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By fully taking into account the virtual interband processes along with the intraband ones, here we propose
an effective-band-mass theorem that is suitable for a wide class of single-particle Hamiltonians exhibiting
multiple energy bands. Then, for the special case of two-band systems, we show that the interband contribution
to the effective band mass of a particle at a given quantum state is directly controlled by the quantum metric
of the corresponding state. As an illustration, we consider a spin-orbit-coupled spin-% particle and calculate its
effective band mass at the band minimum of the lower helicity band. Independent of the coupling strength, we
find that the bare mass m of the particle jumps to 2m, for the Rashba coupling and to 3m, for the Weyl coupling.
This geometric mass enhancement is a nonperturbative effect, uncovering the mystery behind the effective mass
of the two-body bound states in the noninteracting limit. As a further illustration, we show that a massless
Dirac quasiparticle acquires a linearly dispersing band mass (equivalent to the effective cyclotron mass up to a
prefactor) with its momentum through the same mechanism.
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I. INTRODUCTION

Depending on the physical context, the helicity of a particle
may refer to the projection of its orbital and/or spin angular
momentum into the direction of its center-of-mass motion,
e.g., the helicity is said to be right (left) handed when the
relevant quantities are aligned (antialigned). One of the central
themes in a wide range of modern single-, two-, few-, or
many-body physics problems is the so-called spin-orbit cou-
pling (SOC), as it has found a plethora of interdisciplinary ap-
plications across atomic and molecular, particle, high-energy,
nuclear, solid-state, and condensed-matter physics, spreading
over many decades. A great deal of these problems involve
a (dg - 0)-like k-dependent Zeeman term in the equations of
motion, where the motional degrees of freedom are described
by some vector field di that depends on the linear momentum
p = ik through the wave vector k and o is a vector of spin
matrices corresponding to the spin or generally pseudospin
(e.g., sublattice, hyperfine, and valley) degrees of freedom.
For instance, the generic coupling /i ), o;ik;0; is widespread
in physics literature, describing cold atoms in artificial non-
Abelian gauge fields [1-11], Dirac electrons in low-energy
excitations of graphene [12-14], and Dirac quasiparticles
at the surface of three-dimensional topological insulators
[15,16], organic quasi-two-dimensional materials [17], and
artificial honeycomblike (e.g., optical [18], molecular [19],
and microwave [20]) crystals.

Given the foremost importance of the spin-momentum
coupling for the general physics community, here we develop
a so-called effective-band-mass theorem for the helicity bands
that is suitable for a wide class of single-particle Hamiltoni-
ans. Our theorem has two physically distinct components: In
addition to the usual contribution coming from the intraband
processes, there is a geometric contribution stemming from
the virtual interband ones controlled by the quantum metric
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of the corresponding quantum state. As an illustration, first
we consider a spin-orbit-coupled spin—% particle and calculate
its effective band mass at the band minimum of the lower
helicity band. It turns out that the bare mass mg of the
particle jumps to 2myg for the Rashba coupling and to 3my
for the Weyl coupling independently of the coupling strength,
i.e., the geometric mass enhancement is a nonperturbative
effect. Since the quantum metric effects are both rare and
elusive in nature [21-36], the experimental verification of
these predictions with the recently realized Rashba-like SOCs
[8—11] would be an important leap towards the geometric and
topological interpretations of quantum mechanics [37-39].
As a further illustration, we then apply the theorem to a
massless Dirac quasiparticle, showing that the acquired ge-
ometric band mass of the particle disperses linearly with its
momentum.

It is important to emphasize that the quantum metric contri-
bution to the effective band mass of a single particle revealed
in this paper is distinct from our recent findings on a counter-
part effect on the effective mass of many-body (Cooper pairs)
as well as two-body (molecular) bound states throughout the
BCS-BEC crossover in superfluid Fermi gases [33,34]. These
previous works revealed that, through dressing the effective
mass of the relevant bound state, the quantum metric governs
not only the superfluid density of some flat-band [31,32]
and two-band [33,35] Fermi superfluids exhibiting nontrivial
quantum geometry, but also many other observables including
the sound velocity and spin susceptibility [36]. Unlike all of
these previous works on Fermi superfluids where the quantum
metric is integrated over k space with some additional weight
factors, this work paves a direct way towards measuring a
local and nonperturbative quantum metric effect on either
pseudo—spin—% Fermi [8,9] or Bose [10,11] gases, indepen-
dently of the particle statistics.
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II. EFFECTIVE-BAND-MASS THEOREM FOR
MULTIBAND HAMILTONIANS

Having multiple bands in mind, we consider a generic band
structure that is determined by the wave equation H|nk) =
&:x|nk), where Hy is the single-particle Hamiltonian density
in reciprocal space and |nKk) and ¢,k denote, respectively,
the corresponding energy eigenstates and eigenvalues. Here
the quantum states are labeled by the band index n and
wave vector k. In the presence of such a multiband setting, the
conventional wisdom [40] for the definitions of the effective
band velocity v,k and effective-band-mass tensor M,k of a
particle is such that they are determined by the coefficients of
the linear and quadratic terms in the small-q expansion

Enkrq = Enk + I Z vikdi + o Z 1V qiq; +

Thus, both the components v/, of the velocity and the prin-
cipal values Mfk of the mass tensor may have a strong
dependence on k that is controlled by the microscopic details
of a given system.

Noting that &, k4 is an energy eigenvalue of Hy, 4, one can
simply obtain these effective band parameters through pertur-
bation theory. For this purpose, we first perform a small-q
expansion of the Hamiltonian Hy 4 = Hy + Zi qi0Hy/0k; +
3.1, 9iq;0*Hy/9kidk; + - - and then treat all of the gq-
dependent terms as a perturbative correction Viq to the unper-
turbed Hamiltonian Hy, i.e., Hx4+q = Hx + Viq, in the small-q
limit. Assuming that Viq connects |nk) state only to nondegen-
erate ones, this approach gives &, x+q = &k + (1nK|Viq|nk) +
> (K |Vig W' K)[*/ (6 — €wi) + - - - In principle, Y =
> (k) £inky Sums over all of the nondegenerate quantum
states, but it is sufficient to keep only the interband terms with
k' = k in the small-q limit. By matching the coefficients of the
linear and quadratic terms in q, we eventually identify hvl’;k =
(nk|0Hy /0k;|nk) = 0¢e,x/0k; as the effective band velocity
and

_1Aij 1 02 Hy,
R T T
(nK| Gk |n'K) (K| G [nk)
+2Re Z (1)

Fl (gnk - 5'n’k)

as the inverse effective-band-mass tensor of the particle for
the k state. Here Re denotes the real part of the resultant
summation. In Eq. (1), while the first term on the right-hand
side is due precisely to the intraband contribution [m;](l]ij to
the effective inverse mass tensor of the corresponding energy
band, the second term is generated by the q-induced virtual
interband processes.

Despite the use of perturbation theory in its derivation,
Eq. (1) is exact and in principle the interband contribution
need not necessarily be a small correction to the
intraband one. For instance, one can alternatively
obtain Eq. (1) by taking the derivatives of the wave
equation Hg|nK) = ¢,x|nK) with respect to K=k +q
as follows. Using the orthonormalization condition
(nK|n'K') = §,,6(K —K’) for the K subspace of energy
eigenstates, where §,,, is a Kronecker delta and §(x) is a

Dirac delta function, we first obtain (nK|0Hk/0K;|n'K') =
(enk — ewx)(d(nK|/0K)|I'K') + (0&,kx /9K:)3d (K — K'),
leading to 0de&,kx/0K; = (nK|0Hk/0K;|nK). Then, by
taking the derivative of this expression with respect
to Kj, ie., 0%,k/0KdK; = (nK|3d*Hg/0K;0K;|nK) +
(0(nK|/3K})|0Hk /9K;|nK) + (nK|0Hk /9K;|(d|nK)/0K;),
and using the completeness relation I =" . [nK)(nK]
together with the derivative of the orthonormalization
condition (3 (nK|/9K;)|n'K) + (nK|(3|n'K)/0K;) = 0O for the
K subspace of interest, we eventually arrive at

828,11( 82H

2K (K nK) + 2R K — £k

ook, " |8K8K| +H2Re Y = en)
K 3lnK
d(n ||n/K’)(n’K’| n ). @)
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This expression corresponds precisely to the coefficient
R*[M,'1Y of the quadratic term when q — 0, producing
Eq. (1) without the use of perturbative approach.

Having established the theoretical framework of the
effective-band-mass theorem for multiband Hamiltonians,
next we focus on two-band systems for their simplicity and
not only highlight the intriguing interpretation of the interband
contribution from the quantum geometrical perspective but
also illustrate its relative importance for a number of toy
models that are of immediate experimental and/or theoretical
interest.

III. QUANTUM METRIC OF THE PROJECTED
HILBERT SPACE

For this purpose, we note that the interband contribution
to the effective-band-mass theorem given in Eq. (1) resembles
closely, but is not quite exactly, the quantum metric gln]k of the
corresponding energy eigenstate. Recall that [37-39] g'n’k =
Re(d(nk|/dk)(X" [W'K')(n'K'|)(d|nk) /0k;) is defined as the
real part of the so-called quantum geometric tensor an =
gnk —( /2)Fnk of the projected Hilbert space, which can be
equivalently expressed as gln’k = g’;{'kk,, where

nk| 3Hk |n/k/)( /k/| JHy |nk)
g =Re Z . 3)

(Snk — Enk )2

Since only the interband terms with k' = k survive in Eq. (1)
or (2), we have g'n’k = g’;ﬂ(k in this paper. The geometrical
importance of the quantum metric reveals itself as a measure
of the quantum distance between differing quantum states,
ie., ds? = |(nk|nk)|* — |(nk|n, k +dk) 1> =3 g didk;.

In contrast, the imaginary part F,; J of the quantum geometric
tensor is the Berry curvature, i.e., it is a distinct but related
quantity corresponding to the emergent magnetic field in k
space.

Even though both gln’k and Fn’{( characterize the local k-
space geometry of the underlying quantum states, they may
also be linked to the global properties of the system in
somewhat peculiar ways. For instance, the topological Chern
invariant of a quantum Hall system is determined by an
integration of Fi in k space, ie., 27C, = [, dk.dk,F}
controls the Hall conductivity [39]. Likewise, the superfluid
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density of some flat-band and two-band superfluids, which
exhibit nontrivial quantum geometry, has a substantial con-
tribution determined by an integration of gln’k with a proper
weight factor [31-33,35]. Furthermore, by showing that the
quantum metric contribution accounts for a sizeable fraction
of the (Cooper) pair mass throughout the BCS-BEC crossover
[33,34], we have revealed the physical origin of its governing
role in the superfluid density and hinted at its plausible roles in
many other observables including the sound velocity and spin
susceptibility [36]. Next we point out a distinct but related
effect on the effective band mass of a single particle near the
band minimum of the lower helicity band.

IV. EFFECTIVE-BAND-MASS THEOREM FOR
TWO-BAND HAMILTONIANS

We consider a generic two-band Hamiltonian density Hg
and parametrize its energy eigenstates and eigenvalues with
|sk) and &g = ek + sdx, respectively. Here s = 4+ (s = —)
labels the upper (lower) bands that are separated by a k-
dependent energy gap of 2dx. When the geometric response
is due only to the intermediate states from the differing band,
i.e., Viq connects |sk) to | — s, K) with di; # 0, a compact way
to express the resultant effective-band-mass theorem for such
a two-band system is

i, g2 .
(M) = [ma! ] + sl @)

Here the intraband contribution is simply denoted by [ms_](l]ij ,
but the interband one is directly controlled by the to-
tal quantum metric g/ =" g4 =Re Y (3 (sk|/0k;)(| —
s, k) (—s, Kk|)(d|sk)/0k;) of the corresponding quantum state.
Note that the interband contributions have opposite signs for
the s = &+ bands. For the isotropic directions of interest in this
paper, the relevant effective mass is defined as the k-space
average of Eq. (4) over the degenerate subspace.

To illustrate the relative importance of the interband con-
tribution, next we consider a single spin-% particle that is
described by the generic Hamiltonian density Hx = exop +
dy - o, where ¢, = H%k? /2my is the usual free-particle dis-
persion with mq the bare mass and dy =Y, dii is the
SOC field with 7 the unit vector along the i direction.
Here oy is a 2 x 2 identity matrix and o = Zi a,-i is a
vector of Pauli spin matrices in such a way that di =
hogk; corresponds to the Weyl SOC when o; = o for all
i ={x,y,z}, a Rashba SOC when «, =0, and an equal
Rashba-Dresselhaus (ERD) SOC when oy = a; = 0. Here
we choose o > 0 without loss of generality. Note that g =
€x + sdy is the s-helicity dispersion with the energy eigen-
state |sk)T = (—di +idy,, df — sdy)//2dx(dx — sdf), where
dx = |dg| and T is the transpose operator. The quantum
geometry is trivial for the ERD SOC as g =0 for the
entire k space. It turns out that the quantum metrics of the
s = =+ bands are equal and their sum can be expressed as
¢ = (8dy/dk;) - (3dy/dk;)/2, where di = dy/dy is the unit
vector along the SOC field. The equivalent expression g;(j =
[>",(dd/dki)(dd)/dk;) — (ddx/Ik;)(dk/k;)]/2dg reduces
simply to g/ = WPos;(d2s;; — did])/2dy, showing that
g;(j = 0 in general for all k states unless oo ; 7# 0.

-k

m

FIG. 1. By breaking the spin degeneracy of the particle disper-
sions €, = €k, the SOC dy - ¢ creates a pair of helicity bands e =
€x + sdx. Here s =+ (s = —) corresponds to the upper (lower)
branches, illustrated for a free particle ¢, = k2 /2my with the Weyl
SOC d; = hak. We are interested in the effective band mass of the
particle near the band minimum k, of the lower helicity band.

In Eq. (4), the intraband contribution mgy, = my is already
isotropic in k space and we take the angular average of
the geometric contribution over the degenerate direction, i.e.,
(gi/) = g8 with gy = R2a®*(D — 1)/2Dd?. Here D = 3 for
the radial direction of Weyl SOC with dy = hak, D = 2 for
the polar direction of Rashba SOC with dy = hak,,and D =
1 for the g, direction of ERD SOC with d; = ha|k,|. This
leads to

My Ddy,
my  Ddy + s(D — Dmga?

®)

for the angular average ([M'1") = §;;/My of the effective-
mass theorem, showing that the geometric contribution is neg-
ligible at large momentum, i.e., when Ddj > (D — Dmgoc®.
In this paper, we are interested in the effective band mass of
the particle near the band minimum k,, of the lower helicity
band; see, e.g., the Weyl SOC illustrated in Fig. 1. Plugging
kyn, = moae /R in Eq. (5), we find

M_, = Dmy, (6)

where D is the dimensionality of the isotropic SOC field.
This analysis implies that the interband contribution to the
effective band mass of the particle is a nonperturbative one for
both Weyl and Rashba SOCs. In addition, this contribution
is clearly independent of « at the band minimum as long as
o # 0. Furthermore, the dimensionality of the k space does
not play any role for the Rashba SOC, i.e., Mf.km = 2my
in both two and three dimensions. No matter how bizarre
these results sound, we note that they are consistent with
the effective mass M,,, of the relevant two-body bound states
reported in the Fermi gas literature [41-49], where the binding
occurs between an (1;k + q/2) particle and a (|; —k + q/2)
one in the presence of a contact attraction. For instance, in
Fig. 2 we reproduce the xx component M} as a function of
the two-body binding energy E;; in vacuum. In the noninter-
acting limit when E;;, — 0%, we clearly see that M,;, = 6myq
is isotropic in space for the Weyl SOC and MZJI; = 4my is
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FIG. 2. The xx component of the effective mass of the two-body
bound state M} is shown for the Weyl and Rashba SOCs as a func-
tion of the two-body binding energy E;;, in vacuum [41-49]. In the
noninteracting limit when E,, — 0", we note that M approaches
twice the effective band mass of the particle at the band minimum of
its lower helicity band, i.e., M;, — 2M_ , in all cases considered
here.

isotropic in the xy plane for the Rashba SOC as long as o # 0,
independently of its magnitude. In addition, it is also known
that M7 = 2myg along the z direction for the Rashba SOC
in three dimensions and that the ERD SOC has no effect
on the two-body problem. Thus, as M;;, coincides with twice
the effective band mass of the particle at the band minimum
of its lower helicity band, the geometric mass enhancement
uncovers the mystery behind M,, in the noninteracting limit.
When E;;, increases from 0, however, a competing but distinct
geometric effect on the bound state reduces M;, towards the
expected value 2myg in the E;;, > moa® limit [34].

We note in passing that the electronic properties of
some graphenelike solid-state materials are well described by
the low-energy Hamiltonian density Hx = fick - o0, where o
refers to the Fermi velocity and o refers not to the spin degrees
of freedom of the electron but to the sublattice degrees of
freedom of the underlying crystal (i.e., honeycomb) lattice
[14]. Since the helicity dispersions e = sak are isotropic and
linear in k space, the intraband contribution to the inverse
effective mass vanishes, suggesting that the effective band
mass Mg is determined solely by the interband contribution.

Thus, setting my — oo in Eq. (5), we find a linearly dispersing
effective band mass

sD Tk
D—-1«
for the particles (holes) in the upper (lower) helicity bands,
where D > 2 is the dimensionality of the k space. Indeed,
the long-established realization that the effective cyclotron
mass My, = shkr /o of the charge carriers in graphene has a
strong ,/p dependence in the low-density limit provided early
smoking-gun evidence for the existence of a massless Dirac
quasiparticle in the k — 0T limit [12-14]. Here p = k3 /7 is
the electronic density of graphene with kr the Fermi wave
vector.

Msk =

(7

V. CONCLUSION

In summary, our so-called effective-band-mass theorem for
the helicity bands has two physically distinct components: In
addition to the usual contribution coming from the intraband
processes, there exists a geometric contribution stemming
from the virtual interband ones. It turns out that the latter
contribution is directly controlled by the quantum metric of
the corresponding quantum state. To illustrate the relative
importance of the interband contribution, we considered a
spin-orbit-coupled spin—% particle and calculated its effective
band mass at the band minimum of the lower helicity band.
We found that the bare mass mgy of the particle jumps to
2my for the Rashba coupling and to 3m for the Weyl cou-
pling, independently of the coupling strength. We argued that
such a geometric enhancement of the effective mass of the
particle is consistent with the effective mass of the relevant
two-body bound state in the noninteracting limit [41-49].
In addition, for graphenelike solid-state materials, we noted
that the physical mechanism behind the linearly dispersing
effective cyclotron mass of a Dirac quasiparticle [12—14] may
be interpreted as a geometric mass acquisition.
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that of P. Tormi, L. Liang, and S. Peotta, Quantum metric
and effective mass of a two-body bound state in a flat band,
Phys. Rev. B 98, 220511(R) (2018). For an energetically iso-
lated flat band in k space, the inverse mass tensor of the two-
body bound state is reported as /i*[M,'1V = |Ep|(g}/), where
Ey= —U/2 is the energy of the zero-momentum pair with
U < 0 characterizing the short-range attractive interactions and
(gi(j) =(1/N)Y g’;(j is an average over the entire k space with
N degenerate points. In connection to our case, reexpress-
ing the average effective mass as hz([M:}km]”) = W28;;/mo —
2moot2(gi(jm), we directly identify the average |E0|<gi(jm) over
the degenerate subspace as the geometric contribution to the
inverse pair mass tensor, where Ey = —mga? is the energy of
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the zero-momentum pair. See [34] for a similar observation and
note [50].

[50] For the isotropic directions of interest in this paper, we define

the relevant effective mass as the k-space average of Eq. (4)
over the degenerate subspace. Such an average mass may also
be motivated by the electrical conductivity tensor ¢%/. For
instance, within the semiclassical Boltzmann transport equa-
tion, integrating the tensor ¢’/ o¢ 37, vi, v/ [—0 f (e — 1)/ 0]
by parts, we may reexpress it as o/ oc Y [M']7 f(eu —
w). Here f(x)=1/[e/*T 4 1] is the Fermi-Dirac distribu-
tion, with kp the Boltzmann constant and 7 the tempera-
ture, and p is the chemical potential. See [40], p. 250 for
details.


https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevB.98.220511

