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M. Iskin
Department of Physics, Koç University, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey

(Received 1 November 2018; revised manuscript received 25 December 2018; published 4 February 2019)

In addition to the conventional contribution that is directly controlled by the single-particle energy spectrum,
the superfluid phase stiffness of a two-component Fermi gas has a geometric contribution that is governed
by the quantum metric of the honeycomb’s band structure. Here we take both contributions into account
and construct phase diagrams for the critical superfluid transition temperature as a function of the chemical
potential, particle filling, onsite interaction, and next-nearest-neighbor hopping. Our theoretical approach is
based on a self-consistent solution of the BCS mean-field theory for the stationary Cooper pairs and the universal
Berezinskii-Kosterlitz-Thouless (BKT) relation for the phase fluctuations.
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I. INTRODUCTION

Following the pioneering works by Peotta and Törmä
on the origins of superfluidity in topologically nontrivial
flatbands [1], the deeper connection between some of the
superfluid (SF) properties of a two-component Fermi gas and
the quantum geometry of its noninteracting Bloch bands came
as a complete surprise in recent years [2–6]. It has been
found on general grounds that the SF weight of a multiband
SF with a uniform order parameter can be separated into
two distinct parts, depending on the physical mechanisms
involved. While the real intraband processes are attributed to
the conventional contribution, the virtual interband processes
are attributed to the geometric one. Alternatively, in contrast
to the conventional contribution that is solely controlled by the
derivatives of the energy dispersions, the geometric one is also
associated with the derivatives of the underlying Bloch wave
functions [3]. For instance, unless the geometric interband
contribution vanishes, superfluidity prevails in a flatband,
thanks to the presence of other flat or dispersive bands [1,2].
More recently, the root cause of this deeper connection has
been identified as a mass-renormalization mechanism for the
SF carriers, i.e., the quantum geometry governs not only
the SF weight but also some other SF properties through
renormalizing the effective mass of the two-body bound states
and of Cooper pairs in general [5,6].

Furthermore, in the particular cases of flatband and
two-band systems, the geometric contribution to the SF
weight is simply controlled by the so-called quantum metric
[1–5]. The quantum metric corresponds to the real part of
the quantum geometric tensor, and its geometrical importance
reveals itself as a measure of the quantum distance between
nearby Bloch states [7–9]. Note that the imaginary part of the
quantum geometric tensor corresponds to the so-called Berry
curvature, which is a distinct but related quantity associated
with the emergent gauge field in momentum space, i.e., char-
acterizing its quantum topology [7–9]. Some of the two-band
SFs that have already been analyzed in this context are the
Haldane-Hubbard model [3], Kane-Mele-Hubbard model [3],
time-reversal-invariant Hofstadter-Hubbard model [1,5], and

the spin-orbit coupled Fermi gases [4]. These works show
clear signs that understanding the quantum metric effects on
any one of these models may eventually have far-reaching
implications for a wide class of two-band SFs.

Motivated by these theoretical proposals as well as ongoing
experimental efforts utilizing cold fermions on various forms
of honeycomb optical structures [10–14], here we calculate
the critical SF transition temperature of the attractive Hubbard
model on a two-dimensional honeycomb lattice for a large
window of model parameters. Our theoretical approach is
based on a self-consistent solution of the BCS mean-field
theory for the stationary Cooper pairs and the universal
Berezinskii-Kosterlitz-Thouless (BKT) relation for the phase
fluctuations, and we have two main goals. In addition to
constructing the phase diagrams for the critical SF transition
temperature, we plan to uncover the critical role played by
the quantum geometry of the underlying band structure. For
instance, while the highest attainable critical temperature is
found to be around 0.15t for the nearest-neighbor-hopping
model, it increases quite rapidly with the inclusion of next-
nearest-neighbor hoppings. In addition, the relative weight
of the quantum metric contribution to the SF phase stiffness
is found to be a nonmonotonous function of the interaction
strength, and it may reach beyond 50%, depending on the
parameters. Thus, these findings arguably suggest that a SF
Fermi gas that is loaded on a honeycomb lattice is one of the
ideal platforms for studying quantum geometric effects with
cold atoms.

The rest of the paper is organized as follows. The the-
oretical framework is presented in Sec. II, where we first
discuss the honeycomb’s band structure and highlight the
presence of Dirac cones in Sec. II A, then introduce the BCS
mean-field theory and derive the order-parameter and number
equations in Sec. II B, and then review the BKT relation
and the SF stiffness in Sec. II C. Having a complete set
of self-consistency equations for determining the critical SF
transition temperature, we present its numerical analysis in
Secs. III and IV, and conclude the paper with our final remarks
in Sec. V.
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FIG. 1. Primitive lattice vectors for the honeycomb lattice.

II. THEORETICAL APPROACH

The honeycomb lattice is a two-dimensional crystal struc-
ture with a hexagonal Bravais lattice and a two-site basis. In
this paper we denote its lattice spacing by a and choose a1 =
(
√

3a, 0) and a2 = (
√

3a/2, 3a/2) as the primitive lattice vec-
tors for its Bravais lattice as shown in Fig. 1. The correspond-
ing reciprocal lattice vectors b1 = [2π/(

√
3a),−2π/(3a)]

and b2 = [0, 4π/(3a)] also form a hexagonal lattice in re-
ciprocal space, leading to a first Brillouin zone that has the
shape of a hexagon with side length 4π/(3

√
3a). Due to its

two-site basis on a Bravais lattice, a honeycomb lattice gives
rise to a two-band structure with important features for the
single-particle problem. For the sake of completeness, let us
first discuss its band structure and highlight the presence of
Dirac cones, as they turn out to play critical roles in the
many-body problem as well.

A. Band structure

Within the tight-binding approximation, the
single-particle Hamiltonian can be written as Hσ =
−∑

i∈S, j∈S′ tSi,S′ jc
†
σSicσS′ j, where the pseudospin σ ≡ {↑,↓}

denotes the two components of a Fermi gas, the index i ∈ S
refers to a site i in the hexagonal sublattice S ≡ {A, B},
the hopping parameter tSi,S′ j characterizes the tunneling
amplitude from site j to i, and the operator c†

σSi (cσSi) creates
(annihilates) a σ particle on i ∈ S. In this paper, we set the
nearest-neighbor (i.e., intersublattice) hopping parameter t
as our energy scale and vary the next-nearest-neighbor (i.e.,
intrasublattice) one t ′ accordingly.

Using the Fourier expansion of the creation and anni-
hilation operators in the reciprocal (k) space, e.g., cσSi =
(1/

√
MS )

∑
k cσSkeik·ri where MA = MB = M/2 is the num-

ber of sites in the hexagonal sublattice, a compact way
to express this Hamiltonian is Hσ = ∑

k ψ
†
σkhkψσk. Here,

the creation operator ψ
†
σk = (c†

σAk c†
σBk ) is in the form of a

two-component sublattice spinor with the Hamiltonian den-
sity hk = d0

kτ0 + dk · τ, where τ0 is a unit matrix and τ =
(τx, τy) is a vector of Pauli matrices. Note that while the
diagonal element d0

k = −2t ′ cos(
√

3kxa) − 4t ′ cos(
√

3kxa/2)
cos(3kya/2) of hk is due solely to the next-nearest-neighbor
hoppings, the off-diagonal element dk = (dx

k, dy
k ) with

dx
k = −t cos(kya) − 2t cos(kya/2) cos(

√
3kxa/2) and dy

k =
t sin(kya) − 2t sin(kya/2) cos(

√
3kxa/2) is due solely to the

nearest-neighbor ones.
Thus, the single-particle energy eigenvalues are simply

determined by εsk = d0
k + sdk, where s = ± denotes the up-

per or lower band and dk = |dk| reduces to t
√

3 − d0
k/t ′.

It can be shown that both energy bands exhibit a total of
two Dirac cones that are equally distributed among the six
corners of the first Brillouin zone. Since d0

k → 3t ′ and dk → 0
at the tips of the cones, the density Nε of single-particle
states vanishes at ε = 3t ′, i.e., where the upper and lower
cones touch each other. This analysis suggests that the low-
temperature behavior of a Fermi gas that is loaded on a
two-dimensional honeycomb lattice is directly controlled by
the presence of these Dirac cones in the band structure. For
instance, the Fermi gas shows a semimetallic behavior that
persists up to a critical interaction threshold depending on the
temperature [15,16].

Our main goals in this work are twofold. We would like
not only to construct the phase diagrams for the critical SF
transition temperature of the attractive Hubbard model on a
honeycomb lattice, but also to uncover the critical role played
by the quantum geometry of the underlying band structure.
These are achieved by adapting a self-consistent approach that
is based on the simultaneous solution of the BCS mean-field
theory for the stationary Cooper pairs and the universal BKT
relation for the phase fluctuations.

B. BCS mean-field theory

For the two-component Fermi gas that is considered in this
work, the attractive Hubbard model can be written as H =∑

σ Hσ + Hint + Hμ, where Hint = −U
∑

Si c†
↑Sic

†
↓Sic↓Sic↑Si

with U � 0 takes the onsite intercomponent interactions
into account. We treat the interaction term within the
BCS mean-field approximation for pairing and character-
ize various SF phases through the complex order parame-
ter �Si = U 〈c↓Sic↑Si〉, where 〈. . .〉 denotes the thermal av-
erage. However, thanks to the time-reversal symmetry of
H , �Si turns out to be uniform for a given sublattice, i.e.,
�S = (1/MS )

∑
i∈S �Si. Furthermore, in order to fix the total

number N = ∑
σSi〈c†

σSicσSi〉 of particles in the thermal state,
we include an additional term Hμ = −μ

∑
σSi c†

σSicσSi in H ,
where μ is the chemical potential.

Similar to the single-particle problem, a compact way to
express the mean-field Hamiltonian is

Hmf = C +
∑

k

�
†
k

(
hk − μτ0 �

�† −h∗
−k + μτ0

)
�k, (1)

where C = ∑
k Tr{h−k − μτ0 + �†�/U } is a constant with

Tr denoting the trace over sublattices, �
†
k = (ψ†

↑k ψ↓,−k ) is
a four-component spinor operator, and �SS′ = �SδSS′ , with
δi j , the Kronecker δ, diagonal in the sublattice sector. Since
�S = (U/MS )

∑
k〈c↓S,−kc↑Sk〉 turns out to be uniform for

the entire lattice thanks to the inversion symmetry of the A
and B sublattices, we take �A = �B = � as real without
losing generality. Combining this expression with the number
equation N = ∑

σSk〈c†
σSkcσSk〉, we eventually obtain a set of

self-consistency equations,

1 = U

2M

∑
sk

Xsk

Esk
, (2)

F = 1 − 1

M

∑
sk

Xsk

Esk
ξsk, (3)
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for � and μ. Here, M is the number of lattice sites, ξsk =
εsk − μ is the shifted dispersion, Xsk = tanh[Esk/(2T )] is a
thermal factor with kB → 1 the Boltzmann constant and T
the temperature, Esk =

√
ξ 2

sk + �2 is the quasiparticle energy
spectrum, and 0 � F = N/M � 2 is the total particle filling.
Thus we use Eqs. (2) and (3) to determine � and μ for any
given set of U , F , T , and t ′ parameters.

While the critical BCS transition temperature TBCS is
simply determined by setting � → 0 in Eqs. (2) and (3),
the mean-field theory is known to give qualitatively reliable
results for U � t only. This is because growing phase fluctua-
tions eventually break the mean-field approximation down in
the U � t limit, for which TBCS ∝ U characterizes the pair
formation temperature [17,18]. In particular to two dimen-
sions, the SF phase coherence temperature is determined by
the universal BKT relation, leading to a much lower result.

C. BKT temperature and superfluid stiffness

Going beyond the mean-field theory and including the
phase fluctuations, the critical SF transition temperature is
determined by the universal BKT relation through an analogy
with the XY model [19–21]. This approach has long been
applied to the single-band SFs with great success [22], and
it has recently been generalized to the case of multiband SFs
with uniform order parameters [2,3,5]. In the case of two-band
SFs, one finds [3,4]

TBKT = π

8

√
det D, (4)

Dconv
μν = �2

A
∑

sk

(Xsk

E3
sk

− Ysk

2T E2
sk

)
∂ξsk

∂kμ

∂ξsk

∂kν

, (5)

Dgeom
μν = −2�2

A
∑

sk

dkXsk

s
(
d0

k − μ
)
Esk

gk
μν, (6)

where Dμν = Dconv
μν + Dgeom

μν is the SF phase stiffness, A is the
area of the system, and Ysk = sech2[Esk/(2T )] is a thermal
factor. Here, while the conventional contribution Dconv

μν is of
the usual single-band form, accounting for real intraband
processes, the geometric contribution Dgeom

μν is due to vir-
tual interband processes that are directly controlled by the
total quantum metric of the single-particle bands, i.e., gk

μν =
(∂d̂k/∂kμ) · (∂d̂k/∂kν )/2, with d̂k = dk/dk a unit vector.

In contrast to the standard BCS mean-field theory, it turns
out that a self-consistent solution of Eqs. (2)–(6) for �(TBKT),
μ(TBKT), and TBKT provides a qualitatively reliable description
of the critical SF transition temperature for both U � t and
U � t limits [22]. Even though this approach is still far from
being quantitatively accurate in comparison to the numerically
exact ones [16], its much simpler analytical construction pro-
vides considerable insight into the main features. For instance,
Eq. (4) puts TBCS as the upper bound on TBKT in such a way
that TBKT → TBCS from below when U � t and that TBKT �
TBCS when U � t . The latter limit can be shown by noting that
� = (U/2)

√
F (2 − F ), μ = −(U/2)(1 − F ), and Dμν =

{�2/[A(μ2 + �2)3/2]} ∑
k Tr{(∂hk/∂kμ)(∂hk/∂kν )}, leading

to a diagonal SF stiffness Dμν = D0δμν with D0 = 2�2(t2 +
6t ′2)/[

√
3(μ2 + �2)3/2]. Thus, the BKT relation (4) gives

TBKT = πF (2 − F )(t2 + 6t ′2)/(2
√

3U ), showing that, inde-

pendently of its sign, t ′ increases TBKT for a given F in the
U � t limit. Except for the U � t and U � t limits, the self-
consistency equations are not analytically tractable in general
and we resort to numerical methods instead.

III. NUMERICAL RESULTS

Having introduced the theoretical framework, here we
implement an iterative numerical approach to find fully self-
consistent solutions for �(TBKT), μ(TBKT), and D(TBKT) that
satisfy all Eqs. (2)–(6) simultaneously for a given set of
model parameters. This allows us not only to construct phase
diagrams for the critical SF transition temperature, but also
to uncover the critical role played by the quantum geometry
of the underlying band structure. For this purpose, next we
choose a set of exemplary t ′/t � 0 ratios and present the
self-consistent results for TBKT /t and Dgeom

0 /D0 as a function
of μ/t , F , and U/t . Note that thanks to the apparent symmetry
between the parameter sets (t ′/t > 0, μ/t, F ) and (t ′/t < 0,

6 − μ/t, 2 − F ), our phase diagrams cover the entire param-
eter regime of the model Hamiltonian.

Let us first set U = 0 and analyze the noninteracting limit.
Since the lower single-particle band lies within the energy
interval −3t − 6t ′ � ε � 3t ′ and the upper one lies within
3t ′ � ε � 3t − 6t ′, the Fermi gas first fills the lower band as
a function of increasing its Fermi energy εF = μ up until μ =
3t ′. For this reason, while the μ < −3t − 6t ′ region is denoted
as a vacuum of particles with F = 0 and the μ > 3t − 6t ′
region is denoted as a vacuum of holes (i.e., a band insulator)
with F = 2, μ = 3t ′ corresponds precisely to the half filling
with F = 1. Thus, except for the symmetric point μ = 3t ′
where the single-particle density of states Nμ vanishes like
a semimetal, the ground state of a noninteracting Fermi gas is
normal when −3t − 6t ′ � μ � 3t − 6t ′. All of these regions
are clearly seen in Figs. 2 and 3.

Once the interactions are turned on, the BCS theory sug-
gests that the normal region immediately transits into a SF
with TBCS ∝ te−1/(UNμ ), coinciding with TBKT in the U � t
limit. While such an exponential growth is clearly seen in
the darker region in Figs. 2 and 3, our convergence scheme
eventually fails in the white region when U/t → 0, where
TBKT becomes comparable to our relative numerical accuracy
(i.e., 10−6t) between two consecutive iterations. In Fig. 2 we
note that the periphery of the white region nicely follows the
general structure of Nμ, including its van Hove singularities
at F = 0.75 and 1.25. On the other hand, both the particle and
hole vacuums as well as the semimetal phase transit into a SF
at finite interaction thresholds, beyond which TBKT/t grows
as

√
U/Uc − 1 nearby the former regions and as (U/Uc − 1)

nearby μ = 3t ′. For instance, we find that the critical interac-
tion threshold Uc/t ≈ {2.23, 2.19, 2.06, 1.71} decreases with
t ′/t = {0,−0.1,−0.2,−0.3} for the semimetal-to-SF phase
transition at half filling. These are consistent with the known
results in the literature where Uc/t ≈ {2.24, 2.13} for t ′/t =
{0,−0.15} [15,23]. We emphasize that, in contrast to the
normal-to-SF transition boundary, our vacuum, insulator, and
semimetal-to-SF transition boundaries are very accurate, as
TBKT/t vanishes quite rapidly near Uc.

In addition, for t ′ = 0, Fig. 3 shows that a maximal value
of TBKT ≈ 0.148t is attainable at half filling when U ≈ 4.04t
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FIG. 2. The critical SF transition temperature TBKT/t is shown in the upper row, the relative weight Dgeom
0 /D0 of the geometric SF stiffness

is shown in the middle row, and the faction Fc/F0 of condensed particles is shown in the lower row.

with μ = 0 and � ≈ 1.37t . However, we also find that higher
critical temperatures TBKT/t ≈ {0.169, 0.199, 0.231} may be
achieved, respectively, with t ′/t = {−0.1,−0.2,−0.3} at fill-
ings F ≈ {1.34, 1.40, 1.43} when U/t ≈ {3.40, 3.76, 4.19}.

This is in agreement with our expectation that TBKT =
πF (2 − F )(t2 + 6t ′2)/(2

√
3U ) increases with t ′ �= 0 inde-

pendently of its sign in the U � t limit. Indeed, our numerical
results benchmark very well with this analytic expression in

FIG. 3. Same as Fig. 2 but in the plane of total particle filling F .
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FIG. 4. The critical SF transition temperature TBKT/t is shown
for the parameter regime of Ref. [15] for t ′ = −0.15t .

the regime of its validity. Note that our result is considerably
higher than the maximal value TBKT ≈ 0.1t reported in the
literature for t ′ = −0.15t [15].

The discrepancy between our findings and the literature
may well be caused by the use of a non-fully-self-consistent
approach that is based on the numerical extraction of D0 at
T = 0 [15]. In addition, suspecting that the novel geometric
contribution to the SF stiffness may partly be responsible
for the apparent disagreement, we also present the relative
weight Dgeom

0 /D0 of this contribution for the same parameters.
For instance, for t ′/t = {0,−0.1,−0.2}, Dgeom

0 /D0 reaches
its maximum value {0.53, 0.54, 0.56} at F ≈ {1.0, 0.97, 0.89}
when U/t ≈ {2.77, 2.76, 2.75}, and it is {0.50, 0.22, 0.15}
at the location of the maximal TBKT/t . Thus the geometric
contribution is a nonmonotonous function of U and it accounts
for a sizable fraction of the SF stiffness in general, reaching
beyond 50%. In particular, Fig. 3 shows that its role becomes
more and more (less and less) critical at lower (higher) fillings
with decreasing t ′/t .

In the U � t limit, we may relate D0 = 4F (2 − F )(t2 +
6t ′2)/(

√
3U ) to the density ρp and effective mass mp of the

SF pairs through the identity D0 = 4h̄2ρp/mp, where ρp =
4Fc/(3

√
3a2) with Fc = [�2/(4M )]

∑
sk X 2

sk/E2
sk the filling of

condensed pairs [5]. This leads to F0 = F (2 − F )/4 as the
filling of SF pairs whose effective mass mp = h̄2U/[3(t2 +
6t ′2)a2] increases with U but decreases with t ′ in the U �
t limit. For completeness, the fraction Fc/F0 of condensed
particles is also shown in Figs. 2 and 3 for the parameter
regimes of interest. In comparison to the half-filling F = 1
case where half of the pairs or holes may at most be condensed
with F0 → 1/2 in the U � t limit, all of the particle (hole)
pairs are condensed with F0 → F/2 (F0 → 1 − F/2) in the
low-particle (hole) filling F → 0 (F → 2) limit.

IV. DISCUSSION

In order to provide a better contextualization of our results,
here we first calculate TBKT in a fully-self-consistent manner,
both with and without the geometric contribution Dgeom

0 , and
benchmark these results directly with those of the literature.
For this purpose, we set t ′ = −0.15t in Fig. 4 and present

the resultant phase diagrams for precisely the same parameter
window as the one that is shown in Ref. [15].

This figure clearly illustrates that exclusion of the Dgeom
0

contribution from the universal BKT relation leads to a sub-
stantial reduction of TBKT for U � 2t . This is in accordance
with the discussion given above in Sec. II C, where TBKT is de-
termined by the vanishing (� → 0) of the BCS mean field for
U � t . In addition, since the latter phase diagram turns out to
be quantitatively similar to that of Ref. [15], we speculate that
the geometric contribution may not be taken fully into account
by their approach. This is because while the self-consistent
equations that are solved numerically for the pairing order pa-
rameter and particle filling are exactly the same in both works,
there is one important difference in the way the SF stiffness is
calculated. That is, our analytic expression for the SF stiffness
is derived under the linear response theory, but Ref. [15]
extracts it numerically from the dispersion of the Goldstone
mode, which in turn is derived by considering the Gaus-
sian fluctuations of the order parameter on top of the BCS
ground state. Given our detailed benchmark, we believe these
two approaches are equivalent for the U � 2t region but not
away from it for the honeycomb lattice. As both approaches
are routinely used to evaluate the SF stiffness and the related
critical SF transition temperature, further work is needed
to assess which method is more reliable and accurate and
whether they could be reconciled to some extent. In addition,
a more detailed comparison with the state-of-the-art unbiased
numerical method is also highly desirable.

V. CONCLUSIONS

In summary, here we calculated the critical SF transi-
tion temperature of the attractive Hubbard model on a two-
dimensional honeycomb lattice via a theoretical approach
that is based on a self-consistent solution of the BCS mean-
field theory for the stationary Cooper pairs and the universal
BKT relation for the phase fluctuations. For instance, we
found that the highest attainable TBKT is around 0.15t for the
nearest-neighbor-hopping model and that it increases quite
rapidly with the inclusion of next-nearest-neighbor hoppings.
In addition to the construction of the phase diagrams for a
large window of model parameters, we also uncovered the
critical role played by the quantum geometry of the underlying
band structure. In particular, we found that the relative weight
of the quantum metric contribution to the SF phase stiffness
is a nonmonotonous function of the interaction strength and
that it is generally far from being negligible, reaching beyond
50%. These findings arguably suggest that a SF Fermi gas that
is loaded on a honeycomb lattice [10–14] is one of the ideal
platforms for studying quantum geometric effects with cold
atoms. The possible outcomes of such a realization would
clearly have a broader impact in solid-state, condensed mat-
ter, and some other physics communities, given the modern
surge of interest in the quantum topological and/or quantum
geometrical concepts in general.

This line of work offers many extensions for future re-
search. For instance, since the SF stiffness is determined by
the ratio of the density and the mass of the SF carriers, we
expect sizable geometric contributions for those observables
(e.g., sound velocity) that have explicit dependence on the
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mass of the two-body bound states or of the Cooper pairs
on general grounds [6]. Given our findings for the geometric
SF stiffness, we expect these observables to have a non-
monotonous dependence on the interaction strength as well.
This distinguishes the honeycomb lattice from the square-
like Bravais lattices, for which the corresponding ground-
state observables are known to evolve monotonously in the
usual BCS-BEC crossover problem [17,18]. In addition to
the honeycomb system, we are aware of other two-band
systems with a nontrivial quantum geometry exhibiting sim-
ilar geometric effects. For instance, the Haldane-Hubbard
model [3], Kane-Mele-Hubbard model [3], time-reversal-

invariant Hofstadter-Hubbard model [1,5], and the spin-orbit
coupled Fermi gases [4] are described by single-particle and
mean-field Hamiltonians that are of exactly the same form as
those considered in this paper. Thus, there is no doubt that
understanding the quantum metric effects on a honeycomb
lattice may eventually have far-reaching implications for a
wide class of two-band SFs.
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TÜBİTAK.

[1] S. Peotta and P. Törmä, Superfluidity in topologically nontrivial
flat bands, Nat. Commun. 6, 8944 (2015).

[2] A. Julku, S. Peotta, T. I. Vanhala, D.-H. Kim, and P. Törmä,
Geometric Origin of Superfluidity in the Lieb-Lattice Flat Band,
Phys. Rev. Lett. 117, 045303 (2016).

[3] L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and
P. Törmä, Band geometry, Berry curvature, and superfluid
weight, Phys. Rev. B 95, 024515 (2017).

[4] M. Iskin, Berezinskii-Kosterlitz-Thouless transition in the time-
reversal-symmetric Hofstadter-Hubbard model, Phys. Rev. A
97, 013618 (2018).

[5] M. Iskin, Exposing the quantum geometry of spin-orbit coupled
Fermi superfluids, Phys. Rev. A 97, 063625 (2018).

[6] M. Iskin, Quantum metric contribution to the pair mass in
spin-orbit-coupled Fermi superfluids, Phys. Rev. A 97, 033625
(2018).

[7] J. P. Provost and G. Vallee, Riemannian structure on manifolds
of quantum states, Commun. Math. Phys. 76, 289 (1980).

[8] M. V. Berry, The Quantum Phase, Five Years After, edited by
A. Shapere and F. Wilczek, Geometric Phases in Physics (World
Scientific, Singapore, 1989).

[9] D. J. Thouless, Topological Quantum Numbers in Nonrelativis-
tic Physics (World Scientific, Singapore, 1998).

[10] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,
Creating, moving and merging Dirac points with a Fermi gas in
a tunable honeycomb lattice, Nature (London) 483, 302 (2012).

[11] T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U.
Bissbort, and T. Esslinger, Artificial Graphene with Tunable
Interactions, Phys. Rev. Lett. 111, 185307 (2013).

[12] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and
V. Pellegrini, Artificial honeycomb lattices for electrons, atoms
and photons, Nat. Nano. 8, 625 (2013).

[13] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Experimental realization of the

topological Haldane model with ultracold fermions, Nature
(London) 515, 237 (2014).

[14] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S.
Lühmann, K. Sengstock, and C. Weitenberg, Experimental
reconstruction of the Berry curvature in a Floquet Bloch band,
Science 352, 1091 (2016).

[15] E. Zhao and A. Paramekanti, BCS-BEC Crossover on the Two-
Dimensional Honeycomb Lattice, Phys. Rev. Lett. 97, 230404
(2006).

[16] K. L. Lee, K. Bouadim, G. G. Batrouni, F. Hébert, R. T.
Scalettar, C. Miniatura, and B. Grémaud, Attractive Hubbard
model on a honeycomb lattice: Quantum Monte Carlo study,
Phys. Rev. B 80, 245118 (2009).

[17] P. Noziéres and S. Schmitt-Rink, Bose condensation in an
attractive fermion gas: From weak to strong coupling supercon-
ductivity, J. Low Temp. Phys. 59, 195 (1985).

[18] L. Belkhir and M. Randeria, Collective excitations and the
crossover from Cooper pairs to composite bosons in the attrac-
tive Hubbard model, Phys. Rev. B 45, 5087(R) (1992).

[19] V. L. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group I. classical systems, JETP 32, 493 (1971).

[20] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid
State Phys. 6, 1181 (1973).

[21] D. R. Nelson and J. M. Kosterlitz, Universal Jump in the
Superfluid Density of Two-Dimensional Superfluids, Phys. Rev.
Lett. 39, 1201 (1977).

[22] P. J. H. Denteneer, G. An, and J. M. J. van Leeuwen, Helicity
modulus in the two-dimensional Hubbard model, Phys. Rev. B
47, 6256 (1993).

[23] A. Cichy and A. Ptok, Reentrant Fulde-Ferrell-Larkin-
Ovchinnikov superfluidity in the honeycomb lattice, Phys. Rev.
A 97, 053619 (2018).

023608-6

https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevA.97.013618
https://doi.org/10.1103/PhysRevA.97.013618
https://doi.org/10.1103/PhysRevA.97.013618
https://doi.org/10.1103/PhysRevA.97.013618
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1103/PhysRevA.97.033625
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1038/nature10871
https://doi.org/10.1038/nature10871
https://doi.org/10.1038/nature10871
https://doi.org/10.1038/nature10871
https://doi.org/10.1103/PhysRevLett.111.185307
https://doi.org/10.1103/PhysRevLett.111.185307
https://doi.org/10.1103/PhysRevLett.111.185307
https://doi.org/10.1103/PhysRevLett.111.185307
https://doi.org/10.1038/nnano.2013.161
https://doi.org/10.1038/nnano.2013.161
https://doi.org/10.1038/nnano.2013.161
https://doi.org/10.1038/nnano.2013.161
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1103/PhysRevLett.97.230404
https://doi.org/10.1103/PhysRevLett.97.230404
https://doi.org/10.1103/PhysRevLett.97.230404
https://doi.org/10.1103/PhysRevLett.97.230404
https://doi.org/10.1103/PhysRevB.80.245118
https://doi.org/10.1103/PhysRevB.80.245118
https://doi.org/10.1103/PhysRevB.80.245118
https://doi.org/10.1103/PhysRevB.80.245118
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1103/PhysRevB.45.5087
https://doi.org/10.1103/PhysRevB.45.5087
https://doi.org/10.1103/PhysRevB.45.5087
https://doi.org/10.1103/PhysRevB.45.5087
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1103/PhysRevB.47.6256
https://doi.org/10.1103/PhysRevB.47.6256
https://doi.org/10.1103/PhysRevB.47.6256
https://doi.org/10.1103/PhysRevB.47.6256
https://doi.org/10.1103/PhysRevA.97.053619
https://doi.org/10.1103/PhysRevA.97.053619
https://doi.org/10.1103/PhysRevA.97.053619
https://doi.org/10.1103/PhysRevA.97.053619

