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Origin of flat-band superfluidity on the Mielke checkerboard lattice
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The Mielke checkerboard is known to be one of the simplest two-band lattice models exhibiting an
energetically flat band that is in touch with a quadratically dispersive band in the reciprocal space, i.e., its flat band
is not isolated. Motivated by the growing interest in understanding the origins of flat-band superfluidity in various
contexts, here we provide an in-depth analysis showing how the mean-field BCS correlations prevail in this
particular model. Our work reveals the quantum-geometric origin of flat-band superfluidity through uncovering
the leading role by a band-structure invariant, i.e., the so-called quantum metric tensor of the single-particle
bands, in the inverse effective mass tensor of the Cooper pairs.
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I. INTRODUCTION

Given the successful realizations of kagome [1-3] and
Lieb [4-7] lattices in a variety of settings that include op-
tical potentials and photonic waveguides, flat-band physics
is gradually becoming one of the central themes in mod-
ern physics [8,9]. From the many-body physics perspective,
there has been a growing interest in understanding its ferro-
magnetism [10], fractional quantum Hall physics [11], and
superconductivity [12—16]. In addition, the electronic band
structure of “twisted bilayer graphene” also exhibits flat bands
near zero Fermi energy [17,18], and these flat regions are
believed to characterize most of the physical properties of
this two-dimensional wonder material, e.g., its relatively high
superconducting transition temperature. In fact, the theoretical
interest in flat-band superconductors goes back a long time
since they were predicted to be a plausible route for our
ultimate goal of reaching a room-temperature superconductor
[12,13]. This expectation was based on the naive BCS theory,
implied simply by the relatively high single-particle density
of states for narrower bands.

It is important to emphasize that not only was the physical
mechanism for the origin of flat-band superfluidity missing
in these earlier works but it was also not absolutely clear
whether superfluidity could exist in a flat band. This is because
superfluidity is strictly forbidden if the allowed single-particle
states in the reciprocal (k) space are only from a single flat
band. These issues were partially resolved back in 2015 once
the superfluid (SF) density was shown to depend not only on
the energy dispersion but also on the Bloch wave functions
of a lattice Hamiltonian [19]. The latter dependence is a direct
result of the band geometry in such a way that the superfluidity
may succeed in an isolated flat band only in the presence
of other bands, through the interband processes [19-22].
These geometric effects are characterized by a band-structure
invariant known as the quantum metric tensor [23-25].

Following up this line of research in various directions
[19-22,26-28], here we expose the quantum-geometric origin
of flat-band superfluidity in the Mielke checkerboard lattice
[29,30], which is known to be one of the simplest two-band
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lattice models exhibiting an energetically flat band that is
in touch with a quadratically dispersive one in k space. For
instance, in the weak-binding regime of arbitrarily low inter-
actions, we show that the inverse effective mass tensor of the
Cooper pairs is determined entirely by a k-space sum over the
quantum metric tensor, but with a caveat for the nonisolated
flat band. Since the effective band mass of a noninteracting
particle is infinite in a flat band, our finding illuminates the
physical mechanism behind how the mass of the SF carriers
becomes finite with a finite interaction. That is how the
quantum geometry is responsible for it through the interband
processes. When the interaction increases, we also show that
the geometric interband contribution gradually gives way to
the conventional intraband one, eventually playing an equally
important role in the strong-binding regime. Given that the
pair mass plays direct roles in a variety of SF properties
that are thoroughly discussed in this paper but not limited
to them, our work also illuminates how the mean-field BCS
correlations prevail in a nonisolated flat band.

The rest of the paper is organized as follows. Starting with
a brief introduction to the checkerboard lattice of interest
in Sec. II, we outline the single-particle problem and the
mean-field Hamiltonian in Sec. II A, overview the resultant
self-consistency equations in Sec. II B, and then comment on
the strong-binding regime of molecular pairs in Sec. II C. Our
numerical calculations are presented in Secs. III and IV, and
they are supported by an in-depth analysis showing how the
flat-band superfluidity prevails both in the Mielke checker-
board lattice in Sec. IV A and in its low-energy continuum
approximation in Sec. IV B. The paper ends with a summary
of our conclusions in Sec. V.

II. THEORETICAL BACKGROUND

The Mielke checkerboard lattice belongs to a special class
of lattices known as line graphs, and they are constructed in
such a way that a destructive interference between nearest-
neighbor sites gives rise to a flat band [29,30]. For instance,
the line graph of a given lattice is obtained as follows: first

©2019 American Physical Society
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FIG. 1. (a) Crystal structure together with the hopping parame-
ters in the real space, and (b) corresponding first Brillouin zone in
the reciprocal space.

introduce new lattice points in the middle of every bond in the
original lattice, and then connect only those new points that
belong to the nearest-neighbor bonds in the original lattice,
i.e., the ones sharing a common site. This is such that the line
graph of a honeycomb lattice is a kagome lattice, and that of
the checkerboard lattice is a Mielke checkerboard [8,9]. In this
paper, we first consider a more general lattice that is sketched
in Fig. 1(a), and study the Mielke checkerboard case as one of
its limits.

To describe the hopping kinematics of the single-particle
problem on such a lattice, we choose the primitive lattice
vectors a; = (a, —a) and a; = (a, a) together with a basis of
two sites. We are particularly interested in the competition
between the following hopping parameters: if the location
of a given site on the A sublattice is (0, 0) then the inter-
sublattice hopping ¢ connects it to the nearest-neighbor sites
{(%a, 0), (0, £a)} on the B sublattice, and the intrasublattice
ones ¢’ and ¢’ connect it to the next-nearest-neighbor sites
{(a, @), (—a, —a)} and {(a, —a), (—a, a)}, respectively, on the
A sublattice. In this paper, we assume ¢ > 0 and ¢’ > " >
0 without loss of generality. The corresponding reciprocal
lattice vectors by = (v /a, —m /a) and by = (7 /a, 7 /a) give
rise to the first Brillouin zone that is sketched in Fig. 1(b).

Depending on the interplay of these hopping parameters,
such a crystal structure is known to exhibit two single-particle
energy bands with very special features, e.g., an energetically
flat band that shares quadratic touching points with a disper-
sive band in the reciprocal space, as discussed next.

A. Mean-field Hamiltonian
In the reciprocal space, the hopping contribution to
the Hamiltonian can be written as Hy =) W;khklﬂak,

where w;k = (c; Ak cl px) 18 the creation operator for a two-
component sublattice spinor, and

I =dto+dy - T (1)

is the Hamiltonian density with 7y a unit matrix, T = (ty, ;)
a vector of Pauli matrices, and dy = (dy, di). While the
diagonal elements of kg are due solely to the next-nearest-
neighbor hoppings, the off-diagonal elements are due to the

nearest-neighbor ones in such a way that

dy = =2(t' +1") cos(kea) cos(kya), )
dy = —2t cos(kea) — 2t cos(kya), 3)
di =2(t" —t")sin(k.a) sin(kya). 4)

The single-particle energy bands are determined by &g =
d) + sdx, where s ==+ denotes the upper (lower) band
and di = |dg|. These bands touch each other at the points
k = {(£m/a, 0), (0, £7/a)} in the reciprocal space, i.e., at
the four corners of the first Brillouin zone, where dyx =
0 and &g = 2(¢t' +t”). In particular when t' =t > t" =0,
the band structure reduces to ey x = 2¢ and s_x = =2t —
4t cos(k.a) cos(kya), and therefore a flat upper band emerges
that shares quadratic touching points with a dispersive lower
band. This is known to be one of the simplest two-band lattice
models exhibiting a flat band.

For a given relation between the hopping parameters, the
relative positions of these bands together with some of their
important features are sketched in Fig. 2. For instance, when
t > t' +1¢”, Fig. 2(a) implies that the upper band edges of
the lower band touch the local band minima of the upper
band at the energy 2(¢' +t”). The band width 4(r —¢t') of
the upper band is narrow compared to that 4(¢r + ¢ +¢”) of
the lower band. Thus, when ¢ > ¢’ > t” = 0, the upper band
edges of the lower band touch precisely the lower band edges
of the upper band at the energy 2¢’. On the other hand, when
t <t 41", Fig. 2(b) implies that the upper band edges of the
lower band touch the upper band edges of the upper band at
the energy 2(t' 4+ t”). Since the band width 4¢” of the upper
band is controlled independently of that 8¢ of the lower band,
an energetically quasiflat upper band eventually appears in the
t"/t — 0 limit.

In direct analogy with recent works [21,26-28], the k-
space structure of dy suggests that the quantum geometry of
the reciprocal space is nontrivial as long as ¢’ # ¢” for a given
t # 0, i.e., the quantum metric tensor plays an important role
in the formation of Cooper pairs and the related phenomena.
To illustrate the quantum metric effects on the many-body
problem, here we consider the case of attractive onsite inter-
actions between 1 and |, particles, and take them into account
within the BCS mean-field approximation for pairing. The
resultant Hamiltonian for the stationary Cooper pairs can be
written as

hx — Ut A
_ i Mk — KTo
Himi = Zk \yk( A —h*, + ,um) b

2

A
+22(d§;—u)+M7, (5)
k

where \IJE = (‘/’;k Y|, —k) is a four-component spinor operator,
Agg = Agdsy is the order parameter with §;; the Kronecker
delta, p is the chemical potential, M is the number of lattice
sites, and U > 0 is the strength of the onsite Hubbard inter-
action. It turns out that Ag = QU/M) Y\ (c,s—kCrsk) With
(...) denoting the thermal average is uniform for the entire
lattice, and we take A = Ay as real without loss of generality.
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FIG. 2. Single-particle bands depending on whether the hopping parameters are related to each other through # > ¢’ 4 t” or not. Here, and

throughout this paper, we assume ¢’ > t” > 0 without loss of generality.

B. Self-consistency equations

Given the mean-field Hamiltonian of Eq. (5), the resultant
self-consistency (order parameter and number) equations can
be compactly expressed as [28]

U X
"Lk, ©
sk sk
1 X
F=1—-— — &, 7
m Zk 7, (7
where &gk = e, — o is the shifted dispersion, A =

tanh[Eq /(2T)] is a thermal factor with kg — 1 the Boltz-

mann constant and 7' the temperature, Egx = VE3 4+ A? is
the quasiparticle energy spectrum, and 0 < F = N/M < 2 is
the total particle filling with N =)o (c; kCosk) the total
number of particles. Thus, the naive BCS mean-field theory
corresponds to the self-consistent solutions of Egs. (6) and (7)
for A and p for any given set of model parameters ¢, t”, U,
F,and T. For instance, the critical BCS transition temperature
Tacs is determined by the condition A — 07, and it gives a
reliable estimate for the critical SF transition temperature in
the weak-binding regime where U <« W. Here, W is the band
width of the relevant band for pairing. This is in sharp contrast
with the strong-binding regime, for which Tpcs o< U is known
to characterize not the critical SF transition temperature but
the pair formation one when U > W, i.e., the naive BCS
mean-field theory breaks down.

The standard approach to circumvent this long-known
difficulty is to include the fluctuations of the order parameter
on top of the BCS mean field in such a way that the criti-
cal SF transition temperature is determined by the universal
Beresinskii-Kosterlitz-Thouless (BKT) relation through an
analogy with the XY model [31-33]. Such an analysis has re-
cently been carried out for a class of two-band Hamiltonians,

including the model of interest here [21]. A compact way to
express the resultant universal BKT relation is [21,26,28]

TBKT = %\/ detD, (8)
D™ = A_2 ﬁ — _ySk %@ 9)
WA Egk 2TEZ ) ok, dk,’
m dk sk
D = A Z R do uv’ (10)

where the tensor D = D™ + D#*°™ corresponds to the SF
phase stiffness, A is the area of the system, and Yy =
sech?[E [Ex/(2T)] is a thermal factor. The SF stiffness has two
distinct contributions depending on the physical processes
involved: while the intraband ones are called conventional,
the interband ones are called geometric since only the latter
is controlled by the total quantum metric tensor g€ of the
single-particle bands. A compact way to express its elements
is [34]

19d, ddy
et s 11
ol 20k, ok, (b

where ﬁk = di/dx is a unit vector. Thus, the extended BCS
mean-field theory corresponds to the self-consistent solutions
of Egs. (6)—(8) for A(Tskr), 1(Tskr), and Tgkr for any given
set of model parameters ¢/, t”, U, and F. In addition to
reproducing the well-known BCS result for the weak-binding
regime where Tgxr — Tpcs from below in the U <« W limit,
this approach provides a reliable description of the strong-
binding regime where Taxr o« W2/U in the U > W limit.

C. Strongly bound molecular pairs

Since Tpgxr K W < A in the molecular regime, the
self-consistency equations turn out to be analytically
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FIG. 3. Left column is the critical SF transition temperature Tgkr/f, middle column is the relative weight D5™" /Dy of the geometric
SF stiffness, and right column is the faction F,/F, of condensed particles. Here, the next-nearest-neighbor hoppings are t' = 0.5t > t” =0,

corresponding to Fig. 2(a).

tractable, and their closed-form solutions provide con-
siderable physical insight into the problem. For in-
stance, the order parameter and number equations lead
to A=U/2)J/JFQ—-F) and u=—(U/2)(1 — F). Simi-
larly, the total SF stiffness reduces to Dy, = (A%/[A(u? +
A2} > i Tr{(3hk/ 0k, )(0hk /0k,)} with the trace Tr over
the sublattice sector, and it is a diagonal matrix D, = Dod,,
with an isotropic value Dy =2A%(t> + 1% +1")/(u* +
A?)3/2. Plugging these expressions into the universal BKT
relation, we eventually obtain Tgxy = 7F (2 — F YWe2 + 12 +
t"?)/(2U), showing that t' and ¢ increases Tk for a given
F in the U > ¢ limit. Furthermore, we may relate Dy to the
density p, and effective mass m, of the SF pairs through
the relation Dy = 4h2,o,,/m,,, where p, = F,/a* with F, the
filling of SF pairs. To a good approximation, we may identify
F, = F,./2 using the well-known expression [35]

2 2
= AT X_;k (12)
2M & B3,

for the filling of condensed particles. In the strong-binding
regime, this leads to F, — Fyp = F (2 — F)/4 as the filling
of SF pairs whose effective mass m, = U / [4a®>(t*> + 17 +
t”2)] increases with U but decreases with ' and ” in the
U > t limit. In the next section, these analytical expressions
are used as a benchmark for our numerics, where we explore
the solutions of the self-consistency equations as a function
of U.

III. NUMERICAL ANALYSIS

One of our main objectives in this paper is to study how
the quantum geometry exposes itself in various SF properties
through its contribution to the SF stiffness given above by
Eq. (10). This expression suggests that a nonzero geometric
contribution requires ¢’ # t” for a given ¢t £ 0, which is simply
because the band structure consists effectively of a single
band when ' =1”, and therefore, the interband processes
necessarily vanish. Thus, for the sake of its conceptual sim-
plicity, let us initially set one of the next-nearest-neighbor
hopping parameters to zero, and consider ¢’ = 0.5¢ > t" =0
as an example. Most important features for the corresponding
single-particle problem can be extracted from Fig. 2(a), and
the self-consistent solutions for the many-body problem are
presented in Fig. 3.

First of all, having ¢’ # 0 splits the van Hove singularity of
the usual square lattice model (for which the singularity lies
precisely at u = 0 or half filling ¥ = 1 whent’ = ¢” = 0) into
two, and produces one singularity per band. In Fig. 3, these
singularities are clearly visible at © = =%¢, and the plus sign
corresponds also to the energy at which the upper band edges
of the lower band touch quadratically to the lower band edges
of the upper band at F = 1. In the U/t — 0 limit, we note that
the weakly bound pairs first occupy the lower band for —5¢ <
u < t until it is full at F = 1, and than they occupy the upper
band for t+ < p < 3¢ until it is full at F = 2. This figure re-
veals that it is the competition between these singularities that
ultimately determines the critical SF transition temperature
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FIG. 4. Same as Fig. 3, but for ' =t and t” = 0.3¢, corresponding to Fig. 2(b).

Tk in the weak-binding regime, i.e., while Tgkr is favored
by the increase in the single-particle density of states near the
van Hove singularity of the lower band, it is also enhanced
by the geometric contribution to the SF stiffness emanating
near the band edges or touchings. Since the band width 2¢
of the upper band is relatively much narrower than that 67
of the lower band, the geometric contribution plays a more
decisive role for F 2 1. For completeness, the fraction F,,/Fy
of condensed particles is also shown in Fig. 3. In comparison
to the half filling (F = 1) where half of the pairs or holes may
at most be condensed with Fy — 1/2 in the strong-binding
regime, all of the particle (hole) pairs are condensed with
Fy — F/2 (Fp — 1 — F/2) in the low particle (hole) filling
F — 0(F — 2) limit.

Choosing a different value for t' <t does not change
these results in any qualitative way, and that the competition
between the contributions from the van Hove singularity of
the lower band and the geometric SF stiffness near the band
touchings always controls the weak-binding regime. This
also turns out to be the case when both of the next-nearest-
neighbor hoppings ¢’ > t” # 0 are at play. For instance, the
self-consistent solutions for the #" = ¢ and ¢” = 0.3t case are
shown in Fig. 4 as an example. Most important features for
the single-particle problem can be extracted from Fig. 2(b). In
the U/t — 0 limit, we find that the weakly bound pairs first
occupy the lower band for —6.6r < pu < 1.4¢ until F ~ 0.92,
and than they occupy both bands for 1.4r < u < 2.6¢ until
they are full at F = 2. While the van Hove singularity of
the lower band is clearly seen at u = —1.4¢ or F =~ 0.55,
that of the upper band is barely visible around pu ~ 1.62¢
or F ~ 1.23. In comparison to Fig. 3, since the band width

1.2¢ of the upper band is much narrower than that 8¢ of the
lower band, and it lies fully within the energy interval of the
latter, the geometric contribution plays an even more decisive
role for F 2 0.9. In addition, having ¢’ # 0 also increases
the maximal Tgkr/f, which is in agreement with the analysis
given above in Sec. I C.

Given Figs. 2(a) and 2(b) for the single-particle bands
depending on whether the hopping parameters are related to
each other through ¢ > t' 4+¢” or not, it is possible to reach
qualitative conclusions for other parameter sets including the
flat-band limit when ¢ = ¢’ > t” = 0. However, motivated by
the growing interest in understanding the origins of flat-band
superfluidity in various other contexts discussed above in
Sec. I, next we present an in-depth analysis showing how
flat-band superfluidity prevails in our model.

IV. FLAT-BAND SUPERFLUIDITY

When ¢t <t +1¢”, Fig. 2(b) implies that decreasing the
ratio t” /¢ flattens the upper band with respect to the lower one,
turning it eventually to an energetically quasiflat band in the
t”/t — 0 limit. Here, we first set = ¢’ > t” = 0 and analyze
the so-called Mielke checkerboard lattice model [29,30], and
then gain more physical insight by studying an effective low-
energy continuum model for it.

A. Mielke checkerboard lattice model

As discussed in Sec. I A, the band structure in the Mielke
checkerboard lattice is simply determined by

ek =21, (13)
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FIG. 5. Same as in Fig. 3, but fort’ =t > " = 0, corresponding to a special limit in Fig. 2(b), i.e., for the so-called Mielke checkerboard

lattice model discussed in Sec. IV A.

e_k = —2t — 4t cos(k.a) cos(k,a), (14)
for which the van Hove singularity of the lower band is
precisely at ¢ = —2¢ or F = 0.5. This is in such a way that the
lower band lies within the energy interval —6¢ < e_x < 2t,
and its upper band edges touch the flat band at the four corners
of the first Brillouin zone. All of these features are clearly visi-
ble in the self-consistent solutions for the many-body problem
that are presented in Fig. 5. In the U/t — 0 limit, we find that
the weakly bound pairs first occupy the lower band for —6¢ <
@ < 2t until F = 1, and then they occupy the upper band at
@ = 2t until it is full at F = 2. Since the upper band is entirely
flat, the geometric contribution dominates the parameter space
for F 2 1 in especially the weak-binding regime.

Thanks to its analytical tractability, next we focus only
on the p = 2t case, and reveal the origins of flat-band su-
perfluidity as a function of U/t. For instance, when p co-
incides with an isolated flat band at U = 0 [36], the ground
state (i.e., at T =0 the zero temperature) is determined
by A= U/2)J/f(1 —f)and u=2t+ U/2)(f —1/2) as
soon as U/t #0. Here, 0 < f=F — 1< 1 is the filling
of the isolated flat band for which F, = f(1 — f) gives
the filling of condensed particles. Thus, setting @ = 2¢ in
the U/t — O limit, we find f =1/2, A=U/4, F =3/2,
and F. = 1/4, which are in perfect agreement with our
numerics. Furthermore, our numerical calculations for the
conventional contribution Eq. (9) to the SF stiffness D" =

(A% A) Zk(BE_,k/BkM)(BE_,k/akU)/Eik in the ground state

fit perfectly well with D" /(2F,) = U/(4w) when A/t — 0
in the U/t — 0 limit. Similarly, the geometric contribution
Eq. (10) to the SF stiffness DE™ = 2A/A) Y, gk, (1 —
A/E_x) in the ground state fit extremely well (i.e., up to
the machine precision) with D§™"/(2F,) = U[In(64t/U) —
1]/(4w) when A/t — 0 in the U/t — 0 limit. In compari-
son, one can also calculate that D§™" /(2F,) = D{™ /(2F,) =
4t2/U when A/t > 1 in the U/t > 1 limit, which is
in agreement with the analysis given above in Sec. IIC
where F, = F(2 —F)/2 — 0.5 in the F — 1 limit when
n=2t.

We also observe that the very same analytical expressions,
i.e., D™ /(2F;) = U/(4m) for the conventional contribution
and D§™" /(2F,) = U[In(64t /U) — 1]/(4x) for the geomet-
ric contribution, fit extremely well with the numerical results
at T = Tpgr in the U/t — 0 limit. Here, F_ also needs to be
evaluated at Tpkr, for which Eq. (12) leads to F, — 0 when
A/t — Ointhe U/t — 0 limit. This observation is illustrated
in Fig. 6, where we plot the self-consistent numerical solu-
tions together with the analytical fits. We note that the U
dependence of the total SF stiffness Dy/(2F.) = U In(64t/U)
is very different from those Dy /(2F.) o U of the isolated flat
bands [19-21], which is one of the direct consequences of the
band touchings as discussed below in Sec. IV B.

The main physical reason behind the success of the very
same fit at both 7 =0 and T = Tgkr has to do with the
effective mass m,, of the strongly bound molecular pairs. This
is because, in accordance with the analysis given above in
Sec. I1 C, one may define the inverse of the effective pair-mass
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FIG. 6. Conventional and geometric contributions to the SF stiff-
ness for the Mielke checkerboard lattice model. Here, we sett’ =t >
t” = 0 and pu = 2t, and evaluate the contributions self-consistently at
T == TBKT~

tensor m,, through plugging p, = F./(2a*) for the density of
SF pairs in the relation

D = 4> pym;". (15)

Thus, our analytical fits suggest that the effective mass of the
pairs diverges as m, = 471152/[Ua2 In(64¢/U)] when p = 2t
in the U/t — 0 limit, which is directly caused by the diverg-
ing effective band mass of a single particle in a flat band.
Furthermore, by separating the D and m;l tensors into their

conventional and geometric contributions, i.e., (m;l),w =
(my ") + (myV)iS™, and using Eq. (10) along with the
ground state parameters, we may also identify

m U 1
= Ly i) ae
k

16£2
14 ok

in the U/t — 0 limit. This expression is almost identical to
a very recent result [22] where the inverse mass tensor of
the two-body problem in an isolated flat band is reported as
(m;l)ﬁe\f’m =[U/(FPM)]Y, gk, Since the Mielke flat band
is not entirely isolated from the lower band, there is an extra
term in Eq. (16) that cancels precisely those band touchings
from the sum, i.e., when £&_x — 0 in the U/t — O limit.
To show that the sum ), gi‘w by itself is infrared divergent
for a flat band that is in touch with a dispersive one, next
we construct a low-energy continuum model for the Mielke
checkerboard lattice.

B. Effective low-energy continuum model

For this purpose, we expand the single-particle Hamilto-
nian density Ay given above by Egs. (1)-(4) near the band
touchings, and arrive at its low-energy description where

dy =2t —1(k; +k;)a*, (17)
di = —1(k} —kj)a’, (18)
di = —2tk.kya’. (19)

FIG. 7. Band structure of the effective low-energy continuum
model discussed in Sec. IV B.

Then, the band structure is simply determined by e x = 2t
for the upper band and &\ = 2t — 2tk’a? for the lower band,
exhibiting a quadratic touching point at k = 0 as sketched
in Fig. 7. In addition, given that the band geometry is also
characterized by a much simpler quantum metric tensor, i.e.,

Eq. (11) reduces to
kZBM — kyk,

5);1”:2 k4 ’

one can gain further physical insight by studying this contin-
uum model at u = 2¢ in the U/t — 0 limit.

In perfect agreement with Sec. IV A, the ground state
is again determined by A =U/4 and F, = 1/4, and we
find D™ = A/(2m) for the conventional contribution. Fur-
thermore, we find that the infrared divergence of the sum
Zk gtv = [A/ Q)] In(kmax /kmin)8,v 18 precisely canceled
by the infrared divergence of the sum A, gi‘w/E,,k =
—[A/(471 ) In(tk2, a*/A)8,,, assuming 27k, a> < A K
2tk2 .a* in the U/t — O limit. Here, W = 2tk2 . a* is the
band width of the lower band. Note that the analytical fit given
above in Sec. IV A implies that kyaa >~ 4/4/e ~ 2.426. How-
ever, using the relation ), 1 = M for the number of lattice
sites, we find kmaxa = /27 &~ 2.507 and W = 471, leading
eventually to D§™" = [A/(27)]In[W/(2A)]. Thus, the low-
energy model explams most of our findings in Sec. IV A.

(20)

V. CONCLUSIONS

To summarize, we exposed the quantum-geometric origin
of flat-band superfluidity in the Mielke checkerboard lattice
whose two-band band structure consists of an energetically
flat band that is in touch with a quadratically dispersive
one, i.e., a nonisolated flat band. For instance, in the weak-
binding regime of arbitrarily low U/t, we found that the
inverse effective mass tensor m;l of the Cooper pairs is
determined entirely by a k-space sum over the so-called
quantum metric tensor of the single-particle bands, leading to
m, = 4712 J[Ua? In(641 /U )] in the U/t — 0 limit. Since the
effective band mass of a noninteracting particle is infinite in a
flat band, this particular result illuminates the physical mech-
anism behind how the mass of the SF carriers becomes finite
with a finite interaction, i.e., how the quantum geometry is
responsible for m, # oo through interband processes as soon
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as U/t # 0. When U/t increases from 0, we also found that
the geometric interband contribution gradually gives way to
the conventional intraband one, eventually playing an equally
important role in the strong-binding regime when U/t > 1.
Furthermore, given that m, plays direct roles in a variety
of SF properties that are thoroughly discussed in this paper
(i.e., the SF stiffness and critical SF transition temperature)
but not limited to them (e.g., the sound velocity), this result
also illuminates how the mean-field BCS correlations prevail
in a nonisolated flat band. Curiously enough, such revelations

of a fundamental connection between a physical observable
and the underlying quantum geometry turn out to be quite rare
in nature [34], making their cold-atom realization a gold mine
for fundamental physics. We hope that our work motivates
further research along these lines.

ACKNOWLEDGMENT

This work is supported by funding from TUBITAK Grant
No. 1001-118F359.

[1] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath,
and D. M. Stamper-Kurn, Ultracold Atoms in a Tunable Optical
Kagome Lattice, Phys. Rev. Lett. 108, 045305 (2012).

[2] Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, Observation
of flat band for terahertz spoof plasmons in a metallic kagomé
lattice, Phys. Rev. B 85, 205128 (2012).

[3] Z. Li, J. Zhuang, L. Wang, H. Feng, Q. Gao, X. Xu, W. Hao,
X. Wang, C. Zhang, K. Wu, S. X. Dou, L. Chen, Z. Hu,
and Y. Du, Realization of flat band with possible nontrivial
topology in electronic Kagome lattice, Sci. Adv. 4, eaaud511
(2018).

[4] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and
Y. Takahashi, Coherent driving and freezing of bosonic mat-
ter wave in an optical Lieb lattice, Sci. Adv. 1, e1500854
(2015).

[5] E. Diebel, D. Leykam, S. Kroesen, C. Denz, and A. S.
Desyatnikov, Conical Diffraction and Composite Lieb Bosons
in Photonic Lattices, Phys. Rev. Lett. 116, 183902 (2016).

[6] S. Kajiwara, Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano,
Observation of a nonradiative flat band for spoof surface plas-
mons in a metallic Lieb lattice, Phys. Rev. B 93, 075126
(2016).

[7] H. Ozawa, S. Taie, T. Ichinose, and Y. Takahashi, Interaction-
Driven Shift and Distortion of a Flat Band in an Optical Lieb
Lattice, Phys. Rev. Lett. 118, 175301 (2017).

[8] Z. Liu, F. Liu, and Y.-S. Wu, Exotic electronic states in the
world of flat bands: From theory to material, Chin. Phys. B 23,
077308 (2014).

[9] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band
systems: From lattice models to experiments, Adv. Phys.: X 3,
1473052 (2018).

[10] H. Tasaki, From Nagaoka’s Ferromagnetism to Flat-Band Fer-
romagnetism and Beyond: An Introduction to Ferromagnetism
in the Hubbard Model, Prog. Theor. Phys. 99, 489 (1998).

[11] S. A. Parameswaran, R. Roy, and S. L. Sondhi, Fractional
quantum hall physics in topological flat bands, C.R. Phys. 14,
816 (2013).

[12] V. A. Khodel and V. R. Shaginyan, Superfluidity in systems with
fermion condensate, JETP Lett. 51, 553 (1990).

[13] N. B. Kopnin, T. T. Heikkild, and G. E. Volovik, High-
temperature surface superconductivity in topological flat-band
systems, Phys. Rev. B 83, 220503(R) (2011)

[14] V. L Iglovikov, F. Hébert, B. Grémaud, G. G. Batrouni,
and R. T. Scalettar, Superconducting transitions in flat-band
systems, Phys. Rev. B 90, 094506 (2014).

[15] M. Tovmasyan, S. Peotta, L. Liang, P. Térm4, and S. D. Huber,
Preformed pairs in flat Bloch bands, Phys. Rev. B 98, 134513
(2018).

[16] R. Mondaini, G. G. Batrouni, and B. Grémaud, Pairing and
superconductivity in the flat band: Creutz lattice, Phys. Rev. B
98, 155142 (2018).

[17] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature 556, 43
(2018).

[18] M. Yankowitz, S. Chen, H. Polshyn, K. Watanabe, T. Taniguchi,
D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity
in twisted bilayer graphene, Science 363, 1059 (2019).

[19] S. Peotta and P. Térmi, Superfluidity in topologically nontrivial
flat bands, Nat. Commun. 6, 8944 (2015).

[20] A. Julku, S. Peotta, T. 1. Vanhala, D.-H. Kim, and P. T6rm4,
Geometric Origin of Superfluidity in the Lieb-Lattice Flat Band,
Phys. Rev. Lett. 117, 045303 (2016).

[21] L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and P.
Tormé, Band geometry, Berry curvature, and superfluid weight,
Phys. Rev. B 95, 024515 (2017).

[22] P. Tormi, L. Liang, and S. Peotta, Quantum metric and effective
mass of a two-body bound state in a flat band, Phys. Rev. B 98,
220511(R) (2018).

[23] J. P. Provost and G. Vallee, Riemannian structure on manifolds
of quantum states, Commun. Math. Phys. 76, 289 (1980).

[24] M. V. Berry, The quantum phase, five years after, in Geometric
Phases in Physics, edited by A. Shapere and F. Wilczek (World
Scientific, Singapore, 1989).

[25] D. J. Thouless, Topological Quantum Numbers in Nonrelativis-
tic Physics (World Scientific, Singapore, 1998)

[26] M. Iskin, Exposing the quantum geometry of spin-orbit coupled
Fermi superfluids, Phys. Rev. A 97, 063625 (2018).

[27] M. Iskin, Quantum metric contribution to the pair mass in
spin-orbit-coupled Fermi superfluids, Phys. Rev. A 97, 033625
(2018).

[28] M. Iskin, Superfluid stiffness for the attractive Hubbard model
on a honeycomb optical lattice, Phys. Rev. A 99, 023608 (2019).

[29] A. Mielke, Ferromagnetism in the Hubbard model on line
graphs and further considerations, J. Phys. A 24, 3311
(1991).

[30] For arecent experimental proposal, see the Supplemental Mate-
rial for G. Montambaux, L.-K. Lim, J.-N. Fuchs, and F. Piéchon,
Winding Vector: How to Annihilate Two Dirac Points with the
Same Charge, Phys. Rev. Lett. 121, 256402 (2018).

053608-8


https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1126/sciadv.aau4511
https://doi.org/10.1126/sciadv.aau4511
https://doi.org/10.1126/sciadv.aau4511
https://doi.org/10.1126/sciadv.aau4511
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1103/PhysRevLett.116.183902
https://doi.org/10.1103/PhysRevLett.116.183902
https://doi.org/10.1103/PhysRevLett.116.183902
https://doi.org/10.1103/PhysRevLett.116.183902
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1088/1674-1056/23/7/077308
https://doi.org/10.1088/1674-1056/23/7/077308
https://doi.org/10.1088/1674-1056/23/7/077308
https://doi.org/10.1088/1674-1056/23/7/077308
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1103/PhysRevB.90.094506
https://doi.org/10.1103/PhysRevB.90.094506
https://doi.org/10.1103/PhysRevB.90.094506
https://doi.org/10.1103/PhysRevB.90.094506
https://doi.org/10.1103/PhysRevB.98.134513
https://doi.org/10.1103/PhysRevB.98.134513
https://doi.org/10.1103/PhysRevB.98.134513
https://doi.org/10.1103/PhysRevB.98.134513
https://doi.org/10.1103/PhysRevB.98.155142
https://doi.org/10.1103/PhysRevB.98.155142
https://doi.org/10.1103/PhysRevB.98.155142
https://doi.org/10.1103/PhysRevB.98.155142
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1103/PhysRevA.99.023608
https://doi.org/10.1103/PhysRevA.99.023608
https://doi.org/10.1103/PhysRevA.99.023608
https://doi.org/10.1103/PhysRevA.99.023608
https://doi.org/10.1088/0305-4470/24/14/018
https://doi.org/10.1088/0305-4470/24/14/018
https://doi.org/10.1088/0305-4470/24/14/018
https://doi.org/10.1088/0305-4470/24/14/018
https://doi.org/10.1103/PhysRevLett.121.256402
https://doi.org/10.1103/PhysRevLett.121.256402
https://doi.org/10.1103/PhysRevLett.121.256402
https://doi.org/10.1103/PhysRevLett.121.256402

ORIGIN OF FLAT-BAND SUPERFLUIDITY ON THE ...

PHYSICAL REVIEW A 99, 053608 (2019)

[31] V. L. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group I. classical systems, JETP 32, 493 (1971).

[32] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid
State Phys. 6, 1181 (1973).

[33] D. R. Nelson and J. M. Kosterlitz, Universal Jump in the
Superfluid Density of Two-Dimensional Superfluids, Phys. Rev.
Lett. 39, 1201 (1977).

[34] R. Resta, The insulating state of matter: a geometrical theory,
Eur. Phys. J. B 79, 121 (2011).

[35] A.J. Leggett, Quantum Liquids: Bose Condensation and Cooper
Pairing in Condensed-Matter Systems (Oxford University,
Oxford, 2006), Chap. 5.

[36] M. Iskin, Hofstadter-Hubbard model with opposite magnetic
fields: Bardeen-Cooper-Schrieffer pairing and superfluidity in
the nearly flat butterfly bands, Phys. Rev. A 96, 043628
(2017).

053608-9


https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1140/epjb/e2010-10874-4
https://doi.org/10.1140/epjb/e2010-10874-4
https://doi.org/10.1140/epjb/e2010-10874-4
https://doi.org/10.1140/epjb/e2010-10874-4
https://doi.org/10.1103/PhysRevA.96.043628
https://doi.org/10.1103/PhysRevA.96.043628
https://doi.org/10.1103/PhysRevA.96.043628
https://doi.org/10.1103/PhysRevA.96.043628

