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We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the
Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BEC) limit as a function of the scattering
parameter and population imbalance. We find at zero temperature that the phase diagram of population
imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region
for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum
phase transitions associated with the disappearance or appearance of momentum space regions of zero
quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation and
show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.
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Major experimental breakthroughs have been made re-
cently involving one-species trapped fermions (°Li) in two
hyperfine states with different populations. The superfluid
to normal phase transition and the vortex state [1] as well as
phase separation between paired and unpaired fermions [2]
were identified as a function of population imbalance and
scattering parameter. These studies are important exten-
sions of the so-called Bardeen-Cooper-Schrieffer (BCS) to
Bose-Einstein condensation (BEC) evolution for equal
populations, which were studied via the use of Feshbach
resonances [3—8]. The problem of fermion superfluidity
with population imbalance has been revisited recently in
several theoretical works in continuum [9-19] and trapped
[20-26] atoms. These one-species experiments are ideal
candidates for the observation of uniform and nonuniform
superfluid phases, which may be present not only in atomic
but also in nuclear (pairing in nuclei), astrophysics (neu-
tron stars), and condensed matter (superconductors)
systems.

Arguably one of the next frontiers of exploration in
ultracold Fermi systems is the search for superfluidity in
two-species fermion mixtures (e.g., °Li and 4°K) with and
without population imbalance. While earlier works on two-
species fermion mixtures were limited to the BCS limit
[9,10], in this Letter we study the evolution of superfluidity
from the BCS to the BEC limit as a function of the
scattering parameter and population imbalance.

Our main results are as follows. At zero temperature, we
construct the phase diagram for equal and unequal masses
of paired fermions as a function of scattering parameter
and population imbalance P = (N; — N})/(N; + N|) as
shown in Fig. 1. The phase diagram is asymmetric for
unequal masses, having a larger stability region for uni-
form superfluidity when the population N; of lighter fer-
mions is larger than the population N of heavier fermions.
In addition, we find topological quantum phase transitions
in the phase diagram associated with the disappearance or
appearance of momentum space regions of zero quasipar-
ticle energies. Lastly, near the critical temperature, we
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derive the time-dependent Ginzburg-Landau (TDGL)
equation and show that it describes a dilute mixture of
bosons (tightly bound fermions) and excess (unpaired)
fermions in the BEC limit.

To describe a dilute two-species Fermi gas in three
dimensions, we start from the Hamiltonian (A = 1)

H= ka,oal,aak,o + Z Vik, k/)bi,qbk’,q’ Q)
k,o k.k',q

where the pseudospin o labels the hyperfine states repre-
sented by the creation operator al’a, and b]tyq =

al+q/2,1aik+q/2’l. Here, &y , = €xo — Mo, Where € , =
k?/(2m,) is the energy and u,, is the chemical potential of
the fermions. Notice that we allow for the fermions to have
different masses m, and different populations controlled
by independent chemical potentials w,. The attractive
fermion-fermion interaction V(k, k') can be written in a
separable form as V(k, k') = —gI'y 'y, where g > 0, and
I'y = 1 for the s-wave symmetry.

The Gaussian effective action for H is [27] Sgauss =

So + (B/2)Y ;AT (@)F ' (9)A(q), where g = (g, v,) with
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FIG. 1. Phase diagram of P = (N;— N))/(N;+N)) vs
1/(kp+ap) for (a) equal (m; = m) and (b) unequal (m; =
0.15m;) masses. We show normal (N), nonuniform (NU), or
uniform (U) superfluid phases. The dotted and P = 0 lines
separate topologically distinct regions. In (b) the U phase also
occurs for P < 0 when 1/(ky ;ap) > 4.8 (not shown).
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bosonic Matsubara frequency v, = 2€7/3. Here, 8 =
1/T, At(g) is the order parameter fluctuation field, and
the matrix F~!(g) is the inverse fluctuation propagator. The
saddle point action is

|A 5
So=B——+ Z{ﬁ(fk + = Ex ) + In[np(—Ey )]
+ ln[nF(_Ek,l)]}y (2)
where Ey , = (£2 , + |Ag[>)V? + 5, €  is the quasipar-

ticle energy when s; = 1 and the negative of the quasihole
energy when s; = —1, and Ey .~ = (Ey; = Ey|)/2. Here,
Ay = Ayl is the order parameter, ny(Ey ) is the Fermi
distribution, and &y . = (&xp * éx)/2 = k*/(2m~) —
M=, Where m. = 2m1m1/(ml *m) and p. =
(m1 = up)/2. Notice that m is twice the reduced mass
of the T and | fermions, and that the equal mass case
corresponds to |m_| — oco. The fluctuation term in the
action leads to a correction to the thermodynamic poten-
tial, which can be written as Qgauss = Qo + Qe With
Q= So/B and Qg = (1/B)3, In det[F~'(g)/B].

The saddle point condition 8S,/8A; = 0 leads to an
equation for the order parameter

T |?

1
3
ZZEk+ o+ 3)

where X+ = Xy £ Xi/2  with Xko =
tanh(BEy ,/2). As usual, we eliminate g in favor of
the scattering length ap via the relation 1/g =
—m,V/(4map) + Y ITkl?/2ex+),  where e+ =

(ex; = €x,)/2. The order parameter equation has to be
solved self-consistently with number equations N, =
—9Q/0u, which have two contributions N, =
No.o + Npyero- No,» 1s the saddle point number equation
given by

_ 30, = 5o Xi— it
Noo = T o Xkt ) @
T o, Z( 2 2E, . "*) @
and  Npyepo = —0Qque/dp, is  the  fluctuation
contribution to N given by Npyero =

—(1/B)Y foldetF~(q)]/dpmy}/ detF~'(g). We define
B. = myuy £ myu; to establish general constraints on
the magnitude |Ay| of the order parameter for s-wave
pairing in the presence of population imbalance (N; #
N)). Population imbalance is achieved when either Ey ; or
Ey | is negative in some regions of momentum space.
Depending on the number of zeros of Ey; and Ey | (zero
energy surfaces in momentum space), there are two topo-
logically distinct cases: (I) E , has no zeros and Ey _, has
only one, and (II) Ex , has no zeros and Ey _, has two
zeros. The zeros of Ey , occur at real momenta K =
B, = (B2 — 4mym||Ag|*)"/?  provided that |A(|* <
|B_|?/(4mym)) for B, = 0 and |Ao|*> < —uyp for B, <
0. The P = 0 limit corresponds to case (III), where Ey
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FIG. 2. Schematic plots of Ey; (dotted lines) and Ey (solid
lines) vs k (a) for case (I), and (b) for case (II).

has no zeros and is always positive. We illustrate these
cases in Fig. 2 for N; > N,. Notice that the Fermi sea of the
lower quasiparticle band is a sphere of radius k. in case (I)
and a spherical shell k- = k = k, in case (II). The tran-
sition from case (II) to case (I) occurs when k_ — O,
indicating a change in topology in the lowest quasiparticle
band, similar to the Lifshitz transition in ordinary metals
and non-s-wave superfluids [28,29]. The topological tran-
sition here is unique, because it involves an s-wave super-
fluid, and could potentially be observed for the first time
through the measurement of the momentum distribution.

The T = 0 momentum distributions for cases (I) and (II)
can be obtained from Eq. (4). For momentum space regions
where Ey , > 0and Ey _, > 0, the corresponding momen-
tum distributions are equal ny , = ny _,. However, when
Ex,>0 and Ey _, <O, then ny, =0 and nx _, = 1.
Although this topological transition is quantum (7 = 0)
in nature, signatures of the transition should still be ob-
served at finite temperatures within the quantum critical
region, where the momentum distributions are smeared out
due to thermal effects. Although the primary signature of
this topological transition is seen in the momentum distri-
bution, the isentropic kg or isothermal xk; compressibilities
and the speed of sound c, would have a cusp at the
topological transition line similar to that encountered in
|Ay| (see Fig. 3) as a function of the scattering parameter
1/(kp +ar). The cusp (discontinuous change in slope) in
Ks, K, Oor cg gets larger with increasing population
imbalance.
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FIG. 3. Plots of |Ayl|, sy, and w_ (units of ep ) for my =
0.15my (a) as a function of 1/(kg +ap) when P = 0.5 and (b) as a
function of P when 1/(ky +ar) = 0.
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Next, we solve Egs. (3) and (4) to analyze the phase
diagram at 7 = 0 as a function of scattering parameter
1/(kp +ar) and population imbalance P = N_/N ., where
N. = (Ny£N)/2 and kp . = (kj., = k3 ))/2. We per-
form calculations for equal (m; = m|) and unequal (m; =
0.15m) masses cases, corresponding to one-species (°Li or
40K only) and two-species (°Li and *°K mixture) experi-
ments, respectively.

For T = 0, Ngye o 1S small compared to Ny, for all
1/(kg +ar) leading to N, = N, , [30]. We define € . =
k% ./(2m.) and in Fig. 3, we plot self-consistent solutions
of |Agl, w4, and w_ (in units of € ) at T = 0 for two
cases: (a) as a function of 1/(kgar) when P = 0.5 (or
N; = 3N)) and (b) as a function of P when 1/(kf rar) =0
(or on resonance).

In Fig. 3(a), the BCS u. = (€p; * €p;)/2 changes
continuously to the BEC |u|— |€,|/2, where €, =
—1/(mya%) is the binding energy which follows from
1/g = SklIlk|>/(2¢€ + — €;). Since P> 0 and the T fer-
mions are in excess, all | fermions pair to form N| bosons
and the remaining T fermions are unpaired. The amplitude
|Ao| evolves continuously from the BCS to the BEC limit
with a cusp around 1/(kg +ap) = —0.27. This cusp in |A|
is more pronounced for higher |P| and signals a quantum
phase transition from case (I) to case (II), which can be
detected experimentally [8].

In Fig. 3(b), we show (on resonance) that |Ay| =0
(normal phase) for P < —0.61, where u, = 0.64€r 4
and pu_ =~ 0.28€; . We notice that the evolution of |A,
M4, and u_ as a function of P is nonanalytic when |P| —
0, and signals a quantum phase transition from case (II)
with P > 0 to case (IIT) with P = 0 to case (I) with P < 0.
We obtain similar results when m; = m,, where the plot is
symmetric around P = 0. Therefore, this quantum phase
transition may be studied in current experiments involving
only one species of fermions [1,2].

Next, we discuss the stability of uniform superfluidity
using two criteria. The first criterion requires that the
curvature 92Q/dA3 of the saddle point thermodynamic
potential )y = S,/B with respect to A, to be positive.
When 92Q,/3A3 is negative, the uniform saddle point
solution does not correspond to a minimum of ), and a
nonuniform superfluid phase is favored. The second crite-
rion requires the eigenvalues of the superfluid density

pi(T) = (mNy; + mNy)8,;; — gzkikjyk,+ (5)
3

to be positive. Here, 6, is the Kronecker delta, and Yy =
(Vi1 = Yi/2, with Yy, = sech’(BEy ,/2). When at
least one of the eigenvalues of p,;(T) is negative, a sponta-
neously generated gradient of the phase of the order pa-
rameter appears, leading to a nonuniform superfluid phase.
Notice that p;;(T) reduces to a scalar py(7) for s-wave
systems.

The uniform superfluid (U) phase is characterized by
po(0) > 0and 82Q/dA3 > 0, and the normal (N) phase is
characterized by A, = 0. The nonuniform superfluid (NU)
phase is characterized by p,(0) < 0 and/or 92Q)/dA3 < 0.
The NU phase should be of the Larkin-Ovchnikov-Fulde-
Ferrel (LOFF) type having one wave vector modulation for
the center of mass momentum of a Cooper pair near the
BCS limit, where pairing occurs within a very narrow
region around the lowest Fermi energy of either the lighter
or heavier atom. Towards unitarity and beyond, we expect
the NU phase to be substantially different from LOFF
phases having spatial modulation that would encompass
several wave vectors. This expectation is based on the idea
that when the attraction between fermions gets stronger,
the Fermi mixture becomes more nondegenerate, and there
is a wider region in energy within which pairing can occur,
leading to a range of possible wave vectors for the center of
mass momentum of Cooper pairs.

As shown in Fig. 1(a), when m; = m,, the phase diagram
is symmetric around P = 0. A continuous quantum phase
transition occurs from the NU to the N phase beyond a
critical population imbalance on the BCS side. In addition,
a discontinuous transition from the NU to the U phase of
topological type (I) also occurs.

In contrast, as shown in Fig. 1(b), when m; = 0.15m,
the phase diagram is asymmetric around P = 0. A con-
tinuous quantum phase transition occurs from the NU to
the N phase beyond a critical population imbalance on the
BCS side. Furthermore, it is found that the U phase has a
larger stability region when light fermions are in excess,
and that a discontinuous transition from the NU to the U
phase occurs. The U phase also exists for P <0 when
1/(kp +arp) > 4.8 (not shown). Lastly, one of the topologi-
cal quantum phase transitions (dotted lines) is very close to
the NU/U boundary for P > 0 in contrast to the equal mass
case. This line indicates a change in quasiparticle Fermi
surface topology from type (I) to type (II), and may lie in
the U region when my;/m; < 0.15.

Next, we discuss superfluidity near T = T, where A =
0, and derive the TDGL equation [31]. We use the small q
and ivy — w + (0 expansion of

1 1-— - _
L"(q) _ 1 Z "F(§k+q/2,1) nF(fk' q/2,1) |Fk|2,
g8 % Exrqat T Ex—qal — ive

where L™!(q) = F;,!(g), to obtain the TDGL equation

2 _ N G _ .0 _
[a + bIA ()] %TVZVJ. ld5:|A(x) =0 (6
in the real space x = (x, t) representation. The coefficients
are given by a = 1/g — 34 Xi +IT(K)[>/(2€y +), which
leads to the saddle equation when a = O (Thouless condi-
tion), and ¢;; = Zk{ﬁzkikj(Xk,TYk,T/mTz + Xk,lYk,l/mf)/
(32§k,+) + /3[kikjc—/(m—§k,+) - Bi./‘C+/2](8§k,+) +
Xy +[6:;/Q2my) — kik;/(m2 & )]/ (4é5 DT [?, where
C. = (Yy1/my £ Yy /m)/2, Xy, = tanh(B¢y ,/2), and
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Yi , = sech*(B&y ,/2). Notice that ¢;; reduces to a scalar
¢ in the s-wave case. The coefficient of the nonlinear term
is b= Zk[xk,+/(4§i,+) - BYk,+/(8§i,+)]|Fk|4, while
d has real and imaginary parts given by d=
lim,, o >k Xy, +[1/(8&% 1) +im82€y + — w)/Cw)]IT I,
where 8(x) is the Delta function. Notice that the damping
term (imaginary part of d) vanishes for x, = 0, indicating
an undamped dynamics for A(x).

Since a uniform superfluid phase is more stable in the
BEC side, we calculate analytically all coefficients in the
BEC limit where |w.|~ |€,|/2> T,.. We obtain a =
ay +a,=—-VmiQu, — €,)ap/(8m) + Vmyn,ak, b =
by + by = Vm.ay/(167) — VmA3 (dn,/dp.)at, c=
Vm?% ap/[8m(m; + my)], and d = Vm%ay/(87). Here, e
labels the excess type of fermions and 7, is the density of
unpaired fermions. Through the rescaling W(x) = +/dA(x),
we obtain the equation of motion for a dilute mixture of
weakly interacting bosons and fermions

V2 (x)
upW(x) + [UpplW()I* + Uppn (x)]¥(x) — .
B
oV (x)
- =0, (7
i— (7
with bosonic chemical potential ug = —a,;/d =2u, —

€,, mass mg=d/c = my + my, and repulsive boson-
boson Ugz = b,V/d?> = 4marp/m, and boson-fermion
Ugr = a,V/(dn,) = 8mayp/m, interactions. This proce-
dure also yields the spatial density of unpaired fermions
given by n,(x) =[ay/d + by|¥(x)[*/d*]/Upp =
n, — 8map(dn,/ou,)|¥Y(x)|>/m,. Since an,/dm, >0,
the unpaired fermions avoid regions where the boson field
| W(x)| is large. Thus, the bosons condense at the center and
the unpaired fermions tend to be at the edges in a trap.
Notice that Eq. (7) reduces to the Gross-Pitaevskii equation
for equal masses with P = 0 [31], and to the equation of
motion for equal masses with P # 0 [21].

Furthermore, we obtain the boson-boson agpp =
[1 + m/(2m)) + m;/(2my)]ar and boson-fermion app =
dmgm,/[m(mg + m,)]ap scattering lengths, which re-
duce to agg = 2ap and agp = 8ap/3 for equal masses
[21,31]. For a mixture of °Li and “°K, azp =~ 4.41ay and
agr =~ 2.03a;r when °Li is in excess, and agzr =~ 8.20ay
when K is in excess. For a better estimate, higher order
scattering processes are needed [32]. Since the effective
boson-fermion system is weakly interacting, the BEC tem-
perature is T, = 7{ng/{(3/2)1*3 /mp, where {(x) is the
Zeta function and ng = (n — n,)/2.

In summary, we analyzed the phase diagram of uniform
superfluidity for two-species fermion mixtures (e.g., °Li
and “°K) from the BCS to the BEC limit as a function of
scattering parameter and population imbalance. We found
that the zero temperature phase diagram of population
imbalance versus scattering parameter is asymmetric for
unequal masses, having a larger stability region for uni-
form superfluidity when the lighter fermions are in excess.
This result is in sharp contrast with the symmetric phase

diagram for equal masses. In addition, we found topologi-
cal quantum phase transitions associated with the disap-
pearance or appearance of momentum space regions of
zero quasiparticle energies. Near the critical temperature,
we derived the Ginzburg-Landau equation, and showed
that it describes a dilute mixture of bosons (tightly bound
fermions) and excess (unpaired) fermions in the BEC limit.
We thank the NSF (No. DMR-0304380) for support.
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