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We analyze the evolution of two-band superfluidity from the Bardeen-Cooper-Schrieffer �BCS� to the Bose-
Einstein condensation �BEC� limit. When the interband interaction is tuned from negative to positive values, a
quantum phase transition occurs from a 0-phase to a �-phase state, depending on the relative phase of the two
order parameters. Furthermore, population imbalances between the two bands can be created by tuning the
intraband or interband interactions. We also find two undamped low-energy collective excitations correspond-
ing to in-phase and out-of-phase modes. Lastly, we derive the coupled Ginzburg-Landau equations, and show
that they reduce to coupled Gross-Pitaevskii equations for two types of bosons in the BEC limit.
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I. INTRODUCTION

The evolution from the Bardeen-Cooper-Schrieffer �BCS�
state to Bose-Einstein condensation �BEC� is a very impor-
tant topic of current research in the condensed matter,
nuclear, atomic, and molecular physics communities.1–7 In
atomic physics, the BCS to BEC evolution is studied via
Feshbach resonances8–17 in engineered one-band fermion
systems involving two hyperfine states of alkali-metal atoms
such as 6Li or 40K. However, two-band fermion systems may
also be produced experimentally with ultracold atomic Fermi
gases in optical lattices17 or in single traps of several hyper-
fine states. In this case, �intraband and interband� interactions
may be tuned using Feshbach resonances which allow for the
study of BCS to BEC evolution of two-band superfluidity.
This evolution in the two-band problem is much richer than
the one-band case �where a smooth crossover of physical
properties has been experimentally found8–13�, since addi-
tional interaction parameters may be controlled externally.

An early two-band theory of superconductivity was intro-
duced to allow for multiple band crossings at the Fermi
surface.18 This theory and its extensions are strictly limited
to the BCS regime, and they have been applied to MgB2,
where experimental properties can be well described by a
two-band BCS theory.19–22 Unfortunately, interband or intra-
band interactions cannot be tuned in MgB2, and presently its
physical properties cannot be studied away from the BCS
limit. However, new experimental techniques utilizing the
field effect23 may allow some tuning of the particle density
and thus indirectly the tuning of interactions. In contrast,
ultracold fermions with several hyperfine states may already
provide a unique opportunity to explore new phenomena in
two-band superfluids during the BCS to BEC evolution.
Thus, due to recent developments and advances in atomic
physics described above, and in anticipation of future experi-
ments, we describe here the BCS to BEC evolution of two-
band superfluids at zero and finite temperatures.

The main results of our paper are as follows. We show
that a quantum phase transition occurs from a 0-phase to a
�-phase state depending on the relative phase of the two
order parameters, when the interband interaction is tuned
from negative to positive values. We found that population
imbalances between the two bands can be created by tuning

intraband or interband interactions. In addition, we describe
the evolution of two undamped low-energy collective exci-
tations corresponding to in-phase phonon �Goldstone� and
out-of-phase exciton �finite frequency� modes. Near the criti-
cal temperature, we derive the coupled Ginzburg-Landau
�GL� equations, and show that they reduce to coupled Gross-
Pitaevskii �GP� equations for two types of bosons in the BEC
limit.

II. TWO-BAND MODEL

To obtain the results mentioned above, we start from a
two-band Hamiltonian describing continuum superfluids
with singlet pairing,

H = �
n,k,�

�n�k�an,�
† �k�an,��k� − �

n,m,q
Vnmbn

†�q�bm�q� , �1�

where �n ,m�= �1,2� label different bands, and � labels spins
�or pseudospins�. The operators an,↑

† �k� and bn
†�q�

=�k�n
*�k�an,↑

† �k+q /2�an,↓
† �−k+q /2� create a single and a

pair of fermions, respectively. The symmetry factor �n�k�
characterizes the chosen angular momentum channel, where
�n�k�=kn,0 /�kn,0

2 +k2 is for the s-wave interaction in three
dimensions. Here, kn,0�Rn,0

−1 sets the scale at small and large
momenta, where Rn,0 plays the role of the interaction range.
In addition �n�k�=�n�k�−�n, where �n�k�=�n,0+k2 / �2Mn� is
the kinetic energy ��=1� and Mn is the effective band mass
of the fermions.

From now on, we focus on a two-band system with dis-
tinct intraband �V11,V22	0� and interband �V12=V21=J� in-
teractions. Notice that we allow pairing between states �1, ↑	
and �1, ↓	 or �2, ↑	 and �2, ↓	, and that pairing between �1, ↑	
and �2, ↓	 or �1, ↓	 and �2, ↑	 is not included. Here, �n ,�	
represents a spin component with band index n and pseu-
dospin �. Furthermore, notice that J plays the role of the
Josephson interaction which couples the two energy bands.
In addition, we assume that the total number of fermions N is
fixed such that �n=�, and that the reference energies are
such that �1,0=0 and �2,0=�D
0. Here, �D��2,F where
�n,F=kn,F

2 / �2Mn� is the Fermi energy ��1,F
�2,F�, and kn,F is
the Fermi momenta 
see Fig. 1�a��. In addition, notice that
kn,0�kn,F in dilute systems.
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We would like to emphasize that the model Hamiltonian
described in Eq. �1� may be applicable to atomic and con-
densed matter systems. The case of identical bands �M1
=M2=M� corresponds physically to a situation that may be
encountered in atomic systems when four hyperfine states of
a given type of atom �labeled as �1, ↑	; �1, ↓	; �2, ↑	; �2, ↓	�
are trapped. In this case, the Josephson terms are responsible
for transferring pairs of atoms between states �1, ↑; 1, ↓	 and
�2, ↑; 2, ↓	, and thus mixing different bands. Notice that the
case of nonidentical bands �M1�M2� is not applicable to
mixtures of two atomic species �e.g., 6Li and 40K�, because
the Josephson term would convert Li pairs into K pairs,
which is not physically allowed. However, the case of non-
identical bands may be applicable to standard condensed
matter systems such as MgB2, since electrons may have dif-
ferent effective masses in different bands, and the Josephson
term is physically allowed. In Sec. V, we discuss a general-
ized two-band model that includes the case of nonidentical
masses for atomic systems.

A. Effective action

The Gaussian action for the Hamiltonian H �in units of
kB=1,
=1/T� is SGauss=S0+ �
 /2��q�†�−q�F−1�q���q�,
where q= �q , iv�� denotes both momentum and bosonic Mat-
subara frequency v�=2�� /
. Here, the vector �†�−q� is the
order parameter fluctuation field, and the matrix F−1�q� is the
inverse fluctuation propagator. The saddle point action is

S0 = �
n,k

�

�n�k� − En�k�� − 2 ln
1 + e−
En�k���

− 
�
n,m

gnm�n,0
* �m,0, �2�

where En�k�= 
�n
2�k�+ ��n�k��2�1/2 is the energy of the quasi-

particles and �n�k�=�n,0�n�k� is the order parameter. Here,
the matrix elements of g are associated with the inverse
interaction matrix V, and are given by g11=−V22/det V, g22
=−V11/det V, and g12=g21=J /det V with det V=V11V22
−J2	0.

The action leads to the thermodynamic potential �Gauss
=�0+�fluct, where �0=S0 /
 is the saddle point and �fluct
= �1/
��qln det
F−1�q� / �2
�� is the fluctuation contribution
to �Gauss. Expressing �n,0 in terms of its amplitude and phase

�n,0 = ��n,0�exp�i�n� �3�

shows explicitly the Josephson coupling energy

− g11��1,0�2 − g22��2,0�2 − 2g12��1,0�2,0�cos��2 − �1�

of �0. When J	0, only the 0-phase �or in-phase� �2=�1
solution is stable. However, when J�0, only the �-phase �or
out-of-phase� �2=�1+� solution is stable. Thus, a phase
transition occurs from the 0 phase to the � phase when the
sign of J is tuned from negative to positive values as shown
in Fig. 1�b�.

B. Self-consistency equations

From the stationary condition �S0 /��n
*�q�=0, we obtain

the order parameter equation

�O11 O12

O21 O22

��1,0

�2,0

 = 0, �4�

where the matrix elements are given by Onm=−gnm
−�nm�k��m�k��2 tanh

Em�k� /2� / 
2Em�k��. Here, �nm is the
Kronecker delta. The order parameter equations can also be
written in a more familiar form as

�n,0 = �
m,k

Vnm�m,0��m�k��2

2Em�k�
tanh


Em�k�
2

. �5�

Notice that the order parameter amplitudes are the same for
both the 0 and � phases as can be shown directly from Eq.
�4�, but their relative phases are either 0 or �. In what fol-
lows, we analyze only the 0-phase state, keeping in mind that
analogous results �with appropriate relative phase changes�
apply to the �-phase state. We can eliminate Vnn in favor of
scattering length ann via the relation

1

Vnn
= −

MnV
4�ann

+ �
k

��n�k��2

2�n�k�
, �6�

where V is the volume. This relation can be rewritten as

2

�nn
= ���n,0

�n,F
−

�

kn,Fann
, �7�

where �n,0=kn,0
2 / �2Mn�, and �nm=VnmDm are the dimension-

less interaction parameters with Dm=MmVkm,F / �2�2� being
the density of states per spin �pseudospin� of noninteracting
fermions at the Fermi energy.

The order parameter equation needs to be solved self-
consistently with the number equation N=−�� /�� leading
to NGauss=N0+Nfluct, and is given by

FIG. 1. �Color online� Schematic �a� figure of two bands with
reference energies �1,0=0 and �2,0=�D, and �b� phase diagram of
0-phase and �-phase states.
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NGauss = �
k,�,n

N0,n�k� −
1



�

q

�
det F−1�q��/��

det F−1�q�
. �8�

Here, the first term is the saddle point �N1+N2� and the sec-
ond term is the fluctuation �Nfluct� contribution, where N0,n

=1/2−�n�k�tanh

En�k� /2� / 
2En�k�� is the momentum dis-
tribution. The inclusion of Nfluct is very important near the
critical temperature, however, N0 may be sufficient at low
temperatures.4,5

In the remainder of the paper, numerical results are given
only for identical bands �M1=M2=M� with zero offset ��D

=0�, which correspond physically to situations that may be
encountered in atomic physics when four hyperfine states of
a given atomic system are trapped. However, we also present
analytical results for the case of unequal band masses, which
may be applicable to standard condensed matter systems
such as MgB2. In this case, the particle density may be tuned
using field effect techniques,23 and it may be possible to
study two-band systems away from the higher-density
�weakly interacting� BCS regime toward the lower-density
�strongly interacting� BEC regime.

III. ZERO TEMPERATURE

In this section, we analyze the saddle point order param-
eter amplitudes ��n,0� and the chemical potential � at T=0.
We first obtain analytical results in the strictly BCS and BEC
limits, and then perform numerical calculations in the evolu-
tion from BCS to BEC, which are discussed next.

A. Saddle point: BCS and BEC limits

In the strictly BCS and BEC limits, the self-consistent
�order parameter and number� equations are decoupled, and
play reversed roles. In the BCS �BEC� limit, the order pa-
rameter equations determine ��n,0� ���, and the number equa-
tion determines � ���n,0��.

The BCS limit is characterized by a positive chemical
potential with respect to the bottom of the fermion band �
	0 and max���1,0� , ��2,0����2,F, where pairing occurs be-
tween the fermions whose energy are close to �1,F. In this
limit, the solutions of the order parameter equation are

max���1,0�, ��2,0�� � 8�F exp
− 2 + ���0/�4�F� − �−�

for the larger of the order parameter amplitudes and

min���1,0�, ��2,0�� � 8�F exp
− 2 + ���0/�4�F� − �+�

for the smaller of the order parameter amplitudes, while the
number equation leads to ���F. Here, �±=�+± 
�+

2

−1/det ��1/2 where �±= ��11±�22� / �2 det �� ,det �=�11�22

−�12�21, and we assumed �1,F��2,F=�F and �1,0��2,0=�0.
The familiar one-band results are again recovered when J
→0 leading to ��n,0 � �8�n,F exp
−2+���n,0 / �4�n,F�
−1/�nn� for the order parameters and �=�n,F for the chemi-
cal potentials. The previous expression can be simplified by
using Eq. �7�, leading to ��n,0�=8�n,F exp
−2+� / �2kn,Fann��,
which is the standard one-band result.5

On the other hand, the BEC limit is characterized by
negative chemical potential with respect to the bottom of the
lowest band ��0 and max���1,0 � , ��2,0 � �� �� � ��0, where
pairing occurs between all fermions. In this limit, the solu-
tion of the order parameter equations is

�± = − �0
���0/�4�F�/�± − 1�2,

while the number equation leads to

��n,0�2 = �8�Nn/Mn�����/�2Mn� .

Here, Nn=Nn /V is the density of the fermions in band
n. Notice that the total density of fermions is N=N1
+N2= �k1,F

3 +k2,F
3 � / �3�2�. The familiar one-band results

are again recovered when J→0 leading to �n

=−�n,0
��nn��n,0 / �4�n,F�−1�2 for the chemical potentials,3

which can be written in terms of the scattering lengths5 as
�n=−1/ �2Mnann

2 �, using Eq. �7�, and the condition kn,0ann

�1. The one-band order parameter amplitudes are also given
by ��n,0�2=16�n,F

2 ���n � /�n,F / �3��, where we used Nn

=kn,F
3 / �3�2�.

B. Saddle point: BCS to BEC evolution

Next, we analyze numerically the evolution of the order
parameter amplitudes and the chemical potential from the
BCS to the BEC limit for identical bands �M1=M2=M� with
zero offset ��D=0� at zero temperature. For this purpose, we
solve the coupled self-consistency equations Eqs. �5� and �8�,
for parameters k1,0=k2,0=k0�256kF and V22=0.001 in units
of 5.78/ �MkFV� 
or 1/ �kFa22��−3.38�, and analyze two
cases.

In the first case, we solve for �, ��1,0� and ��2,0� as a
function of V11 
or 1/ �kFa11��, and show �n,0 in Fig. 2�a� for
fixed values of J. The unitarity limit is reached at V11
�1.0132V22 
or 1/ �kF �a11 � ��0� while � changes sign at
V11�1.0159V22 
or 1/ �kFa11��0.69�. The evolution of ��1,0�
is similar to the one-band result4 where it grows monotoni-
cally with increasing V11. However, the evolution of ��2,0� is
nonmonotonic having a hump at approximately V11
�1.0155V22 
or 1/ �kFa11��0.58�, and it decreases for stron-
ger interactions until it vanishes �not shown�. In the case of
ultracold atoms, the order parameter may be measured using
similar techniques as for one-band systems14 involving only
6Li. In Fig. 2�b�, we show that both bands have similar popu-
lations for V11�V22. However, as V11/V22 increases, fermi-
ons from the second band are transferred to the first, where
bound states are easily formed and reduce the free energy. In
coupled two-band systems, spontaneous population imbal-
ances are induced by the increasing scattering parameter �in-
teraction� in contrast with the one-band case, where popula-
tion imbalances are prepared externally.15,16

In the second case, we solve for �, ��1,0�, and ��2,0� as
functions of J, and show � in Fig. 3�a� and band populations
Nn in Fig. 3�b� for fixed values of V11/V22. The order param-
eters ��1,0� and ��2,0� grow with increasing J �not shown�.
Notice the population imbalance and the presence of maxima
�minima� in N1 �N2� for finite J, which is associated with the
sign change of � shown in Fig. 3�a�. When V11	V22, there is
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population imbalance even for J=0, because atom pairs can
be easily transferred from the second band to the first until an
optimal J0 is reached. Further increase in J produces also
transfer from the first band to the second, leading to similar
populations for J�J0. Therefore, the Josephson coupling pa-
rameter J acts as a knob to tune the populations of bands 1
and 2.

C. Collective Excitations

Next, we discuss the low-energy collective excitations at
T=0, which are determined by the poles of the propagator
matrix F�q� for the pair fluctuation fields �n�q�, which de-
scribe the Gaussian deviations about the saddle point order
parameter. The poles of F�q� are determined by the condition
det F−1�q�=0, which leads to collective �amplitude and
phase� modes, when the usual analytic continuation iv�

→w+ i0+ is performed. The easiest way to get the phase
collective mode is to integrate out the amplitude field to
obtain a phase-only effective action. Notice that a well-
defined low-frequency expansion is possible only at T=0 for
s-wave systems, due to Landau damping present at finite
temperatures, causing the collective modes to decay into the
two-quasiparticle continuum.

The phase-only collective excitations in the BCS and
BEC limits lead to a Goldstone mode w2�q�=v2�q�2 charac-
terized by the speed of sound,

v2 = �D1v1
2 + D2v2

2�/�D1 + D2� ,

and a finite-frequency mode w2�q�=w0
2+u2�q�2 characterized

by the finite frequency

w0
2 = 4��g12�1,0�2,0���F/����D1 + D2�/�D1D2�

and the speed

u2 = �D1v2
2 + D2v1

2�/�D1 + D2� .

In the BCS limit, �=1 and vn=vn,F /�3, while �=1/� and
vn= ��n,0 � /�8Mn ��� in the BEC limit. Here, vn,F is the Fermi
velocity. Here, we assumed �1,F��2,F=�F and kn,0 /kn,F→�.
The familiar one-band results are again recovered when J
→0 leading to v=v1, and w0=0 and u=v2.

It is also illustrative to analyze the eigenvectors associated
with these solutions in the BCS and BEC limits. In the limit
of q→0, we obtain

��1,�2� � ���1,0�, ��2,0��

for the Goldstone mode corresponding to an in-phase solu-
tion, while we obtain

FIG. 2. Plots of �a� order parameter amplitude ��n,0� �in units of
�F�, and �b� fraction of fermions Nn /N versus V11 
in units of
5.78/ �MkFV�� and versus 1/ �kFa11� for J=0.001V22 �hollow
squares� and J=0.0001V22 �solid squares�.

FIG. 3. Plots of �a� chemical potential � �in units of �F�, and �b�
fraction of fermions Nn /N versus J 
in units of 5.78/ �MkFV�� for
V11=�V22 where �=1 �dotted lines�, 1.010 �solid squares�, 1.014
�hollow squares�, 1.016 �crossed lines�, and 1.030 �solid lines�; or
1 / �kFa11��−3.38,−0.81, 0.20, 0.70, and 4.17, respectively.
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��1,�2� � �D2��1,0�,− D1��2,0��

for the finite-frequency �exciton� mode corresponding to an
out-of-phase solution. Notice that, in the case of identical
bands with zero offset and identical order parameter ampli-
tudes, the collective mode simplifies to be perfectly in phase
where ��1 ,�2�� �1,1�, and perfectly out of phase where
��1 ,�2�� �1,−1�. These in-phase and out-of-phase collective
modes are associated with the in-phase and out-of-phase
fluctuations of the order parameters around their saddle point
values, respectively. Our findings generalize Leggett’s BCS
results.24,25 Notice that measurements of collective modes
are already possible in one-band atomic systems,26,27 but the
two-band problem provides an additional richness which is
the existence of the finite-frequency �Leggett� mode in addi-
tion to the low-frequency �Goldstone� mode.

IV. FINITE TEMPERATURES

Next, we discuss two-band superfluidity near the critical
temperature Tc, where ��1,0����2,0�→0. Our basic motiva-
tion here is to investigate the low-frequency and long-
wavelength behavior of the order parameter near Tc. For T
=Tc, the order parameter equation reduces to

detO = O11O22 − O12O21 = 0, �9�

and the saddle point number equation N0=�k,�,nnF
�n�k��
corresponds to the number of unbound fermions, where
nF�x�=1/ 
exp�
x�+1� is the Fermi distribution. While N0 is
sufficient in the BCS limit, the inclusion of Nfluct is crucial in
the BEC limit to produce the qualitatively correct physics,
and can be obtained as follows.

A. Fluctuations near Tc

Near T=Tc, the fluctuation action Sfluct reduces to Sfluct
=
�q,n,mLnm

−1 �q��n
*�q��m�q� where

Lnn
−1 = − gnn − �

k

1 − nF��n+� − nF��n−�
�n+ + �n− − iv�

��n�k��2 �10�

corresponds to the fluctuation propagator of band n,
Ln�m

−1 �q�=gnm, and �n±=�n�k±q /2�. Thus, the resulting ac-
tion leads to �fluct= �1/
��q ln
det L−1�q� /
2�, where
det L−1�q�=L11

−1�q�L22
−1�q�−g12g21. Notice that det L−1�0�=0

also produces Eq. �9�, which is the Thouless condition. After
the analytic continuation iv�→w+ i0+, we expand Lnn

−1�q� to
first order in w and second order in q such that

Lnn
−1�q� = an + �

i,j

cn
ij

2Mn
qiqj − dnw . �11�

The zeroth-order coefficient Lnn
−1�0,0� is given by

an = − gnn − �
k

Xn

2�n�k�
��n�k��2, �12�

where Xn=tanh

�n�k� /2�. The second-order coefficient cn
ij

=Mn�
2Lnn

−1�q ,0� / ��qi�qj� evaluated at q=0 is given by

cn
ij = �

k
�� Xn

8�n
2�k�

−

Yn

16�n�k�
�ij +

2XnYn

16Mn�n�k�
kikj���n�k��2,

�13�

where Yn=sech2

�n�k� /2� and �ij is the Kronecker delta.
Notice that cn

ij =cn�ij is isotropic for the s wave considered
here. The coefficient dn has real and imaginary parts, and for
the s-wave case is given by

dn = �
k

Xn

4�n
2�k�

��n�k��2 + i

�Dn�n,0

8��n,0 + ��
� �

�n,F
���� ,

�14�

where ��x� is the Heaviside function. Its imaginary part re-
flects the decay of Cooper pairs into the two-particle con-
tinuum for �	0. However, for ��0, the imaginary part of
dn vanishes and the behavior of the order parameter is propa-
gating, reflecting the presence of stable bound states. In ad-
dition, the coefficient of the fourth-order term in �n�q� is

bn = �
k
� Xn

4�n
3�k�

−

Yn

8�n
2�k�
��n�k��4, �15�

which is necessary to derive the time-dependent GL �TDGL�
equations.

For completeness, we present the asymptotic forms
of an, bn, cn, and dn. The BCS limit is characterized by
positive chemical potential with respect to the bottom
of the lowest band �	0 and ���1,F. In this limit, we
find an=−gnn+Dn
ln�T /Tc�+�−�, bn=7Dn��3� / �8Tc

2�2�, cn

=7�n,FDn��3� / �12Tc
2�2�, and dn=Dn
1/ �4�n,F�+ i / �8Tc��,

where ��x� is the zeta function, and Tc is the physical
critical temperature. On the other hand, the BEC limit
is characterized by negative chemical potential with
respect to the particle band ��0 and �n,0� ����Tc. In this
limit, we find an=−gnn−�Dn�n,0 / 
2��n,F�����+��n,0��,
bn=�Dn / �4����2����n,F�, cn=�Dn / �16�����n,F�, and dn

=�Dn / �8�����n,F�.
In order to obtain �fluct, there are two contributions, one

from the scattering states and the other from poles of L�q�.
The pole contribution dominates in the BEC limit. In this
case, we evaluate det L−1�q�=0 and find the poles

w±�q� = A+ + B+�q�2 ±��A− + B−�q�2�2 +
g12g21

d1d2
,

where A±= �a1d2±a2d1� / �2d1d2� and B±

= �M2d2c1±M1d1c2� / �4M1M2d1d2�. Notice that, when J→0,
we recover the limit of uncoupled bands with wn�q�=an /dn

+ �q�2cn / �2Mndn�. It is also illustrative to analyze the eigen-
vectors associated with these poles. In the q→0 limit, the
eigenvectors 
�1

†�0� ,�2
†�0��= 
g12,a1−d1w±�0�� correspond

to an in-phase mode for w+�q� and an out-of-phase mode for
w−�q� when J	0; however, they correspond to an out-of-
phase mode for w+�q� and an in-phase mode for w−�q� when
J�0. Thus, we obtain �fluct= �1/
��±,q ln�

iv�−w�q���,
which leads to
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Nfluct = �
±,q

�w�q�
��

nB
w�q�� . �16�

In the BEC limit, �w±�q� /��=2, and the poles can also be
written as w±�q�=−�B,±+ �q�2 / �2MB,±�, where �B,± is the
chemical potential and MB,± is the mass of the corresponding
bosons. In the case of identical bands �M1=M2=M� with
zero offset ��D=0�, c1=c2=c and d1=d2=d, �B,±=−
a1

+a2±��a1−a2�2+4g12g21� / �2d� and MB,±=2M in the BEC
limit. Notice that the � bosons always condense first for any
J �independent of its sign� since �B,+→0 first. The familiar
one-band results4 are again recovered when J→0, leading to
�B,n=−an /dn=2�n−1/ �2Mnann

2 � and MB,n=Mndn /cn=2Mn.
Next, we analyze Tc in the strict BCS and BEC limits, where
self-consistency equations are uncoupled, allowing analytical
results.

B. Critical temperature

In the BCS limit, solutions to the order parameter equa-
tion Eq. �9� are

Tc,� = �8�F/��exp
� − 2 + ���0/�4�F� − �±� ,

while the number equation Eq. �8� leads to ���F. Here,
we assumed �1,F��2,F=�F and �1,0��2,0=�0. Notice that
the physical critical temperature is Tc=max�Tc,+ ,Tc,−�=Tc,+

for any J. The familiar one-band results are again re-
covered when J→0, leading to Tc,n= �8�n,F /��exp
�−2
+���n,0 / �4�n,F�−1/�nn� for the order parameters and
�=�n,F for the chemical potentials. The previous express-
ion can be simplified using Eq. �7�, leading to Tc,n
= �8�n,F /��exp
�−2+� / �2kn,Fann��.

On the other hand, in the BEC limit, the solution of the
order parameter equation is

�± = − �0
���0/�4�F�/�± − 1�2,

while the number equation N /2=NB,++NB,− with NB,+
�NB,− leads to

Tc,+ = �2�/MB,+�
NB,+/��3/2��2/3,

since the � bosons condense first. Notice also that the physi-
cal critical temperature is Tc=max�Tc,+ ,Tc,−�=Tc,+ for any J.
Therefore, Tc grows continuously from an exponential de-
pendence on interaction to a constant BEC temperature.

The familiar one-band results are again recovered when
J→0, leading to �n=−�n,0
��nn��n,0 / �4�n,F�−1�2 for the
chemical potentials,3 and Tc,n= �2� /MB,n�
NB,n /��3/2��2/3

for the critical temperatures, where NB,n=Nn /2 is the num-
ber and MB,n=2Mn is the mass of the corresponding bosons.
Using Eq. �7� and the condition kn,0ann�1, �n can be written
in terms of the scattering lengths as �n=−1/ �2Mnann

2 �. In
addition, Tc,n can be expressed in terms of �n,F as Tc,n
=0.218�n,F, as expected from the one-band calculations.4

C. TDGL equations

Next, we obtain the time-dependent Ginzburg-Landau
equations for T�Tc. To study the evolution of the TDGL

functional near Tc, we need to expand the effective action Seff
to fourth order in �n�x� around the saddle point order param-
eter ��n�→0 leading to

�T1 + b1��1�x��2 g12

g21 T2 + b2��2�x��2���1�x�
�2�x� � = 0 �17�

in the real space x= �x , t� representation, where Tn=an

−cn�
2 / �2Mn�− idn� /�t The coefficient bn of the nonlinear

term given in Eq. �15� is always positive and guarantees the
stability of the theory. In the BCS limit, Eq. �17� reduces to
the coupled GL equations of two BCS-type superconductors.
However, in the BEC limit, it is more illustrative to derive
TDGL equations in the rotated basis of � and � bosons such
that �1�x�=R11 +�x�+R12 −�x� and �2�x�=R21 +�x�
+R22 −�x� where Rnm are the matrix elements of the inverse
transformation matrix R. Notice that the matrix R−1 is the
unitary matrix that diagonalizes the linear part of the TDGL
equations. In this basis, Eq. �17� reduces to generalized GP
equations of  +�x� and  −�x� bosons

�T̃1R11 + g12R21 0

0 g21R12 + T̃2R22

�� +�x�
 −�x� � = 0, �18�

where T̃1=T1+b1�R11 +�x�+R12 −�x��2 and T̃2=T2

+b2�R21 +�x�+R22 −�x��2. The matrix elements Rnm are de-

termined from the relations 
T̃1R12+g12R22� −�x�=0 and


T̃2R21+g21R11� +�x�=0, and the unitarity condition R†R
=1. Notice that Eq. �18� shows explicitly terms coming from
density-density interactions such as U±±� ±�x��2 ±�x� or
U±�� ±�x��2 ��x�.

The familiar one-band results are again recovered when
J→0 �g12=g21→0� leading to

�an + bn��n�x��2 −
cn

2Mn
�2 − idn

�

�t
��n�x� = 0. �19�

This expression reduces to the conventional TDGL equation
upon rescaling of the pairing field as !n�x�=�bn /Dn�n�x� in
the BCS limit, while it reduces to the conventional GP equa-
tion upon rescaling of the pairing field as !n�x�=�dn�n�x� in
the BEC limit.4

V. ULTRACOLD FERMI GASES

We would like to emphasize that our results for identical
bands �M1=M2=M� may be applicable to ultracold Fermi
gases when four hyperfine states of a given type of atom are
trapped. However, in atomic systems involving mixtures of
two different alkali-metal atoms �e.g., 6Li and 40K�, a more
general two-band theory may be necessary to model future
experiments. These more general two-band theories should
allow pairing interactions between different Fermi atoms as
well as the same Fermi atoms.

The phase diagram and the BCS to BEC evolution of
superfluid mixtures involving only one hyperfine state
�single pseudospin component� from each type of atom �A or
B� and pairing only between different types of atoms �A-B
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pairing� has been recently addressed.28–30 These models rely
on the assumption that the only important Feshbach reso-
nance is that between A and B atoms. However, generalized
models to describe Fermi mixtures should allow for the in-
clusion of pairing between the same species, as well as more
than one hyperfine state �pseudospin component� of each
species. For example, a model describing the mixture of one
hyperfine state of Fermi atom A and one hyperfine state of
Fermi atom B might need to allow for A-A, A-B, and B-B
interactions, if A-A, A-B, and B-B Feshbach resonances turn
out to be close to each other. In addition, it may be possible
to trap two hyperfine states �pseudospin components� of
Fermi atom A ��A ,1	 and �A ,2	� and two hyperfine states of
Fermi atom B ��B ,1	 and �B ,2	�. Thus, a model to describe
this case may require interactions between fermions in all
four states considered if Feshbach resonances between any
two pairs of states are close to each other. Therefore, super-
fluidity in Fermi mixtures may be studied using a generalized
multicomponent �“multiband”� Hamiltonian

H = �
n,�,k

�n��k�an�
† �k�an��k�

− �
n,m,k,k�q

Vnm
�
���k,k��bm�;n�

† �k�,q�bn�;m
�k,q� ,

where n and m label different types of Fermi atoms,
� ,
 ,� ,� label the different hyperfine states, and Einstein’s
notation is used to indicate summation over greek indices.
Here, �n��k�=�n��k�−�n�, where �n��k�=�n�,0+k2 / �2Mn� is
the kinetic energy ��=1�, Mn is the corresponding mass of
fermion type n, �n�,0 is the reference energy for hyperfine
state �, and �n� is the chemical potential that fixes the num-
ber of fermions of type n in each hyperfine state �. Further-

more, the operator an�
† �k� creates a Fermi atom of type n in

hyperfine state �, while the operator bm�;n�
† �k ,q�=am�

† �k
+q /2�an�

† �−k+q /2� creates a pair of fermions with center of
mass momentum q and relative momentum 2k. Notice that
the interaction term above does not allow for the existence of
Josephson coupling which would transform, for example,
pairs of Fermi atoms of type A into pairs of Fermi atoms of
type B, since these types of processes are unphysical.

VI. CONCLUSIONS

In conclusion, we analyzed the evolution of two-band su-
perfluidity from the BCS to the BEC limit as a function of
interaction strength at zero and finite temperatures. At zero
temperature, we showed that a quantum phase transition oc-
curs from a 0-phase to a �-phase state depending on the
relative phase of the two order parameters, when the inter-
band interaction is tuned from negative to positive values.
We found that population imbalances between the two bands
can be created by tuning intraband or interband interactions.
In addition, we described the evolution of two undamped
low-energy collective excitations corresponding to in-phase
phonon �Goldstone� and out-of-phase exciton �finite-
frequency� modes. Near the critical temperature, we derived
the coupled time-dependent Ginzburg-Landau functional
near Tc. We recovered the usual TDGL equations for BCS
superfluids in the BCS limit, whereas in the BEC limit we
recovered the coupled Gross-Pitaevskii equations for two
types of weakly interacting bosons �tightly bound fermions�.
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