
PHYSICAL REVIEW A 103, 023337 (2021)

Atom-dimer and dimer-dimer scatterings in a spin-orbit-coupled Fermi gas
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Using the diagrammatic approach, here we study how spin-orbit coupling (SOC) affects the fermion-dimer
and dimer-dimer scattering lengths in the Born approximation, and we benchmark their accuracy with the higher-
order approximations. We consider both isotropic and Rashba couplings in three dimensions and show that the
Born approximation gives accurate results in the 1/(mαas ) � −1 limit, where m is the mass of the fermions, α is
the strength of the SOC, and as is the s-wave scattering length between fermions. This is because the higher-loop
contributions form a perturbative series in the 1/(mαas ) < 0 region that is controlled by the smallness of the
residue Z of the dimer propagator. In sharp contrast, since Z grows with the square root of the binding energy of
the dimer in the 1/(mαas ) > 0 region, all of the higher-loop contributions are of similar order.
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I. INTRODUCTION

The diagrammatic approach has proven to be a powerful
technique for studying few-body problems in many branches
of theoretical physics. For instance, in the context of short-
range two-body interactions between particles, it has been
successfully applied to both the three-body [1–7] and the
four-body [2,3,8,9] problems to verify the known exact re-
sults for the fermion-dimer [10,11] and dimer-dimer [12]
scattering lengths, respectively. In addition, the approach
has recently been generalized to the three-body problem
with arbitrary-range two-body interactions and applied to the
electron-exciton scattering in semiconductors, i.e., to the so-
called three-body Coulomb problem [13].

Furthermore, in the context of BCS-BEC (Bose-Einsten
condensate) crossover [14], the fermion-dimer and dimer-
dimer scattering lengths appear in some of the many-body
properties of dilute Fermi gases, including their low-energy
collective modes, superfluid density, etc. Such appearances
are quite natural in those parameter regimes where a strongly
interacting Fermi-Fermi mixture can be mapped to a weakly
interacting Bose-Fermi mixture of paired (i.e., bosonic
dimers) and unpaired (i.e., excess) fermions [4,15,16]. How-
ever, it is also known that the usual treatment of the BCS-BEC
crossover through a Gaussian fluctuation approach yields
fermion-dimer and dimer-dimer scattering lengths that are
consistent with the lowest-order Born approximation [2,3,8].

Given the recent surge of experimental [17–20] and the-
oretical [21–27] interests in spin-orbit-coupled Fermi gases,
here we extend the diagrammatic approach to the relevant
few-body problems. In particular, we study how spin-orbit
coupling (SOC) affects the fermion-dimer and dimer-dimer
scattering lengths in the Born approximation, and we bench-
mark their accuracy with the higher-order approximations.
Our primary findings for the isotropic and Rashba couplings
in three dimensions are as follows. We show that the Born
approximation gives accurate results in the 1/(mαas) � −1

limit, as the higher-loop contributions form a perturbative
series in the 1/(mαas) < 0 region that is controlled by the
residue Z of the dimer propagator. While Z decays to 0 in
the 1/(mαas) → −∞ limit, it grows with the square root of
the binding energy of the dimer in the 1/(mαas) > 0 region,
suggesting that it may be sufficient to consider a finite number
of higher-loop diagrams in the 1/(mαas) < 0 region.

The rest of the paper is organized as follows. In Sec. II, we
introduce the one-body Hamiltonian, helicity bands, and the
fermion propagator. In Sec. III, we introduce the two-body
Hamiltonian, identify the appropriate Feynman rules for the
bound-state problem, and derive the dimer propagator for the
composite bosons. In Sec. IV, we analyze the fermion-dimer
scattering t matrix and extract the fermion-dimer scattering
length in the zero-loop Born, one-loop, and two-loop approx-
imations. In Sec. V, we analyze the dimer-dimer scattering
t matrix and extract the dimer-dimer scattering length in the
one-loop Born and two-loop approximations. In Sec. VI, we
discuss how the fermion-dimer and dimer-dimer scattering
lengths are related to the many-body problem. In Sec. VII,
we compare our findings for the isotropic SOC with those of
the anisotropic (Rashba) SOC. The paper ends with a brief
summary of our conclusions in Sec. VIII. For the sake of
completeness, the binding energy and effective mass of the
dimer are presented in the Appendix.

II. ONE-BODY PROBLEM

In the 〈↑| = (1 0) and 〈↓| = (0 1) basis of the σz

Pauli matrix, the single-particle problem is governed by the
Hamiltonian matrix

hk = εkσ0 + αk · σ (1)

in momentum space, where k = (kx, ky, kz ) is the wave vector,

εk = k2/(2m) is the usual dispersion with k =
√

k2
x + k2

y + k2
z

in units of h̄ = 1, σ0 is a unit matrix, α � 0 is the strength of
the SOC that is taken as an isotropic field in k space, and

2469-9926/2021/103(2)/023337(9) 023337-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.023337&domain=pdf&date_stamp=2021-02-26
https://doi.org/10.1103/PhysRevA.103.023337


M. ISKIN PHYSICAL REVIEW A 103, 023337 (2021)

s = +

s = -

km

εk
s

0 k

FIG. 1. One-body dispersions εs
k = k2/(2m) + sαk for the s =

± helicity bands. The minimum of the lower band corresponds to
a shell of k states with the radius km = mα and the energy ε−

km
=

−mα2/2.

σ = (σx, σy, σz ) is a vector of Pauli matrices. The eigenvalues
and eigenvectors of hk are determined by the unitary transfor-
mation

Uk = 1√
2k(k − kz )

(
kx − iky kz − k
k − kz kx + iky

)
, (2)

where U †
k hkUk gives the dispersion relations of the s = ±

helicity bands

εs
k = k2

2m
+ sαk, (3)

and Uk|↑(↓)〉 gives the corresponding eigenstates. We illus-
trate these dispersions in Fig. 1 as a function of k, and note
that the ground state of the −-helicity band corresponds to
a degenerate shell of k states with the radius km = mα and
energy ε−

km
= −mα2/2.

Given the Hamiltonian matrix in Eq. (1), the propagator of
the single particle can be written as

G(k, k0) = 1

(k0 + i0+)σ0 − hk
, (4)

where k0 is the energy, and we set the chemical po-
tential μ to 0 for the few-body problems of interest
below. In our analysis, we reexpress such propagators via
the generic relation 1/(Aσ0 − B · σ) = (Aσ0 + B · σ )/(A2 −
B2) = (1/2)

∑
s(σ0 + sB̂ · σ)/(A − sB), where B̂ = B/B and

B = |B|.

III. TWO-BODY PROBLEM

Having in mind the atomic Fermi gases where the bosonic
dimer is a result of a short-range interaction between ↑ and ↓
fermions, our two-body interaction is governed by the Hamil-
tonian density

hr = −gψ†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r) (5)

in real space, where g � 0 is the strength of the fermion-
fermion attraction, and ψ†

σ (r) and ψσ (r) are the fermionic
field operators. A convenient way to understand the action
of this term is through a Hubbard-Stratonovich transforma-
tion in the imaginary-time functional path-integral formalism
[22–27]. Introducing the Hubbard-Stratonovich fields � =
−gψ↓ψ↑ and �̄ = −gψ̄↑ψ̄↓, where ψ̄σ and ψσ are the

FIG. 2. Diagrammatic representation of the two-body binding
problem. The dimer propagator (colored bars) is determined by
dressing its bare propagator (uncolored bars) with infinitely many
fermion-fermion bubbles (solid and dashed lines), forming eventu-
ally a geometric series.

corresponding Grassmann variables with suppressed argu-
ments x = (r, τ ) for notational simplicity, the action that
corresponds to Eq. (5) is replaced by three terms: �̄�/g +
�ψ̄↑ψ̄↓ + �̄ψ↓ψ↑. If one interprets �̄ = �∗ as the complex
dimer field, then the first term describes free dimers with a
bare propagator −g, and the second and third terms describe
the dimer-fermion and fermion-dimer conversion processes,
respectively.

The diagrammatic representation of the two-body binding
problem in k space is shown in Fig. 2, where the physical
dimer propagator D(q, q0) is determined by dressing its bare
value, which is a constant in space, with repeated interactions
between its fermionic constituents [2,3]. The resultant geo-
metric series can be summed over to yield

D(q, q0) = −g

1 + g�(q, q0)
, (6)

where �(q, q0) corresponds to the fermion-fermion bubble
diagram that is given by

�(q, q0) = Tr

2

∑
k

σyG(k + q, k0 + q0)σyGT(−k,−k0).

(7)

Here, Tr is a trace over the spin sector, and
∑

k repre-
sents

∑
k,k0

= i
∫

d3k
∫

dk0/(2π )4. In our diagrams, while
the solid lines correspond to the fermion propagators that are
described by Eq. (4), the dashed lines correspond to their
dimer partners that are described by the transpose T of Eq. (4).
This is because the dimer is formed between a particle that
is governed by hk+q and a hole that is governed by −hT

−k
in k space [22–27]. In accordance with the Feynman rules,
each fermion line, dimer line, and vertex carries a factor of i.
In addition, we associate each dimer-creation (-annihilation)
vertex with an additional factor of ∓iσy to account for the
fermion-dimer (dimer-fermion) conversion terms, i.e., −i�̄σy

and i�σy, respectively, in the particle-hole sectors.
Noting the relation σyB · σTσy = −B · σ, and integrating

k0 in the upper half plane in which there are two simple poles
at k0 = −ε±

k , we find [25]

�(q, q0) = 1

4

∑
ss′k

1 + ss′̂k · Q̂
q0 − εs

k − εs′
Q

, (8)

where Q = k + q. Equation (8) shows that only the intraband
processes contribute to the bubble diagram when the dimer
is stationary, i.e., when its center-of-mass momentum q van-
ishes. Therefore, we can reexpress the stationary bubble di-
agram as �(0, q0) = (1/2)

∑
sk Gs(k, k0 + q0)Gs(−k,−k0),
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where

Gs(k, k0) = 1

k0 − εs
k + i0+ (9)

is the fermion propagator in the s = ± helicity basis.
In the lowest order in q and q0, Eq. (6) has the generic

structure of a simple pole [22–27]

D(q, q0) = Z

q0 − q2/(2mB) + μB + i0+ , (10)

where Z = 8π (|εb| − mα2)3/2/(m
√

m|εb|) corresponds to the
residue of the pole, 2m/mB = 7/3 − 4(1 − mα2/|εb|)3/2/3 −
2mα2/|εb| determines the effective mass of the bosonic
dimer, and μB = 2μ − εb → −εb corresponds to its chemi-
cal potential. Noting that −mα2 is the two-body continuum
threshold, the energy of the two-body bound state εb � −mα2

or the two-body binding energy |εb| − mα2 of the dimer
can be simply found by looking at the pole of D(0, εb),
leading to the relation 1 = (g/2)

∑
sk 1/(2εs

k − εb). In ad-
dition, we substitute g with the usual t-matrix relation
between two fermions in vacuum without the SOC, 1/g =
−mV/(4πas) + ∑

k 1/(2εk ), where
∑

k = V
∫

d3k/(2π )3 in
units of V = 1. This leads to εb = −2mα2 − 1/(2ma2

s ) ±√
1/(4m2a4

s ) + α2/a2
s for as ≶ 0, showing that εb � −mα2

for all parameters. This expression is analytically tractable in
three limits [22,25–27]: we find that (i) εb = −mα2 − m3α4a2

s
and mB = 6m in the limit when 1/(mαas) � −1, (ii) εb =
−2mα2 and mB = 3

√
2/(2

√
2 − 1)m ≈ 2.32m in the unitar-

ity limit when 1/(mαas) = 0, and (iii) εb = −1/(ma2
s ) and

mB = 2m in the limit when 1/(mαas) � 1. These results are
illustrated in Fig. 10 for the completeness of the presentation.
Note that the latter limit recovers the usual two-body problem
with no SOC in the 1/(mαas) � 1 limit when α → 0+.

IV. THREE-BODY PROBLEM

In this section, we are interested in the scattering t matrix
t−−
k (0) between the lowest-energy fermion in the −-helicity

band and a stationary dimer. For this purpose, we introduce a
shorthand notation,

Tk (p) =
[

t↑↑
k (p) t↑↓

k (p)

t↓↑
k (p) t↓↓

k (p)

]
, (11)

where k = (k, k0) refers collectively to the momentum and
energy of the incoming fermion, and p = (p, p0) refers col-
lectively to the momentum and energy exchange between
the outgoing fermion and the dimer. We refer to Fig. 5
for the clarity of its meaning. Once Tk (0) is evaluated,
we transform it to the helicity basis via Eq. (2), and ob-
tain U †

kTk (0)Uk. Using the spherical coordinates where k̂ =
(sin θk cos φk, sin θk sin φk, cos θk ), we find

t ss
k (0) = t↑↑

k (0)
1 + s cos θk

2
+ t↓↓

k (0)
1 − s cos θk

2

+ sRe[t↑↓
k (0) sin θk(cos φk + i sin φk )] (12)

for the diagonal elements with Re being the real part. Note
in particular that t−−

k (0) = t↓↓
k (0) for k that is aligned with

the z axis, i.e., when θk = 0. In this paper, we are interested
in the fermion-dimer scattering length aBF that is determined

(a)

(b)

(c)

FIG. 3. Diagrammatic representations of the (a) zero-loop Born,
(b) one-loop, and (c) two-loop contributions to the fermion-dimer
scattering t matrix.

by [2,3]

aBF = mBF

4π
Zt−−

k (0), (13)

where mBF = 2mBmF /(mB + mF ) is twice the reduced mass
of the fermion and the dimer, and k = (mαk̂,−mα2/2) corre-
sponds to the lowest-energy eigenstate in the −-helicity band.

For instance, the diagrammatic representations of the zero-
loop, one-loop, and two-loop contributions to the fermion-
dimer scattering t matrix are shown in Fig. 3 [1–7,13]. The
zero-loop contribution is known as the Born approximation,
and in accordance with the Feynman rules given above, it is
given by

T (0)
k (0) = −σyGT(−k,−k0 + εb)σy, (14)

where the minus sign is due to the exchange of an identical
fermion. By plugging Eq. (14) into Eq. (12), we find

t ss
k

(0)(0) = 1

k0 − εb + εs
k

, (15)

which is physically intuitive. This is because, since both
dimers are stationary in the Born diagram, the helicity
bands are not coupled, and t ss

k (0) can be directly expressed
as t ss

k
(0)(0) = −Gs(−k,−k0 + εb). Furthermore, by plugging

t−−
k

(0)(0) = 1/(|εb| − mα2) into Eq. (13), we find

aBorn
BF = 2mBF

√
|εb| − mα2

m
√

m|εb|
(16)

in the Born approximation, suggesting that the fermion-dimer
interaction is repulsive for all parameters. In Fig. 4, we
show aBorn

BF as a function of 1/(mαas), which is analytically
tractable in three limits: (i) aBorn

BF = −24as/7 in the limit
when 1/(mαas) � −1, (ii) aBorn

BF = 6
√

2/[mα(5
√

2 − 1)] ≈
1.40/(mα) in the unitarity limit when 1/(mαas) = 0, and (iii)
aBorn

BF = 8as/3 in the limit when 1/(mαas) � 1. Note that the
latter limit recovers the usual three-body problem with no
SOC in the 1/(mαas) � 1 limit when α → 0+.

To go beyond the Born approximation, we consider the
one-loop contribution that is shown in Fig. 3(b). In accordance
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FIG. 4. Fermion-dimer scattering length in the zero-loop Born,
one-loop, and two-loop approximations. The higher-loop contribu-
tions form a perturbative series in the 1/(mαas ) < 0 region, but they
are of similar order in the 1/(mαas ) > 0 region.

with the Feynman rules, this diagram is given by

T (1)
k (0) =

∑
q

σyGT(q − k, q0 − k0 + εb)σyD(q, q0 + εb)

× G(k − q, k0 − q0)σyGT(q − k, q0 − k0 + εb)σy.

(17)

Noting the relation (σ0 + Â · σ)(σ0 + B̂ · σ) = (1 + Â ·
B̂)σ0 + (Â + B̂ + iÂ × B̂) · σ, we first integrate q0 in the
upper half plane in which there are two simple poles at

q0 = k0 − ε±
q , and we reduce the t-matrix contribution to

T (1)
k (0) = 1

2

∑
sq

D
(
q + k, k0 + εb − εs

q

)(
2εs

q − εb
)2 (σ0 − ŝq · σ ). (18)

Noting that Tk (0) has a spherical symmetry in k space, we
choose an incoming momentum k = mαk̂z that is aligned
with the z axis, and we perform the remaining integrations
numerically in the q space [28]. In Fig. 4, we show how the
one-loop contribution affects aBorn

BF as a function of 1/(mαas).
In the one-loop approximation, we find that aBorn

BF becomes
attractive in the 1/(mαas) > 0 region, which is not physical.

To go further beyond the Born approximation, we next con-
sider the two-loop contribution that is represented in Fig. 3(c).
In accordance with the Feynman rules, this diagram is
given by

T (2)
k (0) =

∑
qQ

σyGT(q − k, q0 − k0 + εb)σyD(q, q0 + εb)

× G(k − q, k0 − q0)σyGT(Q − k + q, Q0 − k0

+ q0 + εb) σyG(k − Q, k0 − Q0)D(Q, Q0 + εb)σy

× GT(Q − k, Q0 − k0 + εb)σy, (19)

where a minus sign is included due to the fermion exchange.
We integrate q0 and Q0 in their upper half planes in which
there are two simple poles at q0 = k0 − ε±

q−k and two simple
poles at Q0 = k0 − ε±

Q−k. In addition, by taking advantage
of the symmetry of the diagram with respect to the internal
variables q and Q, we reduce the t-matrix contribution to

T (2)
k (0) = 1

8

∑
ss′s′′qQ

D
(
q + k, k0 + εb − εs

q

)
D

(
Q + k, k0 + εb − εs′

Q

)(
2εs

q − εb
)(

2εs′
Q − εb

)(
εs

q + εs′
Q + εs′′

K − k0 − εb
) ({1 + ss′′̂q · K̂ + s′s′′Q̂ · K̂ + ss′̂q · Q̂}σ0

+ {ŝq + s′Q̂ + s′′K̂ − ss′s′′[(̂q · Q̂)K̂ − (Q̂ · K̂ )̂q/2 − (̂q · K̂)Q̂/2)]} · σ ), (20)

where K = Q + q + k. We again choose an incoming mo-
mentum k = mαk̂z that is aligned with the z axis, and we
perform the remaining integrations numerically in the q and
Q spaces [28]. In Fig. 4, we show how the combination of the
one-loop and two-loop contributions affects aBorn

BF as a function
of 1/(mαas). While the two-loop contribution is negligible in
the 1/(mαas) � −1 limit, it leads to a repulsive aBF in the
1/(mαas) > 0 region.

By comparing the zero-loop, one-loop, and two-loop ap-
proximations in Fig. 4, we observe that while the higher-loop
contributions form a perturbative series in the 1/(mαas) < 0
region, they are of similar order in the 1/(mαas) > 0 region.
Noting that Z decays to 0 in the 1/(mαas) → −∞ limit, and
that it increases as

√|εb| in the 1/(mαas) → +∞ limit, this
observation is caused by the incremental growth of the power
of Z that is coming from the additional dimer propagators
within each loop. For this reason, a proper description of
the latter region requires infinitely many loop diagrams at all
orders [1–7,13]. A practical way to handle such summations

is presented in Fig. 5, where the fermion-dimer scattering
t matrix is determined by repeating the fermion-exchange
process infinitely many times, forming eventually an integral
equation. In accordance with the Feynman rules, this diagram

FIG. 5. Diagrammatic representation of the three-body problem.
The fermion-dimer scattering t matrix is determined by repeating the
fermion-exchange process infinitely many times, forming eventually
an integral equation.
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is given by

Tk (p) = −σyGT(p − k, p0 − k0 + εb)σy

−
∑

q

Tk (q)D(q, q0 + εb)G(k − q, k0 − q0)

× σyGT(q − k + p, q0 − k0 + p0 + εb)σy, (21)

where the minus signs are due to the fermion exchanges.
Integrating q0 in the upper half plane where Tk (q) is analytic
and there are two simple poles at q0 = k0 − ε±

q−k, we reduce
the t-matrix equation to

Tk (p, p0) = −1

2

∑
s

σ0 − sk̂′ · σ

p0 − k0 + εb − εs
k′

− 1

4

∑
ss′q

D
(
q, k0 + εb − εs

Q

)
p0 + εb − εs

Q − εs′
K

Tk
(
q, k0 − εs

Q

)
× [(1 − ss′Q̂ · K̂)σ0 + (sQ̂ − s′K̂

− iss′Q̂ × K̂) · σ]. (22)

Here k′ = p − k, Q = k − q, and K = p − k + q are intro-
duced for the simplicity of the presentation.

In the usual three-body problem with no SOC, t0(p, p0)
is not only a real function but it is also restricted to the so-
called on-the-shell value t0[p, p0 = −p2/(2m)] for both the
incoming and outgoing fermions [1–7,13]. In addition, using
the spherical symmetry of the t matrix, the problem reduces
to a simple integral equation with a single variable for t0(|p|),
whose numerical computation converges very fast. However,
since the helicity bands are coupled due to the nonstationary
dimers, there are two shells contributing to Eq. (22). Further-
more, given that the t matrix is a 2 × 2 matrix with complex
elements, this reduces Eq. (22) to eight coupled integral equa-
tions. Unfortunately, this is quite complicated, and the exact
numerical solution of the three-body problem remains an open
problem.

V. FOUR-BODY PROBLEM

Motivated by the overall success of the Born approxima-
tion in the fermion-dimer scattering problem, here we apply
the diagrammatic approach to the scattering t matrix tBB

0 (0)
between two stationary dimers in the one-loop Born and
two-loop approximations. Despite its simplicity, we expect
aBorn

BB to be quite accurate in the 1/(mαas) � −1 limit as the
higher-order contributions form a perturbative series in the
1/(mαas) < 0 region. However, our results are only qualita-
tive in the 1/(mαas) > 0 region, whose accurate description
is beyond the scope of this paper [2,3,9].

The diagrammatic representation of the Born contribution
to the dimer-dimer scattering t matrix is shown in Fig. 6(a)
[2,3,8,9]. In accordance with the Feynman rules, it is given by

tBB
0

(1)(0) = −Tr

2

∑
k

[σyG(k, k0 + εb)σyGT(−k,−k0)]2,

(23)

where the minus sign is due to the fermion exchange. Not-
ing the relations (σ0 ± Â · σ )(σ0 ± Â · σ ) = 2(σ0 ± Â · σ),

(a)

(b)

FIG. 6. Diagrammatic representation of the (a) one-loop Born
and (b) two-loop contributions to the dimer-dimer scattering t matrix.

and (σ0 ± Â · σ )(σ0 ∓ Â · σ) = 0, we first integrate k0 in the
upper half plane in which there are two double poles at
k0 = −ε±

k , and we reduce the t-matrix contribution to

tBB
0

(1)
(0) = 1

2

∑
sk

2(
2εs

k − εb
)3 . (24)

This is a physically intuitive result because, since all dimers
are stationary in the Born diagram, the helicity bands are
not coupled, and the diagram can be directly expressed as
tBB
0

(1)(0) = (−1/2)
∑

sk [Gs(k, k0 + εb)Gs(−k,−k0)]
2
.

In this paper, we are interested in the dimer-dimer scatter-
ing length aBB that is determined by [2,3,8,9]

aBB = mB

4π
Z2tBB

0 (0). (25)

Plugging tBB
0

(1)(0)=m
√

m(|εb|+2mα2)/[16π (|εb|−mα2)5/2]
into the above equation, we find [25–27]

aBorn
BB = mB(|εb| + 2mα2)

√
|εb| − mα2

m
√

m|εb|2
, (26)

in the Born approximation, which suggests that the dimer-
dimer interaction is repulsive for all parameters. In Fig. 7,
we show aBorn

BB as a function of 1/(mαas), which is analyti-
cally tractable in three limits: (i) aBorn

BB = −18as in the limit
when 1/(mαas) � −1, (ii) aBorn

BB = 3
√

2/[mα(2
√

2 − 1)] ≈
2.32/(mα) in the unitarity limit when 1/(mαas) = 0, and (iii)
aBorn

BB = 2as in the limit when 1/(mαas) � 1. Note that the
latter limit recovers the usual four-body problem with no SOC
in the 1/(mαas) � 1 limit when α → 0+.

To go beyond the Born approximation, we consider the
two-loop contribution that is shown in Fig. 6(b). In accordance
with the Feynman rules, this diagram is given by

tBB
0

(2)
(0) = −Tr

2

∑
kq

σyGT(q − k, q0 − k0 + εb)σy

× G(k, k0)D(q, q0 + εb)σyGT(−k,−k0 + εb)

× σyG(k, k0) σyGT(q − k, q0 − k0 + εb)

× σyG(k − q, k0 − q0). (27)

We first integrate q0 in the upper half plane in which there are
two simple poles at q0 = k0 − ε±

q−k, and then we integrate k0

in the upper half plane in which there are two simple poles at
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FIG. 7. Dimer-dimer scattering length in the one-loop Born and
two-loop approximations. The higher-loop contributions form a per-
turbative series in the 1/(mαas ) < 0 region, but they are of similar
order in the 1/(mαas ) > 0 region.

k0 = εb − ε±
k . This reduces the t-matrix contribution to

tBB
0

(2)
(0) = 1

4

∑
ss′kq

D
(
q, 2εb − εs

k − εs′
Q

)(
2εs

k − εb
)2(

2εs′
Q − εb

)2 (1 + ss′̂k · Q̂),

(28)

where Q = k + q, and the remaining integrations are per-
formed numerically in the k and q spaces [28]. In Fig. 7, we
show how the two-loop contribution affects aBorn

BB as a function
of 1/(mαas). While the two-loop contribution is negligible
in the 1/(mαas) � −1 limit, it is comparable to aBorn

BB in the
1/(mαas) > 0 region.

VI. MANY-BODY PROBLEM

The fermion-dimer and dimer-dimer scattering lengths of-
fer valuable insights for some of the many-body properties
of Fermi gases. For instance, in the case of population-
imbalanced Fermi gases, aBF and aBB can be used to
map the strongly interacting Fermi-Fermi mixture of ↑
and ↓ fermions to a weakly interacting Bose-Fermi mix-
ture of paired fermions (dimers) and unpaired (excess) ones
[4,15,16]. In the parameter regime where this effective de-
scription holds, the existing literature on true Bose-Fermi
mixtures can be easily utilized to characterize the imbalanced
Fermi gases.

For instance, it is well-known that a weakly interacting
Bose-Fermi mixture is unstable against phase separation with
a negative compressibility when the density of fermions nF

satisfies [22] nF � 4π4U 3
BB/(3m3

FU 6
BF ) in three dimensions,

where UBB = 4πaBB/mB is the repulsive interaction between
bosons, and UBF = 4πaBF /mBF is the repulsive interaction
between fermions and bosons. Thus, the Bose-Fermi mixture
phase separates when

nF � 4π

3

m3m3
B

(mB + m)6

a3
BB

a6
BF

, (29)

FIG. 8. Critical boundary between the uniform superfluid (U)
and the phase separation (PS) that is determined by the effective
weakly interacting Bose-Fermi mixture description of a population-
imbalanced Fermi gas in the Born approximation.

and it is otherwise uniform. By plugging the Born ap-
proximations Eqs. (16) and (26) into Eq. (29), we obtain
the corresponding relation for the stability of a population-
imbalanced Fermi gas with SOC. The critical boundary
between the uniform superfluid and the phase separation is
shown in Fig. 8.

Here we remark in passing that one can study BCS-BEC
evolution for any given as by tuning the strength α of the SOC,
no matter how small or large the value of as is and indepen-
dently of its sign. Its physical mechanism is the SOC-induced
enhancement of εb through the increase of the single-particle
density of states. In particular, when α is large, the nature of
the bosons that make up the BEC is determined solely by αas.
For this reason, these bosons are sometimes called rashbons
in the recent literature since their properties are determined by
SOC alone. See Refs. [21–27] for further discussion, includ-
ing the effective Gross-Pitaevskii description of the weakly
interacting dimers in the BEC limit.

VII. ANISOTROPIC (RASHBA) SPIN-ORBIT COUPLING

Our results can be easily generalized to anisotropic SOC
fields. For instance, in the presence of a Rashba SOC, the
one-body Hamiltonian is governed by hk = εkσ0 + αk⊥ ·
σ, where k = (k⊥, kz ) and k⊥ = (kx, ky), leading to εs

k =
(k2

⊥ + k2
z )/(2m) + sαk⊥. Therefore, the ground state of the

−-helicity band corresponds to a degenerate ring of k⊥ states
with the radius km = mα at kz = 0 and the energy ε−

km
=

−mα2/2.
In the lowest order in q = (q⊥, qz ) and q0, Eq. (6) has the

generic structure of a simple pole [22–27]:

D(q, q0) = Z

q0 − q2
⊥/(2mB,⊥) − q2

z /(2mB,z ) + μB + i0+ ,

(30)

where Z = 8π (|εb| − mα2)/(m
√

m|εb|) corresponds to the
residue of the pole, and 2m/mB,⊥ = (2|εb| − mα2)/(2|εb|) −
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FIG. 9. Dimer-dimer (red) and fermion-dimer (blue) scattering
lengths for the isotropic SOC (left: same as in Fig. 4) versus the
Rashba SOC (right) in the Born approximations.

[(|εb| − mα2)/(2|εb|)] log(1 − mα2/|εb|) and mB,z = 2m de-
termine the anisotropic effective mass of the dimer. In addi-
tion, μB = |εb| is determined by 1/(mαas) =

√
|εb|/(mα2) −

log[
√

|εb|/(|εb| − mα2) +
√

mα2/(|εb| − mα2)]. This expres-
sion is analytically tractable in three limits [21–23]: we find
that (i) εb = −mα2 − 4mα2e2/(mαas )−2 and mB,⊥ = 4m in the
limit when 1/(mαas) � −1, (ii) εb ≈ −1.44mα2 and mB,⊥ ≈
2.40m in the unitarity limit when 1/(mαas) = 0, and (iii) εb =
−1/(ma2

s ) and mB,⊥ = 2m in the limit when 1/(mαas) � 1.
Note that the latter limit recovers the usual two-body problem
with no SOC in the 1/(mαas) � 1 limit when α → 0+.

Since k = (mαk̂⊥,−mα2/2) corresponds to the lowest-
energy eigenstate in the −-helicity band, Eq. (15) gives
t−−
k

(0)(0) = 1/(|εb| − mα2). By plugging it into Eq. (13), we
find

aBorn
BF = 2mBF

m
√

m|εb|
(31)

in the Born approximation, where mB refers to the geometric
mean (m2

B,⊥mB,z )1/3 of the anisotropic effective mass [27]. In
Fig. 9, we show aBorn

BF as a function of 1/(mαas), which is
analytically tractable in three limits: (i) aBorn

BF ≈ 3.04/(mα) in
the limit when 1/(mαas) � −1, (ii) aBorn

BF ≈ 2.31/(mα) in the
unitarity limit when 1/(mαas) = 0, and (iii) aBorn

BF = 8as/3
in the limit when 1/(mαas) � 1. Note again the latter limit
recovers the usual three-body problem with no SOC in the
1/(mαas) � 1 limit when α → 0+.

Similarly, Eq. (24) gives tBB
0

(1)(0) = m
√

m(|εb| + mα2)/
[16π (|εb| − mα2)2√|εb|], and by plugging it in Eq. (25), we
find

aBorn
BB = mB(|εb| + mα2)

m
√

m
√|εb|3

, (32)

in the Born approximation. In Fig. 9, we show aBorn
BB as

a function of 1/(mαas), which is analytically tractable
in three limits: (i) aBorn

BB ≈ 6.35/(mα) in the limit when
1/(mαas) � −1, (ii) aBorn

BB ≈ 3.19/(mα) in the unitarity limit
when 1/(mαas) = 0, and (iii) aBorn

BB = 2as in the limit when
1/(mαas) � 1. Note again that the latter limit recovers the

usual four-body problem with no SOC in the 1/(mαas) � 1
limit when α → 0+.

In contrast to the isotropic SOC case where aBF and
aBB are nonmonotonous functions of 1/(mαas), they evolve
monotonously in the Rashba SOC. Their saturations in the
1/(mαas) � −1 limit are caused by the exact cancellation
of the decay of Z with the divergence of the t matrices. The
decay is faster in the isotropic case, causing the peak in the in-
termediate region. Despite this major difference, the isotropic
and Rashba SOC cases share some common properties. For
instance, the decrease, increase, and saturation of aBF are
in full coordination with those of aBB. In addition, we note
that aBF is greater (smaller) than aBB in approximately the
1/(mαas) ≷ 0 regions.

VIII. CONCLUSION

In summary, we studied how SOC affects the fermion-
dimer and dimer-dimer scattering lengths in the Born
approximation, and we benchmarked their accuracy with the
higher-order approximations. We considered both isotropic
and Rashba couplings in three dimensions and found that
the Born approximation gives accurate results for both aBF

and aBB in the 1/(mαas) � −1 limit. This is because while
the higher-loop contributions form a perturbative series in
the 1/(mαas) < 0 region, they are of similar order in the
1/(mαas) > 0 region. We found that the perturbations are
controlled by the residue Z of the dimer propagator, which de-
cays to 0 in the 1/(mαas) → −∞ limit and increases as

√|εb|
in the 1/(mαas) > 0 region. Therefore, it may be sufficient to
consider a finite number of higher-order loop diagrams in the
1/(mαas) < 0 region.

On the other hand, a proper description of the 1/(mαas) >

0 region requires infinitely many loop diagrams at all orders.
In the case of the three-body problem, we derived a coupled
set of integral equations for the exact atom-dimer scattering
length, but its numerical solutions remain an open problem.
It may be possible to solve the exact three-body problem

FIG. 10. Binding energy |εb| − mα2 and effective mass mB,x of
the dimer. Here, the 3D SOC field is shown in red and refers to αk
with k = (kx, ky, kz ), the 2D field is shown in blue and refers to αk⊥
with k⊥ = (kx, ky, 0), and the 1D field is shown in black and refers
to k = (kx, 0, 0).
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through partial-wave expansion and address the possibility of
a three-body bound state in this system. In addition, one may
also study the importance of the full momentum and/or full
frequency dependencies of the dimer propagator in the three-
and/or four-body problems.

ACKNOWLEDGMENT

The author acknowledges funding from TÜBİTAK, Grant
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APPENDIX: BINDING ENERGY AND EFFECTIVE
MASS OF THE DIMER

For the sake of completeness, we present the binding en-
ergy |εb| − mα2 and the effective mass mB of the dimer in

Fig. 10, where the three-dimensional (3D) SOC field refers
to αk with k = (kx, ky, kz ), the 2D field refers to αk⊥ with
k⊥ = (kx, ky, 0), and the 1D field refers to k = (kx, 0, 0). The
latter case is trivial because as the 1D SOC field can be gauged
away from the k-space integrations, it is equivalent to the
usual two-body problem with no SOC [22]. Therefore, a two-
body bound state exists only when as > 0 with an effective
mass mB = 2m that is isotropic in space.

In contrast to the 1D case, a two-body bound state exists
for all as in both 3D (isotropic) and 2D (Rashba) SOC fields,
which is caused by the increase in the low-energy density of
one-body states [21–27]. In addition, while the effective mass
of the dimer is isotropic in the 3D case where mB = mB,x =
mB,y = mB,z is shown in the figure, it is anisotropic in the 2D
case where only mB,⊥ = mB,x = mB,y is shown in the figure
and mB,z = 2m for all as.
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