
Online Client Assignment in Dynamic Real-Time
Distributed Interactive Applications

Seyhan Ucar, Huseyin Guler, Oznur Ozkasap
Department of Computer Engineering

Koc University, Istanbul, Turkey
[sucar, hguler, oozkasap]@ku.edu.tr

Abstract—Quality of user experience in Distributed Interactive
Applications (DIAs) highly depends on the network latencies
during the system execution. In DIAs, each user is assigned to
a server and communication with any other client is performed
through its assigned server. Hence, latency measured between
two clients, called interaction time, consists of two components.
One is the latency between the client and its assigned server, and
the other is the inter-server latency, that is the latency between
servers that the clients are assigned. In this paper, we investigate
a real-time client to server assignment scheme in a DIA where
the objective is to minimize the interaction time among clients.
The client assignment problem is known to be NP-complete
and heuristics play an important role in finding near optimal
solutions. We propose two distributed heuristic algorithms to
the online client assignment problem in a dynamic DIA system.
We utilized real-time Internet latency data on the PlanetLab
platform and performed extensive experiments using geograph-
ically distributed PlanetLab nodes where nodes can arbitrarily
join/leave the system. The experimental results demonstrate that
our proposed algorithms can reduce the maximum interaction
time among clients up to 45% compared to an existing baseline
technique.

I. INTRODUCTION

Distributed Interactive Applications (DIAs) are network
applications that enable interaction between clients geograph-
ically distributed around the world. Online games, military
simulations and collaborative designs are some examples of
DIAs [1]. In a DIA, minimizing the communication delay
is a crucial objective that attracts more clients to join the
system. The communication delay in DIA is defined as the
time duration between when a client triggers an operation and
when this operation is transferred to other clients [2]. Different
architectures have been proposed to decrease the interaction
time between clients [3] which can be classified into three
groups, namely client-server, peer-to-peer and mirrored dis-
tributed server architectures.

In the client-server architecture, one server controls the
application and each client connects to the system through that
single entity. Consistency is one of the important advantages
because each client is directly informed by the central server
and each receives other clients’ operations simultaneously.
However, since clients can only connect to a central server, this
server may become a bottleneck for the application. In peer-
to-peer architecture, instead of using a central server, clients
are connected to each other and share the workload among

them. Workload sharing can be done in different ways such as
partitioning the environment into regions, and assigning each
of the regions to one client. However, the problem in the peer-
to-peer system arises when the performance of a client is bad
relative to the others. For example, in online games, clients
may handle the processing of region assignments instead of
receiving game updates which decreases the user satisfaction.

The last proposed architecture is the mirrored server archi-
tecture in which a predefined number of servers are connected
to each other and each stores a replica of the application
environment. Each client connects to one of the servers and
all interaction among clients is done through clients’ assigned
servers [4]. When a client issues an operation, it first sends
its action to its assigned server. Upon receiving the operation,
each server computes the new state of the system and informs
its connected clients.

In the mirrored server architecture, clients interact with
other clients through their assigned servers. Interaction time is
calculated as the sum of the latency between clients and their
assigned servers, and the latency between assigned servers
[5]. Client assignment plays a key role in determining the
interaction time. A well-designed DIA must be able to assign
an incoming client to a server in a way that the maximum
interaction time between any client is minimized.

In [6], it is proved that the mirrored server architecture
outperforms other architectures in a large scale distributed
system. In this paper, the mirrored server architecture is used
to minimize the interaction time among clients. Different from
previous works, we utilize a real-time dynamic distributed
interactive environment in which clients may join or leave
the system at any time during the system execution. We
propose two distributed algorithms for online version (i.e., the
latency between nodes is not known beforehand) of the client
assignment problem where the objective is to decide how to
assign each client to servers so that the maximum interaction
time clients is minimized. The original contribution of this
paper is two-fold. First, to the best of our knowledge, our
proposed D-Nearest and D-GMIN distributed algorithms are
the first ones evaluated on real large-scale network test bed in
an online adaptive manner where clients dynamically join or
leave the system. Second, we utilize real-time Internet latency

data obtained on the PlanetLab1 that constructs a continuous
real-time distributed system.

The rest of the paper is organized as follows. We survey
the related literature in Section II. Section III mathematically
formulates the client assignment problem and describes the
system model. Our online heuristic client assignment algo-
rithms are proposed in Section IV. The experimental setup is
presented in Section V. Section VI provides the main findings
and comparative analysis of the proposed algorithms and the
paper is concluded in Section VII.

II. RELATED WORK

The literature presents few studies that directly address the
client assignment problem in DIAs. In [7] and [8], authors
propose mirrored server placement algorithm for content dis-
tribution networks (CDN). In these works, the objective is to
serve clients in a fast manner by redirecting incoming clients
into one of the mirrored servers. Given the set of servers,
authors investigate the placement of these servers to maximize
the performance. In contrast to CDN, in DIA rather than
finding optimal geographical server placement the idea is to
find optimal client to server assignments. Moreover, each client
in DIA is connected to one server and clients interact with each
other through their assigned servers.

In [5] and [9], authors prove that the client assignment prob-
lem is NP-complete and there is no polynomial time algorithm
to find the optimal solution. For that reason, they propose four
heuristic algorithms. In Nearest-Server Assignment, clients are
greedily assigned to their nearest server. In Longest-First-
Batch Assignment, the first client is assigned to its nearest
server. All other clients which are not far away from this client
are assigned to the same server since they will not increase
the interaction delay. If that is not the case, then the client
will be assigned to its nearest server and the interaction delay
is updated accordingly. The Greedy Assignment works similar
to Longest-First-Batch Assignment and the only difference is
that they use a cost metric to decide which server to assign
the client. In Distributed-Greedy Assignment, the process starts
with the initial assignment and continues to modify client
assignments until the point where maximum interaction path
cannot be reduced further. They utilize the Meridian [10]
internet latency data in the evaluation of their algorithms.

In [11] and [12], authors propose an approach to enhance the
interactivity of DIAs by only considering the network latencies
between client and server pairs. After the server placement,
proposed algorithm uses the network latencies during the client
assignment. However, as we show in Section VI, the inter-
server latencies also play a critical role in improving the
interactivity in DIAs.

In [13], the proposed solution is based on a virtual en-
vironment that is partitioned into several zones and each
zone is controlled by a server. Clients in the same zone can
interact with each other and clients can move to other zones as
well. They propose two algorithms namely, Initial Assignment

1http://www.planet-lab.org/

where zones are sorted based on the total weight of clients
then assign the first zone to the first server, and Refined
Assignment where they further reduce the Initial Assignment
by reassigning the clients whose communication delay to their
current server exceed a pre-defined threshold.

In [14], the assignment problem is mathematically modeled
and an approximation algorithm is proposed. The study shows
that finding the optimal client-server assignment with pre-
defined requirements is NP-hard and relaxed convex optimiza-
tion is proposed to find an approximate solution. The main
idea behind the proposed optimization algorithm is to divide
servers into two groups recursively until the point where no
further split can be applied.

In [15], a partitioning algorithm is proposed to reduce the
inconsistency in a multi-server distributed virtual environment.
The main purpose is to efficiently distribute the network traffic
generated by avatars among different servers in the system. By
using the metric time-space inconsistency [16], the problem is
formulated as a mixed integer programming problem. Alter-
nating optimization is used to divide the problem into two
sub-problems.

In [17], the authors investigate the update scheduling for
distributed virtual environment (DVE). The key idea is to
keep the DVE consistent where state updates are applied
based on their potential impacts on the consistency. They
propose three algorithms that utilize current network delays
and estimate inconsistencies that may occur in future and
show that the proposed algorithms significantly outperform the
intuitive update algorithms. Different from our work, where
we aim to find near optimal client to server assignments, they
focus on how to schedule particular updates by using network
capacity and delay.

In [18] and [19], the existing algorithms in [5] and [9]
are modified to handle dynamic network conditions. Since the
Meridian [10] set does not consider the latency variation over
time, authors collect pairwise latency data from Planetlab-All-
Pairs-Ping [20] over a one day period. By using collected In-
ternet latency data, they experimentally evaluate the proposed
algorithms with dynamic client join/leave. However, they still
consider an offline version of the client assignment problem
using latencies between clients and servers known beforehand
hence not real-time. In contrast, we examine the online client
assignment problem in this work.

III. PROBLEM FORMULATION

In DIA networks, there exist several geographically dis-
tributed servers that are fully connected. Each client is as-
signed to a server and client communications or client op-
erations in such systems are spread to all clients via their
respective assigned server. For instance, consider an online
multi-player game in which there are two clients named John
(cJohn) and Jane (cJane). An action performed by John is
first sent to the assigned server of John that disseminates
this information to other assigned servers in the system.
Each assigned server, upon receiving an action, sends the

TABLE I
SYSTEM PARAMETERS

Parameters Symbol
Number of clients C
Number of servers S
Client i ci
Server i si
Capacity of server i capacitysi
Decision variable whether ci is assigned to sj xi,j

Assigned server of client i s(ci)
Latency between entity i and entity j d(i, j)

information to all of its clients. By this way, state change in
the network is shared by all clients including John and Jane,
and at the end, each client has the same state of the system,
that is the system is in a consistent state. System parameters
used in this section are listed in Table I.

xi,j =

{
1, if ci is assigned to sj ,

0, otherwise.
(1)

Analyzing the above example introduces two notions of
latencies. One of them exists between a client and its assigned
server, and the other is the inter-server latency. The interaction
path between client i and client j is given as d(ci, s(ci)) +
d(s(ci), s(cj)) + d(s(cj),cj) where s(ci) is the assigned server
of client i and d(i, j) is the latency between entity i and
entity j. Our objective in such a DIA network is to minimize
the maximum interaction path between each client pair as
formulated below.

Our objective is to minimize

max(d(ci, s(ci)) + d(s(ci), s(cj)) + d(s(cj), cj)),

∀ci, cj ∈ C
(2)

subject to
C∑
i=1

xi,j ≤ capacitysj ,∀sj ∈ S (3)

IV. HEURISTIC ALGORITHMS

Since the client assignment problem is NP-complete, there
is no polynomial time algorithm to find the optimal client-
server assignment. Brute force approach, in which all possible
assignment instances in the solution space are evaluated, lacks
to find the optimal solution in reasonable time even for
small number of clients and servers. For that reason, heuristic
algorithms are preferred to find near optimal solutions to the
client assignment problem. However, previous solutions fall
into a major drawback, that is the dynamicity in real networks.
All proposed solutions in the literature assume that clients and
servers are always active in the system. On the contrary, in real
networks and DIAs, it is highly likely for a client to leave the
system for some time and then reconnect. Moreover, servers
can fail and may not be able to respond the incoming client
requests. Furthermore, performance of the existing solutions is
evaluated using the delay measurements obtained by existing

tools, such as Meridian [21] and MIT [22]. However, as shown
in Fig. 1, latency between a random pair of nodes changes
in time and there is no obvious pattern in the latency data
to estimate future latencies. Thus, using such precalculated
latency data is not realistic in real-time distributed interactive
environments.

Our heuristic algorithms are designed to handle dynamic
client join and leaves, and directly use real network latencies
measured periodically between the utilized PlanetLab nodes.
Before starting to assign clients to the servers, our algorithms
first perform a latency measurement between all client and
server pairs by simply exchanging hello packets. Latency
measurements are saved and accessible by all servers, and
all client assignments in our system are determined by the
servers. In the rest of the section, we introduce our heuristic
solutions to the client assignment problem. Notations used in
these algorithms are given in Table II.

TABLE II
ALGORITHM NOTATIONS

Notations Description
INITIALmessage Initial Message of clients
REQ Request Messages
REQop Current Operation of Request Message
SENDERreq Sender of Request Message
MAXpath System Wide Maximum Interaction Path
Smin Server with the Least Latency and Available Capacity
Soptimal Server with the Least Latency
Sci Assigned Server of Client i
d(ci, sj) Latency between Client i and Server j
Availsi Available Capacity of Server i
Waitsi Waiting List of Server i
cwait Waiting Client in the Waiting List
creq Client which generated the REQ
clist List of Connected Clients

A. Static Nearest-Server Algorithm (S-Nearest)

We use the S-Nearest algorithm as the baseline since it is
one of the most widely used technique in distributed interactive
environments. Based on the latency values in the servers,
each newly joined client i is greedily assigned to its nearest
server j unless that server is out of capacity (nearest does
not necessarily mean the geographically nearest server but
rather in terms of the network latency, d(i, j)). Otherwise,
the client is assigned to the second nearest server and so
on. When connecting to the system, each client selects a
random server and sends a join request to that random server.
Since all latency values are exchanged, join requests are
forwarded to the nearest server of the newly joined client.
Hereafter, that server is the assigned server of that client and
all further communication of the client with the system will
be performed through that server. Since for each client we
have |S| possible servers to select from, runtime complexity
of S-Nearest algorithm is O(|S|) for each client.

This algorithm has already been proposed in [9] and [5], and
it is proved to have an approximation ratio of 3. However, that
ratio only holds for a static system in which latency values

0 5 10 15 20 25 30 35 40 45 50
500

1000

1500

2000

2500

3000

Packet Sequence Number

La
te

nc
y

M
ea

su
re

m
en

ts
 (

M
ili

se
co

nd
)

Fig. 1. Real-time latency values measured between two PlanetLab nodes
(lsirextpc01.epfl.ch and planetlab01.tkn.tu-berlin.de) with 50 packet exchanges

between clients and servers stay unchanged. In our system,
these latency values change in real-time as reported in Fig 1.

B. Dynamic Nearest-Server Algorithm (D-Nearest)

As an improvement to the S-Nearest algorithm, we pro-
pose a dynamic approach named D-Nearest as depicted in
Algorithm-1 and Algorithm-2. Different from the static case,
D-Nearest periodically calculates and exchanges latency val-
ues between the clients and their assigned servers. Updated
latency values are also exchanged between servers so that each
server has a global latency view of the system (Lines 1-15).
Client assignments use the updated latencies by assigning each
client to its nearest server as in the static case (Lines 19-35).
In D-Nearest, we also introduce a novel approach by using
waiting lists. If any client could not be assigned to its nearest
server, our algorithm assigns the client to its second nearest
server and additionally adds this client to the waiting list of
its nearest server (Lines 30-31). Whenever a client leaves the
system, its assigned server checks its own waiting list to see
if there is any client that could not be assigned because its
capacity was reached. If there is any, the server takes over
the control of that client. Then, it sends a packet to the client
indicating that its assigned server has changed and also sends
another packet to the previous server to delete that client from
its client list. Finally, the client is also removed from the
waiting list since it is now connected to its nearest server
(Algorithm 2). Our aim here is to keep the servers fresh in
terms of client latency values to have a sustainable system
with good performance.

C. Dynamic Distributed Greedy Minimum Delay (D-GMIN)

As S-Nearest and D-Nearest algorithms greedily utilize the
minimum distanced servers to each client in the assignment
process, they are oblivious to inter-server latencies which may
have a huge impact on the maximum interaction path. D-
GMIN works similar to D-Nearest. It differs in the way it
connects incoming clients to one of the servers, i.e. the JOIN
phase. Details of the JOIN phase are given in Algorithm-3.
In D-GMIN, instead of exploiting only the minimum distance
between a server and a client, we explicitly calculate the length
of the interaction paths between the newly joined client and the
clients that are already in the system by considering all server
assignments. In other words, we consider assigning the new
client to each of |S| servers and find the maximum interaction

Algorithm 1 D-Nearest Algorithm
1: Start to wait INITIALmessage from clients
2: for each received client ci INITIALmessage do
3: Reply back to client.
4: Receive client ci server latency data pairs.
5: Start to wait REQ from system.
6: for each received REQ do
7: Extract operation REQop

8: switch (REQop)
9: case HELLO:

10: if SENDERreq is server then
11: Update client si latency value.
12: Update client si last interaction time.
13: else
14: Update client ci latency value.
15: Update client ci last interaction time.
16: case DELETE:
17: if SENDERreq is server then
18: Apply dynamic leave part of algorithm
19: case JOIN:
20: Initialize Smin and Soptimal to NULL.
21: Initialize d(ci, Smin) to ∞.
22: for each server sj in server list do
23: Use delay d(ci, sj) between client ci and server sj
24: if d(ci, sj) < d(ci, Smin) then
25: Set Soptimal to sj
26: Set d(ci, Smin) to d(ci, sj)
27: if Availsj > 0 then
28: Set Smin to sj
29: if Smin 6= Soptimal then
30: Assign client ci to server Smin

31: Add ci to Soptimal to server waiting list Waitsoptimal

32: Decrease the available capacity of server Availsoptimal

33: else
34: Assign client ci to server Soptimal

35: Decrease the available capacity of server Availsoptimal

36: end switch

Algorithm 2 D-Nearest Algorithm Leave Phase
1: Server sj detects client exit from system
2: Increment Availsj of server sj
3: Control sj waiting client list,Waitsj
4: while Waitsj 6= NULL do
5: Remove first client cwait from Waitsj
6: Send REQ delete operation to Scwait

7: Assign cwait to server sj
8: Decrement Availsj of server sj

path for each server assignment (Lines 4-12). Then, we select
the server which ends up with the minimum of these maximum
interaction paths as the assigned server of the new client (Line
10). If the capacity of that server is already reached, we select
the server with the second least maximum interaction path
and so on (Line 12). In D-GMIN, we also use the waiting
list approach introduced in Section IV-B where re-assignment
of the clients in the waiting lists is handled in a distributed
manner.

In D-GMIN algorithm, we consider all |S| number of
possible server assignments and find the maximum interaction
path between all client pairs for each server assignment, that
is |C|× |C− 1|/2 many pairs in the worst case, which results

in O(|S| × |C|2) run-time complexity.

Algorithm 3 D-GMIN JOIN Phase
1: Initialize Smin and Soptimal to NULL.
2: Initialize MAXpath to ∞.
3: Initialize temppath
4: for each server sj in server list do
5: Assume ci is assigned to sj .
6: Compute system wide maximum interaction path.
7: Set temppath to system wide maximum interaction path.
8: if temppath < MAXpath then
9: if Availsj > 0 then

10: Set Smin to sj
11: Set MAXpath to temppath
12: Set Soptimal to sj
13: if Smin 6= Soptimal then
14: Assign client ci to server Smin

15: Add ci to Soptimal to server waiting list Waitsoptimal

16: Decrease the available capacity of server Availsoptimal

17: else
18: Assign client ci to server Soptimal

19: Decrease the available capacity of server Availsoptimal

V. EXPERIMENTAL SETUP

We have deployed a dynamic real-time distributed interac-
tive application environment utilizing PlanetLab nodes around
the world. We run our experiments with different number
of clients and servers, more precisely, C and S values vary
from 10 to 50, and 5 to 15, respectively. Client nodes are
selected randomly from the assigned PlanetLab slice. Servers
are not picked randomly but they are selected from different
continents to construct a geographically distributed system.

The following experimental scenarios are considered for the
system: (1) servers do not have any capacity constraint and
(2) there exist different capacity constraints for each server
ranging from 12 to 18. Additionally, in the former we have
also run the system with different number of servers. In the
latter, we have utilized different number of clients by fixing the
number of servers to observe the effects of increasing clients
in the system.

Experiments are run 30 minutes for each of the scenarios
to construct a continuous system, and the reported results are
average of 5 runs. Moreover, we randomly disconnect some
of the clients and sleep them for a random time, and then
reconnect to the system to handle (and also to observe the
effects of) client failures.

VI. RESULTS

There are two main performance metrics: maximum in-
teraction path and average interaction delay. Minimizing the
maximum interaction path is our main objective. Average
interaction delay is defined as the average length of all the
interaction paths between each pair of clients during the
system execution.

In the first set of experiments, servers do not have any
capacity constraint and can serve as many clients as needed.
We have also considered different number of servers, and

5 10 15
750

800

850

900

950

1000

1050

1100

Number Of Servers

A
ve

ra
ge

 In
te

ra
ct

io
n

D
el

ay
 (

M
ili

se
co

nd
)

(a)

5 10 15
4000

5000

6000

7000

8000

9000

10000

11000

Number Of Servers

M
ax

im
um

 In
te

ra
ct

io
n

P
at

h
(M

ili
se

co
nd

)

(b)

S−Nearest

D−Nearest

D−GMIN

S−Nearest

D−Nearest

D−GMIN

Fig. 2. Experimental results for different number of servers (a) Average
Interaction Delay (b) Maximum Interaction Path

TABLE III
PERFORMANCE IMPROVEMENT OF OUR PROPOSED DISTRIBUTED

ALGORITHMS W.R.T THE S-Nearest BASELINE

D-Nearest D-GMIN
of Servers Max Avg Max Avg
5 20.4% 4.4% 27.8% 5.4%
10 31.5% 7% 41.3% 10%
15 35.8% 14.2% 46.6% 18.4%

the first thing we have observed in results of Fig. 2 is D-
GMIN algorithm outperforms both D-Nearest and S-Nearest
algorithms in terms of maximum interaction path and average
interaction delay. S-Nearest algorithm shows a fairly poor
performance compared to other heuristics since it has no
mechanism to handle the changing latency between nodes as
shown in Fig. 1. In Fig. 2.a and b, intuitively, one would expect
maximum interaction delay and average interaction path to
decrease if the number of servers increases. In real world,
where servers are superior machines with better performance
compared to clients, that is true because inter-server latency
would be less than the latency between clients and servers.
However, our servers and clients are selected from a pool of
PlanetLab nodes and these nodes have similar hardware and
architectures. Therefore, when the number of servers increases
it is more likely for clients to connect different servers which
eventually increase the inter-server latencies, thus increase the
maximum interaction path and average interaction delay.

In Fig. 2.b, in the best case, D-GMIN algorithm improves
the performance of S-Nearest and D-Nearest algorithms by
46% and 17% respectively. In the worst case, it improves
them by 28% and 10% respectively. Table.III summarizes
relative performance improvement of our proposed D-Nearest
and D-GMIN algorithms compared to the baseline S-Nearest
algorithm with different number of servers and no capacity
constraint (Max implies maximum interaction path and Avg
implies average interaction delay).

In the second set of experiments, servers have limited capac-
ity and it is not possible to connect to a particular server if its
capacity is reached. Number of servers in Fig. 3 is fixed to 5.
Different than what we have observed with unlimited servers,

10 12 14 16 18
850

900

950

1000

1050

Server Capacity

A
ve

ra
ge

 In
te

ra
ct

io
n

D
el

ay
 (

M
ili

se
co

nd
)

(a)

10 12 14 16 18
4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

Server Capacity

M
ax

im
um

 In
te

ra
ct

io
n

P
at

h
(M

ili
se

co
nd

)

(b)

S−Nearest

D−Nearest

D−GMIN

S−Nearest

D−Nearest

D−GMIN

Fig. 3. Experimental results for different server capacities (a) Average
Interaction Delay (b) Maximum Interaction Path

TABLE IV
PERFORMANCE IMPROVEMENT OF OUR PROPOSED DISTRIBUTED

ALGORITHMS W.R.T THE S-Nearest BASELINE

D-Nearest D-GMIN
Server Capacity Max Avg Max Avg
10 14.7% 2.1% 23.2% 6.3%
12 6.7% 7.7% 11.1% 8.9%
14 2.9% 2.2% 6.2% 1.1%
16 5.4% 4.0% 7.1% 2.9%
18 6.0% 5.5% 7.9% 3.8%

in this case, as seen in Fig. 3.a, with increasing capacity
the D-Nearest approach seems to outperform D-GMIN in
terms of average interaction delay. However, as observed in
Fig. 3, when the server capacity increases, eventually D-GMIN
performs better than D-Nearest. That is because D-GMIN has a
better system wide awareness than D-Nearest, since it focuses
on client to client latency rather than considering only client
to server latency.

In Fig. 3.b, our D-GMIN heuristic improves the performance
of baseline algorithm, S-Nearest, by 24% in the best case.
Table.IV summarizes relative performance improvement of our
proposed D-Nearest and D-GMIN algorithms compared to the
baseline S-Nearest algorithm with varying server capacities.

Lastly, we fixed the number of servers to 5 with no server
capacity and run our simulations with different number of
clients from 10 to 50 to observe how the client number
affects the performance of our proposed algorithms. Fig. 4
shows the dynamic behavior, that is the total number of
client join and leave events in the system which increases
with increasing number of clients as expected. Our proposed
algorithms are able to handle this dynamic behavior in the
system while improving the performance compared to the
baseline algorithm. Since latency between any pair of node
shows temporal variation unless there is no client with very
poor connection compared to other nodes join the system,
we expect maximum interaction path to be close to each
other even if we increase the number of clients. As seen in
Fig. 5.a and b, increasing number of clients tends to converge
in terms of performance metrics that we evaluated, and D-
GMIN outperforms the other algorithms.

10 15 20 25 30 35 40 45 50
80

100

120

140

160

180

200

220

240

Number Of Clients

N
et

w
or

k
D

yn
am

ic
ity

Fig. 4. Dynamicity in the network with different number of clients

10 15 20 25 30 35 40 45 50
650

700

750

800

850

Number Of Clients

A
ve

ra
ge

 In
te

ra
ct

io
n

D
el

ay
 (

M
ili

se
co

nd
)

(a)

10 15 20 25 30 35 40 45 50
4000

4500

5000

5500

6000

6500

7000

Number Of Clients

M
ax

im
um

 In
te

ra
ct

io
n

P
at

h
(M

ili
se

co
nd

)

(b)

S−Nearest

D−Nearest

D−GMIN

S−Nearest

D−Nearest

D−GMIN

Fig. 5. Experimental results for different number of clients (a) Average
Interaction Delay (b) Maximum Interaction Path

VII. CONCLUSION

In distributed interactive applications, each client is con-
nected to one of the servers and pushes/retrieves updates in the
system through their connected servers. Thus, any interaction
between two clients consists of both client to server latency
and inter-server latency which is called an interaction path.
Our objective is to minimize the maximum of these interaction
paths between any of the client pairs in the system. Previous
works, that addressed the same problem, all considered a static
system with previously calculated Internet latency values. Our
work utilizes geographically distributed clients and servers
interacting with each other on the PlanetLab platform in real-
time, and we propose two distributed heuristic algorithms
named D-GMIN and D-Nearest that improve the performance
of the baseline algorithm, S-Nearest, up to 46%. As future
work, we aim at improving our approach so that it can
efficiently handle server failures. We also plan to integrate
some filtering mechanisms into the system used for preventing
waste of network and client resources by sharing updates not
with all of the clients but just some of them.

VIII. ACKNOWLEDGEMENT

This work was partially supported by TUBITAK (The
Scientific and Technical Research Council of Turkey) under

Grant 109M761.

REFERENCES

[1] T. Chang, G. Popescu, and C. Codella, “Scalable and efficient update
dissemination for distributed interactive applications,” in Proceedings of
the 22 nd International Conference on Distributed Computing Systems,
2002.

[2] C. Jay, M. Glencross, and R. Hubbold, “Modeling the effects of delayed
haptic and visual feedback in a collaborative virtual environment,” ACM
Transactions on Computer-Human Interaction, 2007.

[3] C. Nguyen, F. Safaei, and P. Boustead, “A distributed server architecture
for providing immersive audio communication to massively multiplayer
online games,” in Proceedings of the 12th IEEE International Confer-
ence on Networks, 2004, pp. 170–176.

[4] L. D. Briceño, H. J. Siegel, A. A. Maciejewski, Y. Hong, B. Lock, M. N.
Teli, F. Wedyan, C. Panaccione, C. Klumph, K. Willman, and C. Zhang,
“Robust resource allocation in a massive multiplayer online gaming
environment,” in Proceedings of the 4th International Conference on
Foundations of Digital Games, 2009.

[5] L. Zhang and X. Tang, “Client assignment for improving interactivity
in distributed interactive applications,” in The 30th IEEE International
Conference on Computer Communications, 2011.

[6] A. Myers, P. Dinda, and H. Zhang, “Performance characteristics of
mirror servers on the internet,” Proceedings of the 18th Annual Joint
Conference of the IEEE Computer and Communications Societies, 1999.

[7] S. Jamin, C. Jin, and A. R. Kurc, “Constrained mirror placement on the
internet,” in IEEE Journal on Selected Areas in Communications, 2001,
pp. 31–40.

[8] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web
server replicas,” in Proceedings of the 20th Annual Joint Conference of
the IEEE Computer and Communications Societies, 2001.

[9] L. Zhang and X. Tang, “The client assignment problem for continuous
distributed interactive applications,” in 31st International Conference on
Distributed Computing Systems, 2011.

[10] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a lightweight network
location service without virtual coordinates,” in Proceedings of the 2005
conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2005, pp. 85–96.

[11] D. N. B. Ta and S. Zhou, “A network centric approach to enhancing the
interactivity of large-scale distributed virtual environments,” Computer
Communications, 2006.

[12] M. S. D. Webb and D. S. Soh, “Adaptive client to mirrored-server assign-
ment for massively multiplayer online games,” Multimedia Computing
and Networking, 2008.

[13] D. N. B. Ta, S. Zhou, and H. S. Shen, “Greedy algorithms for client
assignment in large-scale distributed virtual environments,” in Proceed-
ings of the 20th Workshop on Principles of Advanced and Distributed
Simulation, 2006.

[14] H. Nishida and T. Nguyen, “Optimal client-server assignment for
internet distributed systems,” in Proceedings of 20th International Con-
ference on Computer Communications and Networks, 2011.

[15] Y. Li and W. Cai, “Consistency-aware partitioning algorithm in multi-
server distributed virtual environments,” in 26th International Parallel
and Distributed Processing Symposium, 2012, pp. 798–807.

[16] S. Zhou, W. Cai, B.-S. Lee, and S. J. Turner, “Time-space consistency
in large-scale distributed virtual environments,” in ACM Transactions on
Modelling and Computer Simulation, 2004, pp. 31–47.

[17] X. Tang and S. Zhou, “Update scheduling for improving consistency
in distributed virtual environments,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 21, no. 6, pp. 765–777, 2010.

[18] L. Zhang and X. Tang, “Optimizing client assignment for enhanc-
ing interactivity in distributed interactive applications,” in Networking,
IEEE/ACM Transactions on, vol. 20, no. 6, 2012, pp. 1707–1720.

[19] ——, “The client assignment problem for continuous distributed in-
teractive applications: Analysis, algorithms, and evaluation,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 99, no. PrePrints,
2013.

[20] Planetlab-all-pairs-pings data set. [Online]. Available: http://pdos.lcs.
mit.edu/∼strib/

[21] Lightweight approach to network positioning. [Online]. Available:
http://www.cs.cornell.edu/People/egs/meridian/

[22] MIT latency data set, king. [Online]. Available: http://pdos.csail.mit.
edu/p2psim/kingdata/

