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By considering an on-site attraction between a spin-↑ and a spin-↓ fermion in a multiband tight-binding lattice,
here we study the two-body spectrum and derive an exact relation between the inverse of the effective-mass
tensor of the lowest bound states and the quantum-metric tensor of the underlying Bloch states. In addition to
the intraband (or the so-called conventional) contribution that depends only on the single-particle spectrum and
the interband (or the so-called geometric) contribution that is controlled by the quantum metric, our generalized
relation has an additional interband contribution that depends on the so-called band-resolved quantum metric. All
of our analytical expressions are applicable to those multiband lattices that simultaneously exhibit time-reversal
symmetry and fulfill the condition on spatially uniform pairing. As a nontrivial illustration we analyze the two-
body problem in a kagome lattice with nearest-neighbor hoppings, and we show that the exact relation provides
a perfect benchmark.
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I. INTRODUCTION

The quantum-metric tensor is defined as the real part of the
quantum-geometric tensor (whose imaginary part is the Berry
curvature), and in condensed-matter physics it provides a
measure of the so-called quantum distance between the nearby
Bloch states in momentum space [1–3]. Together with the
Berry curvature, it constitutes one of the two band-structure
invariants that have gradually become central objects in a
number of fields. For instance, the quantum metric plays a
crucial role in the transport properties of some multiband
superfluids and superconductors: it controls the effective-mass
tensor of the superfluid carriers through the interband pro-
cesses, which in return affects all of the other superfluid
properties that depend on the carrier mass including, e.g., the
superfluid weight and density, the velocity of the low-energy
collective modes such as the Goldstone mode, the Berezinskii-
Kosterlitz-Thouless transition temperature, etc. [4–11]. Given
these theoretical predictions and many others, there has been
rapid progress and a growing demand for measuring the quan-
tum metric itself [12–16].

In connection to the central theme of this paper, we have
recently derived a Ginzburg-Landau functional for a spin-
orbit-coupled Fermi superfluid in continuous space [within
the BCS-BEC (Bose-Enstein condensate) mean-field theory
and Gaussian fluctuations on top of it] and revealed a direct
relation between the inverse of the effective-mass tensor of the
many-body bound states (e.g., Cooper pairs) and the quantum-
metric tensor of the helicity states [7]. See also Ref. [8]. Then,
by assuming a sufficiently weak on-site attraction between the
particles in a multiband lattice, a parallel relation has been de-
rived for the two-body bound states in vacuum by focusing on
an isolated flat band that is separated from the remaining ones
with a finite band gap [17]. More recently, by assuming an

on-site attraction and time-reversal symmetry, we have found
an analogous but exact relation for the effective-mass tensor
of the lowest bound states in generic two-band lattices [18]. In
this paper we extend and generalize the latter study to multi-
band lattices and show that in addition to the intraband (or
the so-called conventional) contribution that depends only on
the single-particle spectrum and the interband (or the so-called
geometric) contribution that is controlled by the quantum met-
ric, there is an additional interband contribution that depends
on the so-called band-resolved quantum metric. The revela-
tion of the latter contribution is one of our main results in
this work. All of our analytical expressions are applicable to a
certain class of multiband lattices that simultaneously exhibit
time-reversal symmetry and fulfill the condition on spatially
uniform pairing, i.e., when the two-body wave function is
uniformly delocalized over the sublattices. This is expected
to be the case for those Bloch Hamiltonians that are invariant
under the interchange of their sublattices. Furthermore, we
show that our general relation reproduces all of the known
results in the respective limits, and it is in perfect agreement
with the exact solution to the two-body problem in a kagome
lattice with nearest-neighbor hoppings.

The rest of the paper is organized as follows. First we
study the kagome model in Sec. II: the single-particle band
structure is reviewed in Sec. II A and the two-body spectrum
is analyzed in Sec. II B. Then we relate our numerical findings
to the quantum metric in Sec. III and discuss the versatility of
our results for other lattices in Sec. IV. The paper ends with a
brief summary of conclusions and an outlook given in Sec. V.

II. KAGOME LATTICE

As a physical motivation for the exact relation between the
inverse of the effective-mass tensor of the lowest two-body
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FIG. 1. Sketches of (a) the crystal structure in real space and
(b) the first Brillouin zone in reciprocal space. (c) Band structure
with a flat band at the bottom. Note that while the flat band is in
quadratic touch with a dispersive band at the origin, the dispersive
bands touch each other and form Dirac cones at the six corners of the
Brillouin zone.

bound states and the quantum-metric tensor of the underlying
Bloch states, here we want to analyze a nontrivial yet analyt-
ically tractable multiband tight-binding lattice that features a
flat band in its band structure. Given their recent realizations,
kagome [19–22] and Lieb [23–25] lattices are probably the
ideal candidates, and here we focus on the former model with
nearest-neighbor hopping.

A. Band structure

The kagome crystal structure with nearest-neighbor bonds
is illustrated in Fig. 1(a): it forms a triangular lattice with
a side length a and has a three-point (Nb = 3) basis that is
located at rA = (0, 0), rB = a

4 (1,
√

3), and rC = a
2 (1, 0). The

real-space primitive unit vectors can be chosen as a1 = a(1, 0)
and a2 = a

2 (1,
√

3), and we define a3 = a1 − a2 for conve-
nience. If the entire lattice is constructed with Nc unit cells
then the total number of lattice sites is N = NbNc. Accord-
ingly the reciprocal-space primitive unit vectors can be chosen
as b1 = 2π√

3a
(
√

3,−1) and b2 = 4π√
3a

(0, 1), and they satisfy
ai · b j = 2πδi j with δi j being the Kronecker delta. The corre-
sponding first Brillouin zone is illustrated in Fig. 1(b) whose
area is 8π2/(

√
3a2). This is in such a way that the Brillouin

zone contains a total of
∑

k 1 = Nc distinct k-space points.
The Hamiltonian for a single spin-σ = {↑,↓} particle

can be written as Hσ = ∑
k ψ

†
kσ Hkσψkσ , where ψkσ =

(cAkσ cBkσ cCkσ )T is a three-component spinor with T being
the transpose operator and cSkσ the annihilation operator for a
spin-σ particle on the sublattice S with a crystal momentum

k = (kx, ky). In the orbital basis |Skσ 〉 = c†
Skσ |0〉 with |0〉 be-

ing the vacuum state, the Hamiltonian density can be written
as

Hkσ = −2t

⎡
⎢⎣

0 cos
( k·a2

2

)
cos

( k·a1
2

)

cos
( k·a2

2

)
0 cos

( k·a3
2

)

cos
( k·a1

2

)
cos

( k·a3
2

)
0

⎤
⎥⎦, (1)

where t is the hopping element between the nearest-neighbor
lattice sites. The single-particle spectrum εnkσ is given by the
eigenvalues of Hkσ , leading to [26,27]

ε1kσ = 2t, (2)

ε2kσ = −t − |t |
√

2�k + 3, (3)

ε3kσ = −t + |t |
√

2�k + 3, (4)

which are independent of the spin of the particle. Here the first
band is flat and nondispersive in k space, and the dispersive
bands are characterized by �k = ∑3

i=1 cos(k · ai ). We choose
a negative t = −|t | in this paper leading to a flat band at the
bottom. The resultant band structure is shown in Fig. 1(c).
We note that, while the flat band is in quadratic touch with
a dispersive band at k = 0, the dispersive bands touch each
other and form Dirac cones at the six corners of the Brillouin
zone.

Given our interest in the dispersion of the two-body bound
states, we need not only the band structure but also the associ-
ated Bloch states |nkσ 〉. Thus, a compact way to express the
eigenvectors of Hkσ is [26,27]

|1kσ 〉 ≡

⎛
⎜⎝

1Akσ

1Bkσ

1Ckσ

⎞
⎟⎠ = A1k

⎡
⎢⎣

sin(θ2k − θ3k )

sin(θ3k − θ1k )

sin(θ1k − θ2k )

⎤
⎥⎦, (5)

|2kσ 〉 ≡

⎛
⎜⎝

2Akσ

2Bkσ

2Ckσ

⎞
⎟⎠ = A2k

⎡
⎢⎣

sin(θ1k + φk )

sin(θ2k + φk )

sin(θ3k + φk )

⎤
⎥⎦, (6)

|3kσ 〉 ≡

⎛
⎜⎝

3Akσ

3Bkσ

3Ckσ

⎞
⎟⎠ = A3k

⎡
⎢⎣

cos(θ1k + φk )

cos(θ2k + φk )

cos(θ3k + φk )

⎤
⎥⎦, (7)

where nSkσ = 〈S|nkσ 〉 is the projection of the Bloch state onto
the Sth sublattice; Ank is the normalization factor; and θ1k =
kxa/4 + kya/(4

√
3), θ2k = −kya/(2

√
3), θ3k = −kxa/4 +

kya/(4
√

3), and φk = 1
2 arg[eikya/

√
3 + 2 cos(kxa/2)e−iky/(2

√
3)]

are some phase factors associated with the geometry of the
kagome lattice. Having completed the analysis of the one-
body problem, next we proceed with the two-body problem.

B. Two-body bound states

In the presence of a multiband tight-binding lattice, it
is possible to solve the two-body problem exactly through
a variational approach that is based on the following
ansatz [18]:

|
q〉 =
∑
nmk

α
q
nmkc†

n,k+q/2,↑c†
m,−k+q/2,↓|0〉. (8)
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FIG. 2. Matrix elements Gq
SS′ for U = 2|t | as a function of qx when qy = 0. Here panels (a), (b), and (c) correspond, respectively, to

the self-consistent solutions for E1q, E2q, and E3q. Since Gq
CC = Gq

AA and Gq
BC = Gq

AB for all qx , these coefficients are not shown. Note that
Gq

AA = Gq
BB and Gq

AB = Gq
AC in the small-qxa limit. In addition, together with the characteristic (bound state) Eq. (9), these coefficients imply

β1q ∝ (1, 1, 1), β2q ∝ (1, 0, −1), and β3q ∝ (1, −2, 1) in the small-qxa limit.

Here q is the center-of-mass momentum of the spin-singlet
bound pair that is formed between a spin-↑ and a spin-↓
particle, the variational parameter α

q
nmk is a complex num-

ber in general, and the operator c†
nkσ creates a particle

in the Bloch state |nkσ 〉 = c†
nkσ |0〉. The creation operators

in the orbital and Bloch basis are related through c†
nkσ =∑

S nSkσ c†
Skσ since

∑
S |Skσ 〉〈Skσ | = INb is an identity op-

erator in Nb dimensions for a given k and σ . The dispersion
E
q of the bound state is determined through the minimiza-
tion of 〈
q|H − E
q|
q〉 = 0 with respect to α

q
nmk, where

H = H↑ + H↓ + H↑↓ is the total Hamiltonian of the sys-
tem. Here we limit our analysis to an on-site (i.e., contact)
attraction between the particles thanks mainly to the clarity of
the central theme of this paper. For this purpose let us con-
sider H↑↓ = −U

∑
Si ρSi↑ρSi↓, where U � 0 is the strength

of the interaction and ρSiσ = c†
Siσ cSiσ is the number operator

at the Sth sublattice in the ith unit cell. Here the operator
cSiσ corresponds to the Fourier transform of cSkσ . In addition,
we take advantage of the time-reversal symmetry and set
nSk↑ = n∗

S,−k,↓ ≡ nSk and εnk↑ = εn,−k,↓ ≡ εnk. After some
straightforward algebra [18], E
q is characterized by a set of
linear equations,

Gqβ
q = 0, (9)

where Gq is an Nb-dimensional Hermitian matrix with the
following elements:

Gq
SS′ = δSS′ − U

Nc

∑
nmk

m∗
SK′nSKn∗

S′KmS′K′

εnK + εmK′ − E
q
. (10)

Here K = k + q/2 and K′ = k − q/2. Thus, E
q is deter-
mined by setting det Gq = 0, and there are Nb solutions for
a given q. We label these solutions with 
 = {1, 2, 3} starting
from the lower branch. Furthermore, the state vector β
q =
(βA
q βB
q βC
q)T, where βS
q = ∑

nmk α
q
nmknSKm∗

SK′ is the
corresponding eigenvector of Gq, and it carries further insight
into the physical mechanism and nature of the bound state.

Our numerical calculations for the kagome lattice show
that the matrix elements of Gq have the following properties.
When q is along one of the principal axis, i.e., either when
qx = 0 or qy = 0, we observe that Gq

AA = Gq
CC and Gq

AB = Gq
BC

for all parameters. Thus, one of the eigenvalues of Gq = 0
is Gq

AA − Gq
AC with the eigenvector β2q ∝ (1, 0,−1), and

it determines the middle branch E2q. The upper branch
E3q and the lower one E1q are determined, respectively,
by the eigenvalues (Gq

AA + Gq
BB + Gq

AC )/2 ± [8(Gq
AA)2 +

(Gq
AC )2 + (Gq

AA − Gq
BB)(2Gq

AC + Gq
AA − Gq

BB)]1/2/2, where
β3q ∝ (1, Qq, 1) with Qq < 0 and β1q ∝ (1, Rq, 1) with
Rq > 0. While the q dependencies of Qq and Rq are not
very illuminating and skipped, they are in such a way
that QqRq = −2 for every q which is required by the
orthonormalization of β
q. Thus, by setting the eigenvalues
of Gq to 0, we find that E2q is determined by the condition
Gq

AA = Gq
AC and that E1q and E3q are determined by the same

condition 2(Gq
AB)2 = Gq

BB(Gq
AA + Gq

AC ). On the other hand,

when q =
√

q2
x + q2

y is small, i.e., when qa � 1, we observe

that Gq
AA = Gq

BB = Gq
CC and Gq

AB = Gq
BC = Gq

AC for all
parameters. These are shown in Fig. 2. Thus E1q is determined
by the condition Gq

AA = −2Gq
AB, and it is characterized by

β1q ∝ (1, 1, 1). This suggests that the low-energy bound
states can be distinguished by their perfectly in-phase (i.e.,
spatially uniform) contribution from all three sublattices [28].
On the other hand E2q and E3q are both determined by the
very same condition Gq

AA = Gq
AB (i.e., they are degenerate

in the small-q limit) and are characterized, respectively, by
β2q ∝ (1, 0,−1) and β3q ∝ (1,−2, 1).

As an illustration we set U = 2|t | and qy = 0 in Fig. 3(a)
and present the two-body spectrum E
q as a function of qx.
Even though E3q disperses in q, it appears quite flat and
featureless in the presented scale. We observe that while E3q
and E2q are degenerate at low q, E2q and E1q are degen-
erate at the corner of the Brillouin zone. More importantly
the quadratic expansion of E1q = Eb + q2/(2Mb) provides an
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FIG. 3. (a) Two-body spectrum E
q for U = 2|t | as a function of
qx when qy = 0. The quadratic expansion of E1q = Eb + q2/(2Mb)
is an excellent fit for the lower branch in the small-q limit. (b) Eb

as a function of U . (c) 1/Mb = 1/M intra
b + 1/M inter

b as a function
of U along with its intraband and interband contributions, where
1/M inter

b = 1/M inter,1
b + 1/M inter,2

b .

excellent fit for the lower branch in the small-q limit, where
Eb ≈ −4.934|t | is the energy of the lowest bound state and
Mb ≈ 12.574/(|t |a2) is its effective mass. We remark here
that the effective masses of the E1q and E2q branches become
very close to each other (in magnitude) as U gets larger
and larger. In order to gain deeper insight into the former
result, next we use our observation that β1q ∝ (1, 1, 1) for
the lower band in the small-q limit. Furthermore this obser-
vation allows us to derive the generalized relation between
the inverse of the effective-mass tensor of the lowest bound
states and the quantum-metric tensor of the underlying Bloch
states for those multiband lattices that simultaneously exhibit
time-reversal symmetry and fulfill the condition on spatially
uniform pairing.

III. RELATION TO QUANTUM METRIC

Given our numerical observation that the small-q limit of
the lower branch E1q is characterized by β1q ∝ (1, 1, 1), it
is possible to isolate the condition that determines E1q as∑

SS′ Gq
SS′ = 0. This is a very convenient form, and it may

find practical applications in other multiband lattices as long
as the lowest bound states are distinguished by a perfectly
in-phase contribution from all of the sublattices, i.e., β1q ∝
(1, 1, . . . , 1). Hoping that this is generically the case in time-
reversal-symmetric systems with a spatially uniform pairing,
below we keep the formalism and the discussion general.
By plugging Eq. (10) into this condition, and observing that∑

S m∗
SK′nSK = 〈mK′ |nK〉 with |nK〉 representing the Bloch

states that are given in Eqs. (5)–(7), we obtain a much simpler
condition:

1 = U

N

∑
nmk

|〈mk−q/2|nk+q/2〉|2
εn,k+q/2 + εm,k−q/2 − E1q

. (11)

Here N = NbNc is the total number of lattice sites in the
system. This expression can be used to make further analytical
progress by taking its small-q limit.

For instance, in the presence of an energetically
isolated flat band ε f k = ε f that is separated from the
remaining bands with a finite band gap, Eq. (11) can be
approximated by 1 = (U/N )

∑
k |〈 fk−q/2| fk+q/2〉|2/(2ε f −

E1q) in the small-U limit, leading to [17] E1q =
2ε f − (U/N )

∑
k |〈 fk−q/2| fk+q/2〉|2. Furthermore,

we use the Taylor expansions | fk±q/2〉 = | fk ±
(1/2)

∑
i qi∂i fk + (1/8)

∑
i j qiq j∂i∂ j fk〉 in small q and obtain

|〈 fk−q/2| fk+q/2〉|2 = 1 − (1/2)
∑

i j qiq jg
f k
i j . This is exact up

to second order in q where gnk
i j = Tr(∂iPnk∂ jPnk ) is the matrix

element of the so-called quantum-metric tensor of the Bloch
state |nk〉 [3]. Here Tr is the trace, ∂i = ∂/∂ki is the partial
derivative, and Pnk = |nk〉〈nk| is the projection operator. Since
Pnk is a gauge-independent operator by definition, gnk

i j is also
a band invariant. By noting that 〈nk|∂ink〉 = −〈∂ink|nk〉 is an
imaginary number due to the normalization 〈nk|nk〉 = 1 of
the Bloch states, the quantum metric can be reexpressed in a
more familiar. form [1–3]:

gnk
i j = 2Re〈∂ink|(INb − |nk〉〈nk|)|∂ jnk〉, (12)

where Re is the real part of the expression. As a result we
eventually find (i.e., to the lowest order in q)

E1q = Eb + 1

2

∑
i j

qiq j
(
M−1

b

)
i j, (13)

where Eb = 2ε f − U/Nb is the threshold energy and
(M−1

b )i j = (U/N )
∑

k gf k
i j is the matrix element of the inverse

of the effective-mass tensor Mb. We remark here that these
expressions are strictly valid in the small-U limit assuming an
energetically isolated flat band [17].

Similarly one can perform a small-q expansion of
Eq. (11) and generalize Eb and M−1

b not only to arbitrary
U values but also to arbitrary band structures. For this
purpose we first use the Taylor expansions of |nk±q/2〉 given
above and find 〈mk−q/2|nk+q/2〉 = δmn + ∑

i qi〈mk|∂ink〉 −
(1/8)

∑
i j qiq j (3〈∂imk|∂ jnk〉 + 〈∂ jmk|∂ink〉), where

〈mk|nk〉 = δmn is due to the orthonormalization of the
Bloch states and 〈mk|∂ink〉 = −〈∂imk|nk〉. This leads
to |〈mk−q/2|nk+q/2〉|2 = δmn − Re

∑
i j qiq j〈∂ink|(δmn −

|mk〉〈mk|)|∂ jnk〉 in the small-q limit. Then we expand the
single-particle spectrum εn,k±q/2 = εnk ± (1/2)

∑
i qi∂iεnk +

(1/8)
∑

i j qiq j∂i∂ jεnk up to second order in q and plug
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Eq. (13) in Eq. (12) for the dispersion of the lowest bound
states. By matching the coefficient of the zeroth-order terms
in Eq. (11), we find

1 = U

N

∑
nk

1

2εnk − Eb
, (14)

which is the self-consistency relation for the energy Eb of the
lowest bound state. The first-order terms already vanish. By
requiring that the second-order terms vanish, we find a closed-
form expression for M−1

b = M−1
intra + M−1

inter, where M−1
intra is

the so-called conventional or the intraband contribution and
M−1

inter = M−1
inter,1 + M−1

inter,2 is the so-called geometric or the
interband contribution to the inverse of the effective-mass
tensor. They can be written as

(
M−1

intra

)
i j

= 1

2D

∑
nk

∂i∂ jεnk

(2εnk − Eb)2
, (15)

(
M−1

inter,1

)
i j

= 1

D

∑
nk

gnk
i j

2εnk − Eb
, (16)

(
M−1

inter,2

)
i j = − 1

D

∑
n,m 
=n,k

gnmk
i j

εnk + εmk − Eb
, (17)

where D = ∑
nk

1
(2εnk−Eb)2 and Eb is determined by Eq. (14)

for a given U . Here Eq. (17) depends on the so-called band-
resolved quantum metric

gnmk
i j = 2Re〈∂ink|mk〉〈mk|∂ jnk〉, (18)

since it produces the quantum metric of the nth band when
summed over the rest of the bands, i.e., gnk

i j = ∑
m 
=n gnmk

i j .
Equations (15)–(17) constitute the generalized relation be-
tween the inverse of the effective-mass tensor of the lowest
bound states and the quantum-metric tensor of the underlying
Bloch states, and they are exact.

Let us now reproduce the known results using Eqs. (14)–
(17). In the case of an energetically isolated flat band ε f k =
ε f that is separated from the remaining bands with a finite
band gap, Eqs. (15) and (17) are negligible in the small-U
limit. Furthermore Eq. (16) is approximated by (M−1

inter,1)i j =
(U/N )

∑
k gf k

i j in the small-U limit, where 2ε f − Eb = U/Nb.

These are in full agreement with the literature [17] and the dis-
cussion given below Eq. (11). On the other hand, in the case of
a two-band (Nb = 2) lattice that is described by the Hamilto-
nian density Hkσ = dk

0 I2 + dk · τ the single-particle spectrum
is given by εsk = dk

0 + sdk, where s = {+,−} labels, respec-
tively, the upper and lower bands. Here τ = (τx, τy, τz ) is
a vector of Pauli matrices in the two-dimensional orbital
basis. In this case the quantum metrics of the two bands
are equal to each other, i.e., g+,k

i j = g−,k
i j , given that gsk

i j =
2Re〈∂isk|(−s)k〉〈(−s)k|∂ jsk〉 and

∑
sk |sk〉〈sk| = I2. For this

reason Eq. (17) can be written as
∑

sk gsk
i j /(2dk

0 − Eb), leading

to (M−1
inter )i j = − 2

D

∑
sk

sdkgsk
i j

(2εsk−Eb)(2dk
0 −Eb)

. These are again in

full agreement with the literature [18].
Lastly we apply Eqs. (14)–(17) to the kagome lattice and

solve them self-consistently for Eb and Mb. Their numerical
values are presented, respectively, in Figs. 3(b) and 3(c) as a
function of U . In this particular case Mb is an isotropic matrix

with (M−1
b )i j = δi j/Mb. We find that while Eb = −4|t | − U/3

increases linearly in the small-U limit due to the presence
of a flat lower band in a three-band lattice, Eb = −U in the
large-U limit which is similar to what happens in a one-band
lattice. Similarly while Mb = r1/[a2U ln(r2|t |/U )] diverges
logarithmically in the small-U limit due to the presence of
a band touching with a nonisolated flat band, Mb = U/(a2t2)
increases linearly in the large-U limit, which is again similar
to what happens in a one-band lattice. Here r1 and r2 are
real positive constants. In comparison, in the absence of a
band touching (i.e., for an isolated flat band), we note that
Mb = r3/(a2U ) diverges with a power law in the small-U
limit [17]. Furthermore we find that Eb ≈ −4.934|t | and Mb ≈
12.574/(|t |a2) when U = 2|t |, and they provide a perfect fit
for the exact results in the small-q limit. This is shown in
Fig. 3(a).

We note in passing that 1/M inter,1
b > 0 is in direct com-

petition with 1/M inter,2
b < 0, and their magnitudes are about

3 orders of magnitude larger than 1/M intra
b . However, their

sum 1/M inter
b = 1/M inter,1

b + 1/M inter,2
b is quite comparable to

1/M intra
b as can be seen in Fig. 3(c). Having shown that

Eqs. (15)–(17) are exact for the kagome lattice for all U
values, next we discuss their versatility for other lattices.

IV. SPATIALLY UNIFORM PAIRING

In accordance with the analysis presented above,
Eqs. (15)–(17) are clearly exact for those multiband lattices
that simultaneously fulfill the following conditions: (i) the
Bloch Hamiltonian must exhibit time-reversal symmetry and
(ii) the resultant two-body wave function must have a uniform
contribution from all of the underlying sublattices. The latter
is the so-called spatially uniform-pairing condition, and it is
expected to be satisfied by those Bloch Hamiltonians that are
invariant under the interchange of their sublattices. Note that if
condition (ii) is satisfied for the two-body problem in a lattice
then we expect the mean-field pairing order parameter (�Si =
�S) for the many-body problem to be spatially uniform; i.e.,
�S = � is equal for all of the sublattices.

In the case of two-band lattices while the honeycomb,
Mielke checkerboard, Kane-Mele, Creutz and Haldane type
Hubbard models with on-site interactions are among those
popular lattices that satisfy condition (ii), i.e., because of their
inversion symmetry, the sawtooth and zigzag type models are
not. Here we note that the time-reversal symmetry is broken
for the Creutz and Haldane models. In the case of three-band
lattices, while the kagome lattice with on-site interaction sat-
isfies condition (ii), the Lieb and dice lattices do not, since
only two of their sublattices are interchangeable with each
other but not the third one. According to the recent findings
[11,17], the contribution to the two-body wave function from
the noninterchangeable sublattice vanishes for both of these
models in the small-U limit. Because of this, Eqs. (15)–(17)
still work for these models but only in the U/t → 0 limit. In
particular, since the flat band of the Lieb lattice is isolated
from the other bands with a gap, it is sufficient to keep only the
flat-band contribution coming from Eq. (16) in the small-U
limit. However, since the flat band of the dice lattice is in touch
with one of the dispersive bands, one needs to keep both the
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flat-band contribution and that of the touching band coming
from Eqs. (15)–(17) in the small-U limit.

V. CONCLUSION

To summarize, here we considered an on-site attraction
U between a spin-↑ and a spin-↓ fermion in a multiband
lattice and derived an exact relation between the inverse of the
effective-mass tensor (M−1

b )i j of the lowest bound states E1q

and the quantum-metric tensor gnk
i j of the underlying Bloch

states |nk〉. In addition to the intraband contribution (M−1
intra )i j

that depends only on the single-particle spectrum εnk and the
interband contribution (M−1

inter,1)i j that is controlled by gnk
i j ,

our generalized relation has an additional interband contribu-
tion (M−1

inter,2)i j that depends on the band-resolved quantum
metric gnmk

i j . Our analytical expression is applicable to those
multiband lattices that simultaneously exhibit time-reversal
symmetry and fulfill the condition on spatially uniform pair-
ing. It reproduces the previously known results including

that of isolated flat bands in the small-U limit [17] and that
of two-band lattices for arbitrary U [18]. Furthermore, we
also solved the two-body problem in a kagome lattice with
nearest-neighbor hoppings and showed that the exact relation
provides a perfect benchmark for this three-band lattice. In
general, it is probably not possible to isolate the geometric
contributions to the effective mass and study their effects
alone in the experiments. However, our results for a flat band
show that the geometric contributions play a dominant role
in the small-U limit and can be studied there. As an outlook,
our exact relation may find direct applications in many other
lattices including those of the moiré materials [29], motivated
by the hope that the formation of a two-body bound state can
be used as a precursor to superconductivity in these systems.
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