Fig. 1-a. The
traffic density algorithms are then tested for small area (2 km
road) and large area (11.5 km road) for both low and high
density traffic. Other simulation parameters are given in Table
II.

2) Urban Simulation: We used one of the urban areas in
Islamabad, Pakistan shown in Fig. 1-b. There are two types of
traffic generated for Urban area.

• TransitV ehicles: The destination of the vehicles is not
inside the area that is vehicles pass through this area.

• ArrivalV ehicles: The destination of the vehicles is
inside the area. Vehicles enter the area and then after
reaching their destination they stop and leave the network.

Vehicles entering the network follow Poisson distribution
which is considered as a realistic model [22]. Vehicles ran-
domly select a starting point and a destination. Destination
can lie either within the area of interest (ArrivalV ehicles)
or outside the area (TransitV ehicles). The vehicular density
algorithms are then tested for small area (1.8 km of road in
blue box, Fig. 1-b) and big areas (12.9 km of road, red lines,
Fig. 1-b) for both low and high density traffic. Simulation

parameters are given in Table II.

B. Performance Metrics
The following performance metrics are used in the compar-

ison of the density estimation algorithms:
Density Estimation is defined as the vehicular density esti-

mated by the algorithm.
Convergence Time is defined as the time duration between

the starting time and the convergence time of the algorithm.
Overhead is defined as the total number of messages trans-

mitted over the network during the execution of the algorithm
until it converges.

Error Ratio is defined as the ratio of the difference be-
tween an estimated value V alueestimated and the actual value
V alueactual

ErrorRatio =
|V alueestimated − V alueactual|

V alueactual
Load on initiator is defined as the ratio of the to-

tal number of messages sent or received by the initiator
(Messagesinitiator) to the total number of messages sent over
the network (Messagesnetwork)

Loadinitiator =
Messagesinitiator
Messagesnetwork
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Fig. 3: Density Estimation-Urban Scenarios a) Small Area-Low Density b) Small Area-High Density c) Big Area-Low Density d) Big Area-High Density

In our simulations, Sample & Colide algorithm param-
eters T and L are set to 5 and 50 respectively, the
minHopsReporting parameter of Hop Sampling is set to 2,
and K and T parameters of Gossip-based Aggregation are set
to 10 and 5 respectively.

C. Simulation Results

Figs. 2 and 3 show the estimated density values over time
for the algorithms and the actual density at both low and high
density traffic for different area sizes of highway and urban
environment respectively. The density estimation of the Hop
Sampling is very close to the actual value for both small and
large areas of the urban road, and small areas of the highway.
The main reason why the density estimation is not very close
to the actual value for Hop Sampling algorithm in large areas
of the highway is that the accuracy of this algorithm decreases
as the distance (the number of hops between the initiator vehi-
cle and other vehicles) increases. Since we have a long stretch
of straight highway, the vehicle at one end of the highway is
farther away from the vehicles at the other end of the highway
when compared to the urban scenario where there is a network
of roads with multiple paths between the initiator vehicle and

other vehicles which decreases the hop count values. Sample
& Collide and Gossip-based aggregation perform worse than
Hop Sampling because in a highly dynamic network like
VANETs, connections are continuously made and broken, and
vehicles are frequently entering and leaving the network. In
Sample & Collide, when a vehicle which has already been
sampled before leaves the network, the probability of selecting
a sampled vehicle again decreases. Results for Sample &
Collide in Fig. 2-b) and 3-b) are not included because in small
area with high vehicle density, the sampled vehicle leave the
network more quickly thus the algorithm converges in a very
long time with inaccurate results. High mobility has a similar
effect on Gossip-based aggregation. When a vehicle which is
part of gossiping leaves the network, important information is
lost with the vehicle. The average weight of the system, which
should be equal to K, becomes less than K thus the estimated
value is always more than the actual value. However, Hop
Sampling is the most suitable algorithm in terms of accurately
estimating the vehicle density.

Fig. 4 shows the convergence time of the algorithms under
all the traffic scenarios. Hop Sampling takes the least amount
of time to converge when compared to other algorithms, with
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Fig. 4: Convergence Time: Total time needed for the algorithms to converge for (a) Highway and (b) Urban scenarios

Fig. 5: Overhead: Total number of messages sent for (a) Highway and (b) Urban scenarios

Fig. 6: Error Ratio: (a) Highway (b) Urban scenarios

convergence time usually less than 10 seconds.

Fig. 5 shows the overhead of different algorithms under all
the traffic scenarios. Hop Sampling has the least overhead on
the network followed by Sample & Collide and Gossip-based
aggregation algorithms.

Fig. 6 shows the error ratio of the algorithms under all
the traffic scenarios. Hop Sampling has the least error ratio
except for Highway big area scenarios where the distance or
the number of hops between the initiator and other vehicles
increases, thus decreasing the efficient of the algorithm.

Fig. 7 shows the load on the initiator for running the density
algorithms. Hop Sampling has the highest load on the initiator
because once the initiator starts the algorithm, all the nodes
reply back to the initiator with some probability. Thus, the

initiator has to constantly receive messages from other nodes
to accurately estimate the size of the network.
From the results, it can be concluded that the Hop Sampling
performs better than the other algorithms for density estima-
tion under different traffic scenarios. Hop Sampling provides
the highest accuracy with the least overhead and convergence
time. However, this comes at the cost of higher load on the
initiator.

V. CONCLUSION

In this paper, we propose and analyze fully distributed and
infrastructure-free mechanisms for vehicle density estimation
in vehicular ad hoc networks. Inspired by the mechanisms for
the system size estimation in P2P networks, we adapted and
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Fig. 7: Load on the initiator: Highway and Urban scenarios

implemented three fully distributed algorithms, namely Sam-
ple & Collide, Hop Sampling and Gossip-based Aggregation
for VANETs. The algorithms are then analyzed rigorously for
validity and performance over eight traffic scenarios, including
low and high density traffic, for different sizes of highway
and urban environments, based on a realistic representation
of the vehicle mobility, using accurate microscopic mobility
modeling, real-world road topology and real-data based traffic
demand modeling. The analysis demonstrates that Hop Sam-
pling provides the highest accuracy in the least convergence
time by introducing the least overhead to the network but
at the cost of higher load on the initiator node. The high
performance of Hop Sampling algorithm supports the usage
of distributed approach in the density estimation in VANETs,
instead of using infrastructure based solutions that suffers from
limited coverage, high deployment and maintenance cost.

Our ongoing work involves incorporating the effect of
background traffic on the efficiency of the algorithms. The
tradeoff between the accuracy of estimation and the network
load will be investigated. Then, we aim to propose a new
distributed protocol especially tailored for VANETs, taking
advantages from the strong aspects of the three algorithms
used in this work.
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