
Nonzero orbital angular momentum superfluidity in ultracold Fermi gases

M. Iskin and C. A. R. Sá de Melo
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

�Received 6 February 2006; revised manuscript received 18 April 2006; published 13 July 2006�

We analyze the evolution of superfluidity for nonzero orbital angular momentum channels from the Bardeen-
Cooper-Schrieffer �BCS� to the Bose-Einstein condensation �BEC� limit in three dimensions. First, we analyze
the low-energy scattering properties of finite range interactions for all possible angular momentum channels.
Second, we discuss ground-state �T=0� superfluid properties including the order parameter, chemical potential,
quasiparticle excitation spectrum, momentum distribution, atomic compressibility, ground-state energy, and
low-energy collective excitations. We show that a quantum phase transition occurs for nonzero angular mo-
mentum pairing, unlike the s-wave case where the BCS to BEC evolution is just a crossover. Third, we present
a Gaussian fluctuation theory near the critical temperature �T=Tc�, and we analyze the number of bound,
scattering, and unbound fermions as well as the chemical potential. Finally, we derive the time-dependent
Ginzburg-Landau functional near Tc, and compare the Ginzburg-Landau coherence length with the zero-
temperature average Cooper pair size.

DOI: 10.1103/PhysRevA.74.013608 PACS number�s�: 03.75.Ss, 03.75.Hh, 74.25.Bt, 74.25.Dw

I. INTRODUCTION

Experimental advances involving atomic Fermi gases en-
abled the control of interactions between atoms in different
hyperfine states by using Feshbach resonances �1–7�. These
resonances can be tuned via an external magnetic field and
allow the study of dilute many-body systems with fixed den-
sity, but varying interaction strength characterized by the
scattering parameter a�. This technique allows for the study
of new phases of strongly interacting fermions. For instance,
the recent experiments from the MIT group �8� marked the
first observation of vortices in atomic Fermi gases corre-
sponding to a strong signature of superfluidity in the s-wave
��=0� channel. These studies combined �1–8� correspond to
the experimental realization of the theoretically proposed
Bardeen-Cooper-Schrieffer �BCS� to Bose-Einstein conden-
sation �BEC� crossover �9–13� in three-dimensional �3D�
s-wave superfluids. Recent extensions of these ideas include
trapped fermions �14,15� and fermion-boson models
�16–18�.

Arguably one of the next frontiers of exploration in ultra-
cold Fermi systems is the search for superfluidity in higher
angular momentum states ���0�. Substantial experimental
progress has been made recently �19–23� in connection to
p-wave ��=1� cold Fermi gases, making them ideal candi-
dates for the observation of novel triplet superfluid phases.
These phases may be present not only in atomic, but also in
nuclear �pairing in nuclei�, astrophysics �neutron stars�, and
condensed-matter �organic superconductors� systems.

The tuning of p-wave interactions in ultracold Fermi
gases was initially explored via p-wave Feshbach resonances
in trap geometries for 40K in Refs. �19,20� and 6Li in Refs.
�21,22�. Finding and sweeping through these resonances is
difficult since they are much narrower than the s-wave case,
because atoms interacting via higher angular momentum
channels have to tunnel through a centrifugal barrier to
couple to the bound state �20�. Furthermore, while losses due
to two body dipolar �21,24� or three-body �19,20� processes
challenged earlier p-wave experiments, these losses were

still present but were less dramatic in the very recent optical
lattice experiment involving 40K and p-wave Feshbach reso-
nances �23�.

Furthermore, due to the magnetic dipole-dipole interac-
tion between valence electrons of alkali atoms, the nonzero
angular momentum Feshbach resonances corresponding to
projections of angular momentum � �m�= ±� , ± ��
−1� , . . . ,0� are nondegenerate �separated from each other�
with total number of �+1 resonances �20�. Therefore, in
principle, these resonances can be tuned and studied inde-
pendently if the separation between them is larger than the
experimental resolution. Since the ground state is highly de-
pendent on the separation and detuning of these resonances,
it is possible that p-wave superfluid phases can be studied
from the BCS to the BEC regime. For sufficiently large split-
tings, it has been proposed �25,26� that pairing occurs only in
m�=0 and does not occur in the m�= ±1 states. However, for
small splittings, pairing occurs via a linear combination of
the m�=0 and m�= ±1 states. Thus the m�=0 or m�= ±1
resonances may be tuned and studied independently if the
splitting is large enough in comparison to the experimental
resolution.

The BCS to BEC evolution of d-wave ��=2� superfluidity
was discussed previously in the literature using continuum
�27–29� and lattice �30,31� descriptions in connection to
high-Tc superconductivity. More recently, p-wave superfluid-
ity was analyzed at T=0 for two hyperfine state �THS� sys-
tems in three dimensions �32�, and for single hyperfine state
�SHS� systems in two dimensions �33–35�, using fermion-
only models. Furthermore, fermion-boson models were pro-
posed to describe p-wave superfluidity at zero �25,26� and
finite temperature �36� in three dimensions. In this manu-
script, we present a generalization of the zero and finite tem-
perature analysis of both THS pseudospin singlet and SHS
pseudospin triplet �37� superfluidity in three dimensions
within a fermion-only description.

The rest of the paper is organized as follows. In Sec. II,
we analyze the interaction potential in both real and momen-
tum space for nonzero orbital momentum channels. We in-
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troduce the imaginary-time functional integration formalism
in Sec. III, and obtain the self-consistency �order parameter
and number� equations. There we also discuss the low-
energy scattering amplitude of a finite range interaction for
all possible angular momentum channels, and relate the self-
consistency equations to scattering parameters. In Sec. IV,
we discuss the evolution from BCS to BEC superfluidity at
zero temperature. There we analyze the order parameter,
chemical potential, quasiparticle excitation spectrum, mo-
mentum distribution, atomic compressibility, and ground-
state energy as a function of scattering parameters. We also
discuss Gaussian fluctuations and low-energy collective ex-
citations at zero temperature in Sec. V. In Sec VI, we present
the evolution of superfluidity from the BCS to the BEC re-
gimes near the critical temperature. There we discuss the
importance of Gaussian fluctuations, and analyze the number
of unbound, scattering, and bound fermions, critical tempera-
ture, and chemical potential as a function of scattering pa-
rameters. In Sec. VII, we derive time-dependent Ginzburg-
Landau �TDGL� equation and extract the Ginzburg-Landau
�GL� coherence length and time. There, we recover the GL
equation in the BCS and the GP equation in the BEC limit. A
short summary of our conclusions is given in Sec. VIII. Fi-
nally, we present in Appendixes A and B the coefficients for
the low-frequency and long-wavelength expansion of the ac-
tion at zero and finite temperatures, respectively.

II. GENERALIZED HAMILTONIAN

The Hamiltonian for a dilute Fermi gas is given by

H = �
k,s1

��k�ak,s1
†ak,s1 +

1

2V

� �
k,k�,q

�
s1,s2,s3,s4

Vs1,s2

s3,s4�k,k��bs1,s2

† �k,q�bs3,s4
�k�,q� ,

�1�

where sn labels the pseudospins corresponding to trapped
hyperfine states and V is the volume. These states are repre-
sented by the creation operator ak,s1

† , and bs1,s2

† �k ,q�
=ak+q/2,s1

† a−k+q/2,s2

† . Here, ��k�=��k�−� where ��k�
=k2 / �2M� is the energy and � is the chemical potential of
fermions.

The interaction term can be written in a separable form
Vs1,s2

s3,s4�k ,k��=�s1,s2

s3,s4V�k ,k��, where �s1,s2

s3,s4 is the spin and
V�k ,k�� is the spatial part, respectively. In the case of THS
case, where sn��↑ , ↓ �, both pseudospin singlet and pseu-
dospin triplet pairings are allowed. However, we concentrate
on the pseudospin singlet THS state with �s1,s2

s3,s4

=�s1,s2

s3,s4�s1,−s2
�s2,s3

�s3,−s4
. In addition, we discuss the SHS case

�sn� ↑ �, where only pseudospin triplet pairing is allowed,
and the interaction is given by �s1,s2

s3,s4

=�s1,s2

s3,s4�s1,s2
�s2,s3

�s3,s4
�s4,↑. In this manuscript, we analyze

THS singlet and SHS triplet cases for all allowable angular
momentum channels. THS triplet pairing is more involved
due to the more complex nature of the vector order param-
eters, and therefore we postpone this discussion for a future
paper.

The two fermion interaction can be expanded as

V�k,k�� = 4� �
�,m�

V��k,k��Y�,m�
�k̂�Y�,m�

* �k̂�� , �2�

where Y�,m�
�k̂� is the spherical harmonic of order �� ,m��,

��,m�
=��=0

� �m�=−�
� , and k̂ denotes the angular dependence

�	k ,
k�. The interaction should have the necessary symme-
try under the Parity operation, where the transformation k
→−k or k�→−k� leads to V�k ,k�� for singlet, and
−V�k ,k�� for triplet pairing. Furthermore, V�k ,k�� is invari-
ant under the transformation �k ,k��→ �−k ,−k��, and
V�k ,k�� reflects the Pauli exclusion principle. The �k ,k��
dependent coefficients V��k ,k�� are related to the real-space
potential V�r� through the relation V��k ,k��
=4��0

�drr2j��kr�j��k�r�V�r�, where j��kr� is the spherical
Bessel function of order �. The index � labels angular mo-
mentum states in three dimensions, with �=0,1 ,2 , . . . corre-
sponding to s , p ,d , . . . channels, respectively.

Under these circumstances, we choose to study a model
potential that contains most of the features described above.
One possibility is to retain only one of the � terms in Eq. �2�,
by assuming that the dominant contribution to the scattering
process between Fermionic atoms occurs in the �th angular
momentum channel. This assumption may be experimentally
relevant since atom-atom dipole interactions split different
angular momentum channels such that they may be tuned
independently. Using the properties discussed above, we
write

V��k,k�� = − �����k����k�� , �3�

where ���0 is the interaction strength, and the function

���k� =
�k/k0��

�1 + k2/k0
2���+1�/2 �4�

describes the momentum dependence. Here, k0�R0
−1 plays

the role of the interaction range in real space and sets the
scale at small and large momenta. In addition, the diluteness
condition �n�R0

3
1� requires �k0 /kF�3�1, where n� is the
density of atoms and kF is the Fermi momentum. This func-
tion reduces to ���k��k� for small k, and behaves as ���k�
�1/k for large k, which guarantees the correct qualitative
behavior expected for V��k ,k�� according to the analysis
above.

III. FUNCTIONAL INTEGRAL FORMALISM

In this section, we describe in detail the THS singlet case
for even angular momentum states. A similar approach for
the SHS triplet case for odd angular momentum states can be
found in Ref. �34�, and therefore we do not repeat the same
analysis here. However, we point out the main differences
between the two cases whenever it is necessary.

A. THS singlet effective action

In the imaginary-time functional integration formalism
��=kB=1 and �=1/T�, the partition function for the THS
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singlet case can be written as Z�=�D�a† ,a�e−S� with action
S�=�0

�d���k,sak,s
† �������ak,s���+H����� where the Hamil-

tonian for the �th angular momentum channel is H����
=�k,s���k�ak,s

† ���ak,s���−
4���

V �q,m�
b�,m�

† �q ,��b�,m�
�q ,��.

Here, b�,m�
�q ,��=�k���k�Y�,m�

�k̂�ak+q/2,↑ak−q/2,↓ and ���k�
=��k�−��. We first introduce the Nambu spinor �†�p�
= �ap,↑

† ,a−p,↓�, where p= �k , iwj� denotes both momentum and
Fermionic Matsubara frequency wj = �2j+1�� /�, and use a
Hubbard-Stratonovich transformation to decouple Fermionic
and Bosonic degrees of freedom. Integration over the Fermi-
onic part �D��† ,��� leads to the action

S�
eff = � �

q,m�

	��,m�
�q�	2

4�V−1��

+ �
p,q

�����k��q,0 − Tr ln�G�/��−1� ,

�5�

where q= �q , iv j�, with Bosonic Matsubara frequency v j

=2�j /�. Here, G�
−1=��

*�q����p��−+���−q����p��+

+ �iwj�0−���k��3��q,0 is the inverse Nambu propagator,

���q�=�m�
��,m�

�q�Y�,m�
�k̂� is the Bosonic field, and �±

= ��1±�2� /2 and �i is the Pauli spin matrix. The Bosonic
field ��,m�

�q�=��,m�
�q,0+��,m�

�q� has �-independent ��,m�

and �-dependent ��,m�
�q� parts.

Performing an expansion in S�
eff to quadratic order in

��,m�
�q� leads to

S�
gauss = S�

sp +
�

2 �
q,m�,m��

�̃�,m�

† �q�F�,m�,m
��

−1 �q��̃�,m
��
�q� , �6�

where the vector �̃�,m�

† �q� is such that �̃�,m�

† �q�
= ���,m�

† �q� ,��,m�
�−q��, and F

�,m�,m
��

−1 �q� are the matrix ele-

ments of the inverse fluctuation propagator matrix F�
−1�q�.

Furthermore, S�
sp is the saddle-point action given by S�

sp

=��m�

	��,m�
	2

4�V−1��
+�p�����k�−Tr ln�G�

sp /��−1�, and the saddle-
point inverse Nambu propagator is �G�

sp�−1= iwj�0−���k��3

+��
*�k��−+���k��+, with saddle-point order parameter

���k�=���k��m�
��,m�

Y�,m�
�k̂�. Notice that ���k� may in-

volve several different m� for a given angular momentum
channel �.

The matrix elements of the inverse fluctuation matrix
F�

−1�q� are given by

�F�,m�,m
��

−1 �11 = −
1

�
�

p

�G�
sp�11
q

2
+ p��G�

sp�11
q

2
− p�

���
2�p�Y�,m�

�k̂�Y�,m
��

* �k̂� +
�m�,m

��
V

4���

, �7�

�F�,m�,m
��

−1 �12 =
1

�
�

p

�G�
sp�12
q

2
+ p��G�

sp�12
q

2
− p�

���
2�p�Y�,m�

�k̂�Y�,m
��

* �k̂� . �8�

Notice that while �F
�,m�,m

��
−1 �12�q�= �F

�,m�,m
��

−1 �21�q� are even un-

der the transformations q→−q and iv j→−iv j;

�F
�,m�,m

��
−1 �11�q�= �F

�,m�,m
��

−1 �22�−q� are even only under q→−q,

having no defined parity in iv j.
The Gaussian action Eq. �6� leads to the thermodynamic

potential ��
gauss=��

sp+��
fluct, where

��
sp = �

m�

	��,m�
	2

4�V−1��

+ �
k

���k� − E��k�

−
2

�
ln�1 + exp�− �E��k��
� , �9�

��
fluct =

1

�
�

q

ln det�F�
−1�q�/�2��� �10�

are the saddle-point and fluctuation contributions, respec-
tively. Here, E��k�= ���

2�k�+ 	���k�	2�1/2 is the quasiparticle
energy spectrum. Having completed the presentation of the
functional integral formalism, we discuss next the self-
consistency equations for the order parameter and the chemi-
cal potential.

B. Self-consistency equations

The saddle-point condition �S�
sp /���,m�

* =0 leads to the
order-parameter equation

��,m�

4���

=
1

V�
k

���k����k�Y�,m�

* �k̂�

2E��k�
tanh

�E��k�
2

, �11�

which can be expressed in terms of experimentally relevant
parameters via the T-matrix approach �32�.

The low-energy two-body scattering amplitude between a
pair of fermions in the �th angular momentum channel is
given by �38�

f��k� = −
k2�

1/a� − r�k2 + ik2�+1 , �12�

where r��0 and a� are the effective range and scattering
parameter, respectively. Here r� has dimensions of L2�−1 and
a� has dimensions of L2�+1, where L is the size of the system.
The energy of the two-body bound state is determined from
the poles of f��k→ i���, and is given by Eb,�=−��

2 / �2M�.
Bound states occur when a0�0 for �=0, and a��0r��0�0
for ��0. Since r��0, bound states occur only when a�

�0 for all �, in which case the binding energies are given by

Eb,0 = −
1

Ma0
2 , �13�

Eb,��0 =
1

Ma�r�

. �14�

Notice that only a single parameter �a0� is sufficient to de-
scribe the low-energy two-body problem for �=0, while two
parameters �a� ,r�� are necessary to describe the same prob-
lem for ��0. The point at which 1/ �kF

2�+1a��=0 corresponds
to the threshold for the formation of a two-body bound state
in vacuum. Beyond this threshold, a0 for �=0 and 	a��0r��0	
for ��0 are the size of the bound states.
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For any �, the two-body scattering amplitude is related to
the T matrix via f��k�=−M / �4��T��k ,k ;2��k�+ i0+�, where
the T matrix is given by

T�k,k�,E� = V�k,k�� +
1

V�
k�

V�k,k � �T�k � ,k�,E�
E − 2��k � � + i0+ .

Using the spherical harmonics expansion for both V�k ,k��
and T�k ,k� ,E� leads to two coupled equations,

1

��

= −
M

4�k0
2�a�

+
1

V�
k

��
2�k�

2��k�
, �15�

r��0 = −
�k0

2�

M2V�
k

��
2�k�

�2�k�
−

� + 1

k0
2a�

, �16�

relating �� and k0 to a� and r�. Except for notational differ-
ences, notice that these relations are identical to previous
results �32�. After performing momentum integrations we
obtain

k0
2�+1a� =

Mk0��
��

Mk0��
̃� − 4���
, �17�

−
1

a��0r��0
=

2k0
2��

k0
2�+1a�
� + 2�� + 1���

, �18�

where 
̃�=���+1/2� /���+1� and 
�=���−1/2� /���+1�.
Here ��x� is the gamma function. Notice that k0

2�+1a� di-

verges and changes sign when Mk0��
̃�=4���, which cor-
responds to the critical coupling for Feshbach resonances
�the unitarity limit�.

In addition, the scattering parameter has a maximum
value in the zero ���→0� and a minimum value in the infi-
nite ���→�� coupling limits given, respectively, by

k0
2�+1a��0

max =−2��+1��� /
� �a��0� and k0
2�+1a�

min=�� / 
̃�

�a��0�. The first condition �when ��→0� follows from Eq.
�18� where r��0�0 has to be satisfied for all possible a��0.
However, there is no condition on r0 for �=0, and k0a0

max

=0 in the BCS limit. The second condition �when ��→��
follows from Eq. �17�, which is valid for all possible �. The
minimum a� for a finite range interaction is associated with
the Pauli principle, which prevents two identical fermions to
occupy the same state. Thus while the scattering parameter
cannot be arbitrarily small for a finite range potential, it may
go to zero as k0→�. Furthermore, the binding energy is
given by Eb,��0=−2�� / �Mk0

2�−1a�
��, when k0
2�+1a�
�

�2��+1���.
Thus the order-parameter equation in terms of the scatter-

ing parameter is rewritten as

MV��,m�

16�2k0
2�a�

= �
k,m��

� 1

2��k�
−

tanh��E��k�/2�
2E��k� �

���,m
��
��

2�k�Y�,m�

* �k̂�Y�,m
��
�k̂� . �19�

This equation is valid for both THS pseudospin singlet and
SHS pseudospin triplet states. However, there is one impor-

tant difference between pseudospin singlet and pseudospin
triplet states. For pseudospin singlet states, the order param-
eter is a scalar function of k, while it is a vector function for
pseudospin triplet states discussed next.

In general, the triplet order parameter can be written in
the standard form �39�

O��k� = 
− d�
x�k� + id�

y�k� d�
z�k�

d�
z�k� d�

x�k� + id�
y�k�

� , �20�

where the vector d��k�= �d�
x�k� ,d�

y�k� ,d�
z�k�� is an odd func-

tion of k. Therefore all up-up, down-down, and up-down
components may exist for a THS pseudospin triplet interac-
tion. However, in the SHS pseudospin triplet case only the
up-up or down-down component may exist leading to
���k�� �O��s1s1

�k�. Thus for the up-up case d�
z�k�=0 and

d�
x�k�=−id�

y�k�, leading to d��k�=d�
x�k��1, i ,0�, which breaks

time-reversal symmetry, as expected from a fully spin polar-
ized state. The corresponding down-down state has d��k�
=d�

x�k��1,−i ,0�. Furthermore, the simplified form of the
SHS triplet order parameter allows a treatment similar to that
of THS singlet states. However, it is important to mention
that the THS triplet case can be investigated using our ap-
proach, but the treatment is more complicated.

The order-parameter equation has to be solved self-
consistently with the number equation N�=−��� /��� where
�� is the full thermodynamic potential. In the approxima-
tions used, N��N�

gauss=N�
sp+N�

fluct has two contributions. The
saddle-point contribution to the number equation is

N�
sp = �

k,s
n��k� , �21�

where n��k� is the momentum distribution given by

n��k� =
1

2
�1 −

���k�
E��k�

tanh
�E��k�

2
� . �22�

For the SHS triplet case, the summation over s is not present
in N�

sp. The fluctuation contribution to the number equation is

N�
fluct = −

1

�
�

q

��det F�
−1�q��/���

det F�
−1�q�

, �23�

where F�
−1�q� is the inverse fluctuation matrix defined in Eqs.

�7� and �8�.
In the rest of the paper, we analyze analytically the super-

fluid properties at zero temperature �ground state� and near
the critical temperatures for the THS singlet �only even ��
and the SHS triplet �only odd �� cases. In addition, we ana-
lyze numerically the s-wave ��=0� channel of the THS sin-
glet and the p-wave ��=1� channel of the SHS triplet cases,
which are currently of intense theoretical and experimental
interest in ultracold Fermi atoms.

IV. BCS TO BEC EVOLUTION AT T=0

At low temperatures, the saddle-point self-consistent �or-
der parameter and number� equations are sufficient to de-
scribe ground-state properties in the weak-coupling BCS and
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strong-coupling BEC limits �10�. However, fluctuation cor-
rections to the number equation may be important in the
intermediate regime �40�.

Ground-state properties �T=0� are investigated by solving
saddle-point self-consistency �order parameter and number�
equations to obtain ��,m�

and ��, which are discussed next.

A. Order parameter and chemical potential

We discuss in this section ��,m�
and ��. In weak coupling,

we first introduce a shell about the Fermi energy 	���k�	
�wD such that �F�wD����kF�, inside of which one may
ignore the 3D density-of-states factor ��� /�F� and outside of
which one may ignore ���k�. While in sufficiently strong
coupling, we use ���k�� 	���k�	 to derive the analytic results
discussed below. It is important to notice that, in strictly
weak and strong coupling, the self-consistency equations
�21� and �19� are decoupled, and play reversed roles. In weak
�strong� coupling the order-parameter equation determines
��,m�

���� and the number equation determine �� ���,m�
�.

In weak coupling, the number equation Eq. �21� leads to

�� = �F �24�

for any � where �F=kF
2 / �2M� is the Fermi energy. In strong

coupling, the order-parameter equation �19� leads to

�0 = −
1

2Ma0
2 , �25�

���0 = −
��

Mk0
2�−1a�
�

, �26�

where 
�=���−1/2� /���+1� and ��x� is the Gamma func-
tion. This calculation requires that a0k0�1 for �=0 and that
k0

2�+1a�
�� ��+1��� for ��0 for the order-parameter equa-
tion to have a solution with ���0 in the strong-coupling
limit. In the BEC limit �0=−k0

2 / �2M�k0a0−1�2� for �=0.
Notice that �0=−1/ �2Ma0

2� when k0a0�1 �or 	�0	
�0

=k0
2 / �2M��, and thus we recover the contact potential �k0

→�� result. In the same spirit, to obtain the expressions in
Eqs. �25� and �26�, we assumed 	��	
�0. Notice that ��

=Eb,� /2 in this limit for any �.
On the other hand, the solution of the order-parameter

equation in the weak-coupling limit is

	�0,0	 = 16���F exp�− 2 +
�

2

kF

k0
−

�

2kF	a0	� , �27�

	���0,m�
	 � 
 k0

kF
��

�F exp�t�
 k0

kF
�2�−1

−
�

2kF
2�+1	a�	� ,

�28�

where t1=� /4 and t��1=�2�+1�2�−3�!! /�!. These expres-
sions are valid only when the exponential terms are small.
The solution of the number equation in the strong-coupling
limit is

	�0,0	 = 8�F
 �0

9�F
�1/4

, �29�

�
m�

	���0,m�
	2 =

64��

3
�

�F��F�0�1/2 �30�

to order �� /�0, where we assumed that ���k�� 	���k�	 for
sufficiently strong couplings with 	��	
�0.

Next, we present numerical results for two particular
states. First, we analyze the THS s-wave ��=0, m�=0� case,

where �0�k�=�0,0�0�k�Y0,0�k̂� with Y0,0�k̂�=1/�4�. Sec-
ond, we discuss the SHS p-wave ��=1, m�=0� case, where

�1�k�=�1,0�1�k�Y1,0�k̂� with Y1,0�k̂�=�3/ �4��cos�	k�. In
all numerical calculations, we choose k0�200kF to compare
s-wave and p-wave cases.

In Figs. 1 and 2, we show 	�0,0	 and �0 at T=0 for the
s-wave case. Notice that the BCS to BEC evolution range in
1/ �kFa0� is of order 1. Furthermore, 	�0,0	 grows continu-
ously without saturation with increasing coupling, while �0
changes from �F to Eb,0 /2 continuously and decreases as
−1/ �2Ma0

2� for strong couplings. Thus the evolution of 	�0,0	
and �0 as a function of 1/ �kFa0� is smooth. For complete-
ness, it is also possible to obtain analytical values of a0 and
�0,0 when the chemical potential vanishes. When �0=0, we
obtain for 	�0,0	=8�F��2�� /�4�1/4��1/3�3.73�F at
1 / �kFa0�= �2�3���F / 	�0,0	�1/2 / �2�2�3/4���0.554, which
also agrees with the numerical results. Here ��x� is the
gamma function.

In Figs. 3 and 4, we show 	�1,0	 and �1 at T=0 for the
p-wave case. Notice that the BCS to BEC evolution range in
1/ �kF

3a1� is of order k0 /kF. Furthermore, 	�1,0	 grows with
increasing coupling but saturates for large 1/ �kF

3a1�, while �1

changes from �F to Eb,1 /2 continuously and decreases as
−1/ �Mk0a1� for strong couplings. For completeness, we

FIG. 1. Plot of reduced order parameter �r= 	�0,0	 /�F vs inter-
action strength 1/ �kFa0� for k0�200kF.

FIG. 2. Plot of reduced chemical potential �r=�0 /�F �inset� vs
interaction strength 1/ �kFa0� for k0�200kF.
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present the limiting expressions 	�1,0	=24
k0

kF
�F exp�− 8

3 +
�k0

4kF

− �

2kF
3	a1	

� and 	�1,0	=8�F� �0

9�F
�1/4

, in the weak- and strong-
coupling limits, respectively.

The evolution of 	�1,0	 and �1 are qualitatively similar to
recent T=0 results for THS fermion �32� and SHS fermion-
boson �26� models. Due to the angular dependence of �1�k�,
the quasiparticle excitation spectrum E1�k� is gapless for
�1�0, and fully gapped for �1�0. Furthermore, both �1,0
and �1 are nonanalytic exactly when �1 crosses the bottom
of the fermion energy band �1=0 at 1 / �kF

3a1��0.48. The
nonanalyticity does not occur in the first derivative of �1,0 or
�1 as it is the case in two dimensions �35�, but occurs in the
second and higher derivatives. Thus, in the p-wave case, the
BCS to BEC evolution is not a crossover, but a quantum
phase transition occurs, as can be seen in the quasiparticle
excitation spectrum to be discussed next.

B. Quasiparticle excitations

The quasiparticle excitation spectrum E��k�= ���
2�k�

+ 	���k�	2�1/2 is gapless at k-space regions where the condi-
tions ���k�=0 and ��k�=�� are both satisfied. Notice that
the second condition is only satisfied in the BCS side ��

�0, and therefore the excitation spectrum is always gapped
in the BEC side ����0�.

For �=0, the order parameter is isotropic in k space with-
out zeros �nodes� since it does not have any angular depen-
dence. Therefore the quasiparticle excitation spectrum is
fully gapped in both BCS ��0�0� and BEC ��0�0� sides,
since

min�E0�k�
 = 	�0�k�0
�	 ��0 � 0� , �31�

min�E0�k�
 = �	�0�0�	2 + �0
2 ��0 � 0� . �32�

Here, k��
=�2M��. This implies that the evolution of the

quasiparticle excitation spectrum from weak-coupling BCS
to strong-coupling BEC regime is smooth when �0=0 for
�=0 pairing.

In Fig. 5, we show E0�kx=0,ky ,kz� for an s-wave ��=0,
m�=0� superfluid when �a� �0�0 �BCS side� for 1 / �kFa0�
=−1 and �b� �0�0 �BEC side� for 1 / �kFa0�=1. Notice that
the quasiparticle excitation spectrum is gapped for both
cases. However, the situation for ��0 is very different as
discussed next.

For ��0, the order parameter is anisotropic in k space
with zeros �nodes� since it has an angular dependence.
Therefore while the quasiparticle excitation spectrum is gap-
less in the BCS ����0�0� side, it is fully gapped in the BEC
����0�0� side, since

min�E��0�k�
 = 0 ��� � 0� , �33�

min�E��0�k�
 = 	��	 ��� � 0� . �34�

This implies that the evolution of quasiparticle excitation
spectrum from weak-coupling BCS to strong-coupling BEC
regime is not smooth for ��0 pairing having a nonanalytic
behavior when ���0=0. This signals a quantum phase tran-
sition from a gapless to a fully gapped state exactly when
���0 drops below the bottom of the energy band ���0=0.

In Fig. 6, we show E1�kx=0,ky ,kz� for a p-wave ��=1,
m�=0� superfluid when �a� �1�0 �BCS side� for 1 / �kF

3a1�

FIG. 3. Plots of reduced order parameter �r= 	�1,0	 /�F vs inter-
action strength 1/ �kF

3a1� for k0�200kF.

FIG. 4. Plots of reduced chemical potential �r=�1 /�F �inset� vs
interaction strength 1/ �kF

3a1� for k0�200kF.

FIG. 5. �Color online� Plots of quasiparticle excitation spectrum
E0�kx=0,ky ,kz� when �a� �0�0 �BCS side� for 1 / �kFa0�=−1 and
�b� �0�0 �BEC side� for 1 / �kFa0�=1 vs momentum ky /kF and
kz /kF.
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=−1 and �b� �1�0 �BEC side� for 1 / �kF
3a1�=1. The quasi-

particle excitation spectrum is gapless when �1�k��kz /kF

=0 and kx
2+ky

2+kz
2=2M�1 are both satisfied in certain regions

of k space. For kx=0, these conditions are met only when
kz=0 and ky = ±�2M�1 for a given �1. Notice that these
points come closer as the interaction ��1� increases �de-
creases�, and when �1=0 they become degenerate at k=0.
For �1�0, the second condition cannot be satisfied, and thus
a gap opens in the excitation spectrum of quasiparticles as
shown in Fig. 6�b�.

The spectrum of quasiparticles plays an important role in
the thermodynamic properties of the evolution from BCS to
BEC regime at low temperatures. For �=0, thermodynamic
quantities depend exponentially on T throughout the evolu-
tion. Thus a smooth crossover occurs at �0=0. However, for
��0, thermodynamic quantities depend exponentially on T
only in the BEC side, while they have a power-law depen-
dence on T in the BCS side. Thus a nonanalytic evolution
occurs at ���0=0. This can be seen best in the momentum
distribution which is discussed next.

C. Momentum distribution

In this section, we analyze the momentum distribution
n��k�= �1−���k� /E��k�� /2 in the BCS ����0� and BEC
sides ����0�, which reflect the gapless to gapped phase
transition for nonzero angular momentum superfluids.

In Fig. 7, we show n0�kx=0,ky ,kz� for an s-wave ��
=0,m�=0� superfluid when �a� �0�0 �BCS side� for
1 / �kFa0�=−1 and �b� �0�0 �BEC side� for 1 / �kFa0�=1. As

the interaction increases the Fermi sea with locus �0�k�=0 is
suppressed, and pairs of atoms with opposite momenta be-
come more tightly bound. As a result, n0�k� broadens in the
BEC side since fermions with larger momentum participate
in the formation of bound states. Notice that the evolution is
a crossover without any qualitative change. Furthermore,
n0�kx ,ky =0,kz� and n0�kx ,ky ,kz=0� can be trivially obtained
from n0�kx=0,ky ,kz�, since n0�kx ,ky ,kz� is symmetric in kx,
ky, and kz.

In Fig. 8, we show n1�kx=0,ky ,kz� for a p-wave ��=1,
m�=0� superfluid when �a� �1�0 �BCS side� for 1 / �kF

3a1�
=−1 and �b� �1�0 �BEC side� for 1 / �kF

3a1�=1. Notice that
n1�kx=0,ky ,kz� is largest in the BCS side when kz /kF=0, but
it vanishes along kz /kF=0 for any ky /kF in the BEC side. As
the interaction increases the Fermi sea with locus �1�k�=0 is
suppressed, and pairs of atoms with opposite momenta be-
come more tightly bound. As a result, the large momentum
distribution in the vicinity of k=0 splits into two peaks
around finite k reflecting the p-wave symmetry of these
tightly bound states. Furthermore, n1�kx ,ky ,kz=0�= �1
−sgn��1�k��
 /2 for any �1, and n1�kx ,ky =0,kz� is trivially
obtained from n1�kx=0,ky ,kz�, since n1�k� is symmetric in
kx,ky. Here, sgn is the sign function.

Thus n1�k� for the p-wave case has a major rearrangement
in k space with increasing interaction, in sharp contrast to the
s-wave case. This qualitative difference between p-wave and
s-wave symmetries around k=0 explicitly shows a direct
measurable consequence of the gapless to gapped quantum
phase transition when �1=0, since n1�k� depends explicitly
on E1�k�. These quantum phase transitions are present in all

FIG. 6. �Color online� Plots of quasiparticle excitation spectrum
E1�kx=0,ky ,kz� in �a� �1�0 �BCS side� for 1 / �kF

3a1�=−1 and �b�
�1�0 �BEC side� for 1 / �kF

3a1�=1 vs momentum ky /kF and kz /kF.

FIG. 7. �Color online� Contour plots of momentum distribution
n0�kx=0,ky ,kz� when �a� �0�0 �BCS side� for 1 / �kFa0�=−1 and
�b� �0�0 �BEC side� for 1 / �kFa0�=1 vs momentum ky /kF and
kz /kF.
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nonzero angular momentum states, and can be further char-
acterized through the atomic compressibility as discussed in
the next section.

D. Atomic compressibility

At finite temperatures, the isothermal atomic compress-
ibility is defined by ��

T�T�=−��V /�P�T,N�
/V where V is the

volume and P is the pressure of the gas. This can be rewrit-
ten as

��
T�T� = −

1

N�
2
 �2��

���
2 �

T,V
=

1

N�
2
 �N�

���
�

T,V
, �35�

where the partial derivative �N� /��� at T�0 is given by
�N�

���
�

�N�
sp

���
=�k,s

	���k�	2

2E�
3�k� .

The expression above leads to �0
T�0�=2N��F� /N0

2 in weak-
coupling BCS and �0

T�0�=2N��F��F / �3 	�0 	N0
2� in strong-

coupling BEC limit for �=0, where N��F�=MVkF / �2�2� is
the density of states per spin at the Fermi energy. Notice that
�0

T�0� decreases as a0
2 in strong coupling since 	�0	

=1/ �2Ma0
2�. However, we only present the strong-coupling

results for higher angular momentum states since they ex-
hibit an interesting dependence on a� and k0. In the case of
THS pseudospin singlet, we obtain ���1

T �0�
=4N��F��F
̄� / ��0
�N�

2� for ��1, while in the case of SHS
states we obtain �1

T�0�=N��F��F / ���0	�1	N�
2� for �=1 and

���1
T �0�=2N��F��F
̄� / ��0
�N�

2� for ��1. Here 
�=���
−1/2� /���+1� and 
̄�=���−3/2� /���+1�, where ��x� is

the gamma function. Notice that �1
T�0� decreases as �a1 for

�=1 since 	�1	=1�Mk0a1� and ���1
T �0� is a constant for �

�1 in strong coupling.
In Fig. 9, we show the evolution of �0

T�0� for a s-wave
��=0,m�=0� superfluid from the BCS to the BEC regime.
�0

T�0� decreases continuously, and thus the evolution is a
crossover �smooth� as can be seen in the inset where the
numerical derivative of �0

T�0� with respect to 1/ �kFa0� is
shown �d�0

T�0� /d��kFa0�−1�
. This decrease is associated with
the increase of the gap of the excitation spectrum as a func-
tion of 1 / �kFa0�. In this approximation, the gas is incom-
pressible ��0

T�0�→0� in the extreme BEC limit.
In Fig. 10, we show the evolution of �1

T�0� for a p-wave
��=1, m�=0� superfluid from the BCS to the BEC regime.
Notice that there is a change in qualitative behavior when
�1=0 at 1 / �kF

3a1��0.48 as can be seen in the inset where the
numerical derivative of �1

T�0� with respect to 1/ �kF
3a1� is

shown �d�1
T�0� /d��kF

3a1�−1�
. Thus the evolution from BCS
to BEC is not a crossover, but a quantum phase transition
occurs when �1=0 �25,33–35�.

The nonanalytic behavior occurring when ���0=0 can be
understood from higher derivatives of �� with respect to ��

given by � ���
T�T�

���
�T ,V=−2N����

T�T��2+ 1
N�

2
� �2N�

���
2
�

T,V
. For in-

stance, the second derivative �2N�
sp /���

2

=3�k ,s 	���k�	2���k� / �2E�
5�k�� tends to zero in the weak-

�����F�0� and strong- ����Eb,� /2�0� coupling limits.
On the other hand, when ��=0, �2N�

sp /���
2 is finite only for

FIG. 8. �Color online� Contour plots of momentum distribution
n1�kx=0,ky ,kz� in �a� �1�0 �BCS side� for 1 / �kF

3a1�=−1 and �b�
�1�0 �BEC side� for 1 / �kF

3a1�=1 vs momentum ky /kF and kz /kF.

FIG. 9. Plot of reduced isothermal atomic compressibility �r

=�0
T�0� / �̃0 vs interaction strength 1/ �kFa0� for k0�200kF. The inset

shows the numerical derivative of d�r /d��kFa0�−1� vs 1/ �kFa0�.
Here, �̃0 is the weak-coupling compressibility.

FIG. 10. Plot of reduced isothermal atomic compressibility �r

=�1
T�0� / �̃1 vs interaction strength 1/ �kF

3a1� for k0�200kF. The inset
shows the numerical derivative of d�r /d��kF

3a1�−1� vs 1/ �kF
3a1�.

Here �̃1 is the weak-coupling compressibility.
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�=0, and it diverges for ��0. This divergence is logarithmic
for �=1, and of higher order for ��1. Thus we conclude
again that higher derivatives of N�

sp are nonanalytic when
���0=0, and that a quantum phase transition occurs for �
�0.

Theoretically, the calculation of the isothermal atomic
compressibility ��

T�T� is easier than the isentropic atomic
compressibility ��

S�T�. However, performing measurements
of ��

S�T� may be simpler in cold Fermi gases, since the gas
expansion upon release from the trap is expected to be nearly
isentropic. Fortunately, ��

S�T� is related to ��
T�T� via the ther-

modynamic relation ��
S�T�=

C�
V�T�

C�
P�T���

T�T�, where ��
T�T�

���
S�T� since specific heat capacities C�

P�T��C�
V�T�. Fur-

thermore, at low temperatures �T�0� the ratio
C�

P�T� /C�
V�T��const, and therefore ��

S�T�0����
T�T�0�.

Thus we expect qualitatively similar behavior in both the
isentropic and isothermal compressibilities at low tempera-
tures �T�0�.

The measurement of the atomic compressibility could
also be performed via an analysis of particle density fluctua-
tions �41,42�. As it is well known from thermodynamics
�43�, ��

T�T� is connected to density fluctuations via the rela-
tion �n�

2�− �n��2=T�n��2��
T�T�, where �n�� is the average den-

sity of atoms. From the measurement of density fluctuations
��

T�T� can be extracted at any temperature T.
It is important to emphasize that in this quantum phase

transition at ���0=0, the symmetry of the order parameter
does not change as is typical in the Landau classification of
phase transitions. However, a clear thermodynamic signature
occurs in derivatives of the compressibility suggesting that
the phase transition is higher than second order according to
Ehrenfest’s classification. Next, we discuss the phase dia-
gram at zero temperature.

E. Phase diagram

To have a full picture of the evolution from the BCS to
the BEC limit at T=0, it is important to analyze thermody-
namic quantities at low temperatures. In particular, it is im-
portant to determine the quantum critical region �QCR�
where a qualitative change occurs in quantities such as the
specific heat, compressibility, and spin susceptibility. Here,
we do not discuss in detail the QCR, but we analyze the
contributions from quasiparticle excitations to thermody-
namic properties. However, the discussion can be extended
to include collective excitations �28� �see Sec. V�.

Next, we point out a major difference between �=0 and
��0 states in connection with the spectrum of the quasipar-
ticle excitations �see Sec. IV B� and their contribution to
low-temperature thermodynamics.

For �=0, quasiparticle excitations are gapped for all cou-
plings, and therefore thermodynamic quantities such as
atomic compressibility, specific heat, and spin susceptibility
have an exponential dependence on the temperature
and the minimum energy of quasiparticle excitations
�exp�−min�E0�k�
 /T�. Using Eqs. �31� and �32� leads to
�exp�−	�0�k�0

� 	 /T� in the BCS side ��0�0� and
�exp�−�	�0�0�	2+�0

2 /T� in the BEC side ��0�0� as shown

in Fig. 11, where k��
=�2M��. Notice that there is no quali-

tative change across �0=0 at small but finite temperatures.
This indicates the absence of a QCR and confirms there is
only a crossover for s-wave ��=0� superfluids at T=0.

For ��0, quasiparticle excitations are gapless in the BCS
side and are only gapped in the BEC side, and therefore
while thermodynamic quantities such as atomic compress-
ibility, specific heat, and spin susceptibility have power-law
dependences on the temperature �T���0 in the BCS side,
they have exponential dependences on the temperature and
the minimum energy of quasiparticle excitations
�exp�−min�E��0�k�
 /T� in the BEC side. Here, ���0 is a
real number which depends on particular � state. For �=1,
using Eqs. �33� and �34� leads to �T�1 in the BCS side
��1�0� and �exp�−	�1 	 /T� in the BEC side ��1�0� as
shown in Fig. 12. Notice the change in qualitative behavior
across �1=0 �as well as other ��0 states� at small but finite
temperatures. This change occurs within the QCR and sig-
nals the existence of a quantum phase transition �T=0� for
��0 superfluids.

V. GAUSSIAN FLUCTUATIONS

Next, we discuss the fluctuation effects at zero tempera-
ture. The pole structure of F��q , iv j� determines the two-
particle excitation spectrum of the superconducting state
with iv j→w+ i0+, and has to be taken into account to derive
��

fluct. The matrix elements of F��q , iv j� are F�,m�,m
��
�q , iv j�

for a given �. We focus here only on the zero-temperature
limit and analyze the collective phase modes. In this limit,
we separate the diagonal matrix elements of F

�,m�,m
��

−1 �q� into

even and odd contributions with respect to iv j,

FIG. 11. The phase diagram of s-wave superfluids as a function
of 1/ �kFa0�.

FIG. 12. The phase diagram of p-wave superfluids as a function
of 1/ �kF

3a1�.
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�F�,m�,m
��

−1 �11
E = �

k

��+�− + E+E−��E+ + E−�
2E+E−��iv j�2 − �E+ + E−�2�

��
2�k�Y�,m�

�k̂�

�Y�,m
��

* �k̂� −
�m�,m

��
V

4���

, �36�

�F�,m�,m
��

−1 �11
O = − �

k

��+E− + �−E+��iv j�
2E+E−��iv j�2 − �E+ + E−�2�

��
2�k�

�Y�,m�
�k̂�Y�,m

��
* �k̂� . �37�

The off-diagonal term is even in iv j, and it reduces to

�F�,m�,m
��

−1 �12 = − �
k

�+�−�E+ + E−�
2E+E−��iv j�2 − �E+ + E−�2�

���
2�k�Y�,m�

�k̂�Y�,m
��

* �k̂� . �38�

Here the labels � denote that the corresponding variables are
functions of k±q /2.

In order to obtain the collective mode spectrum, we ex-
press ��,m�

�q�=��,m�
�q�ei��,m�

�q�= ���,m�
�q�+ i	�,m�

�q�� /�2
where ��,m�

�q�, ��,m�
�q�, ��,m�

�q�, and 	�,m�
�q� are all real.

Notice that the new fields ��,m�
�q�=��,m�

�q�cos���,m�
�q�� and

	�,m�
�q�=��,m�

�q�sin���,m�
�q�� can be regarded essentially as

the amplitude and phase fields, respectively, when ��,m�
�q� is

small. This change of basis can be described by the follow-
ing unitary transformation:

��,m�
�q� =

1
�2


1 i

1 − i
����,m�

�q�

	�,m�
�q� � .

From now on, we take ��,m�
as real without loss of general-

ity. The diagonal elements of the fluctuation matrix in the

rotated basis are �F̃
�,m�,m

��
−1 �11= �F

�,m�,m
��

−1 �11
E + �F

�,m�,m
��

−1 �12, and

�F̃
�,m�,m

��
−1 �22= �F

�,m�,m
��

−1 �11
E − �F

�,m�,m
��

−1 �12; and the off-diagonal

elements are �F̃
�,m�,m

��
−1 �12= �F̃

�,m�,m
��

−1 �21
* = i�F

�,m�,m
��

−1 �11
O with the

q dependence being implicit.

A. Collective (Goldstone) modes

The collective modes are determined by the poles of the
propagator matrix F��q� for the pair fluctuation fields
��,m�

�q�, which describe the Gaussian deviations about the
saddle-point order parameter. The poles of F��q� are deter-
mined by the condition det F�

−1�q�=0, which leads to 2�2�
+1� collective �amplitude and phase� modes, when the usual
analytic continuation iv j→w+ i0+ is performed. Among
them, there are 2�+1 amplitude modes which we do not
discuss here.

The easiest way to get the phase collective modes is to
integrate out the amplitude fields to obtain a phase-only ef-
fective action. Notice that for ��0 channels at any tempera-
ture, and for �=0 channel at finite temperature, a well de-
fined low-frequency expansion is not possible for ���0 due
to Landau damping which causes the collective modes to

decay into the two quasiparticle continuum. A well defined
expansion �collective mode dispersion w� must satisfy the
following condition: w
min�E++E−
. Thus a zero-
temperature expansion is always possible when Landau
damping is subdominant �underdamped regime�. To obtain
the long-wavelength dispersions for the collective modes at

T=0, we expand the matrix elements of F̃�,m�,m�

−1 to second
order in 	q	 and w to get

�F̃�,m�,m
��

−1 �11 = A�,m�,m
��

+ �
i,j

C�,m�,m
��

i,j qiqj − D�,m�,m
��
w2,

�39�

�F̃�,m�,m
��

−1 �22 = P�,m�,m
��

+ �
i,j

Q�,m�,m
��

i,j qiqj − R�,m�,m
��
w2,

�40�

�F̃�,m�,m
��

−1 �12 = iB�,m�,m
��
w . �41�

The expressions for the expansion coefficients are given in
Appendix A.

For �=0, the coefficients C0,0,0
i,j =C0,0,0�i,j and Q0,0,0

i,j

=Q0,0,0�i,j are diagonal and isotropic in �i , j�, and P0,0,0=0
vanishes. Here, �i,j is the Kronecker delta. Thus the collec-
tive mode is the isotropic Goldstone mode with dispersion

W0,0�q� = C0,0	q	 , �42�

C0,0 = 
 A0,0,0Q0,0,0

A0,0,0R0,0,0 + B0,0,0
2 �1/2

, �43�

where C0,0 is the speed of sound. Notice that the quasiparticle
excitations are always fully gapped from weak to strong cou-
pling, and thus the Goldstone mode is not damped at T=0 for
all couplings.

For ��0, the dispersion for collective modes is not easy
to extract in general, and therefore we consider the case

when only one of the spherical harmonics Y�,m�
�k̂� is domi-

nant and characterizes the order parameter. In this case,
P�,m�,m�

=0 due to the order-parameter equation, and the col-
lective mode is the anisotropic Goldstone mode with disper-
sion

W��0,m�
�q� = ��

i,j
�C�,m�

i,j �2qiqj�1/2
, �44�

C��0,m�

i,j = 
 A�,m�,m�
Q�,m�,m�

i,j

A�,m�,m�
R�,m�,m�

+ B�,m�,m�

2 �1/2

. �45�

Notice that the speed of sound has a tensor structure and is
anisotropic. Furthermore, the quasiparticle excitations are
gapless when ���0�0, and thus the Goldstone mode is
damped even at T=0. However, Landau damping is sub-
dominant and the real part of the pole dominates for small
momenta. In addition, quasiparticle excitations are fully
gapped when ���0�0, and thus the Goldstone mode is not
damped. Therefore the pole contribution to ���0

fluct comes from
the Goldstone mode for all couplings. In addition, there is
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also a branch cut representing the continuum of two particle
scattering states, but the contribution from the Goldstone
mode dominates at sufficiently low temperatures.

It is also illustrative to analyze the eigenvectors of F̃�
−1�q�

in the amplitude-phase representation corresponding to small
W�,m�

�q� mode

���,m�
�q�

	�,m�
�q� � = �− i

B�,m�,m�

A�,m�,m�

W�,m�
�q�

1
� .

Notice that, when B�,m�,m�
→0 the amplitude and phase

modes are not mixed.
Next, we discuss the dispersion of collective modes in the

weak- and strong-coupling limits, where the expansion coef-
ficients are analytically tractable for a fixed �� ,m�� state.

B. Weak-coupling (BCS) regime

The s-wave ��=0,m�=0� weak-coupling limit is charac-
terized by the criteria �0�0 and �0��F� 	�0,0	. The expan-
sion of the matrix elements to order 	q	2 and w2 is performed
under the condition �w , 	q	2 / �2M��
 	�0,0	. Analytic calcula-
tions are particularly simple in this case since all integrals for
the coefficients needed to calculate the collective-mode dis-
persions are peaked near the Fermi surface. We first intro-
duce a shell about the Fermi energy 	�0�k� 	 �wD such that
�F�wD��0�kF�, inside of which one may ignore the 3D
density-of-states factor �� /�F and outside of which one may
ignore �0�k�. In addition, we make use of the nearly perfect
particle-hole symmetry, which forces integrals to vanish
when their integrands are odd under the transformation
�0�k�→−�0�k�. For instance, the coefficient that couple
phase and amplitude modes vanish �B0,0,0=0� in this limit.
Thus there is no mixing between phase and amplitude fields
in weak coupling, as can be seen by inspection of the fluc-

tuation matrix F̃0�q�.
For �=0, the zeroth-order coefficient is

A0,0,0 =
N��F�

4�
, �46�

and the second-order coefficients are

C0,0,0
i,j =

Q0,0,0
i,j

3
=

N��F�vF
2

36	�0,0	2
�i,j , �47�

D0,0,0 =
R0,0,0

3
=

N��F�
12	�0,0	2

. �48�

Here, vF=kF /M is the Fermi velocity and N��F�
=MVkF / �2�2� is the density of states per spin at the Fermi
energy.

In weak coupling, since B�,m�,m�

2 
A�,m�,m�
R�,m�,m�

, the
sound velocity is simplified to C�,m�

i,j ��Q�,m�,m�

i,j /A�,m�,m�
� for

any �. Using the coefficients above in Eq. �43�, for �=0, we
obtain

C0,0 =
vF

�3
�49�

which is the well-known Anderson-Bogoliubov relation. For
��0, the expansion coefficients require more detailed and
lengthy analysis, and therefore we do not discuss them here.
On the other hand, the expansion coefficients can be calcu-
lated for any � in the strong-coupling BEC regime, which is
discussed next.

C. Strong-coupling (BEC) regime

The strong-coupling limit is characterized by the criteria
���0, 	�� 	 
�0=k0

2 / �2M�, and 	���k� 	 � 	���k�	. The ex-
pansion of the matrix elements to order 	q	2 and w2 is per-
formed under the condition �w , 	q	2 / �2M��
 	��	. The situa-
tion encountered here is very different from the weak-
coupling limit, because one can no longer invoke particle-
hole symmetry to simplify the calculation of many of the

coefficients appearing in the fluctuation matrix F̃��q�. In par-
ticular, the coefficient B�,m�,m�

�0 indicates that the ampli-
tude and phase fields are mixed. Furthermore, P�,m�,m�

=0,
since this coefficient reduces to the order-parameter equation
in this limit.

For �=0, the zeroth-order coefficient is

A0,0,0 =
�	�0,0	2

8�	�0	
, �50�

the first-order coefficient is

B0,0,0 = � , �51�

and the second-order coefficients are

C0,0,0
i,j = Q0,0,0

i,j =
�

4M
�i,j , �52�

D0,0,0 = R0,0,0 =
�

8	�0	
, �53�

where �=N��F� / �32�	�0 	�F�.
Using the expressions above in Eq. �43�, we obtain the

sound velocity

C0,0 = 
 	�0,0	2

32M	�0	��
1/2

= vF�kFa0

3�
. �54�

Notice that the sound velocity is very small and its smallness
is controlled by the scattering length a0. Furthermore, in the
theory of weakly interacting dilute Bose gas, the sound ve-
locity is given by CB,0=4�aB,0nB,0 /MB,0

2 . Making the identi-
fication that the density of pairs is nB,0=n0 /2, the mass of the
pairs is MB,0=2M, and that the Bose scattering length is
aB,0=2a0, it follows that Eq. �54� is identical to the Bogoliu-
bov result CB,0. Therefore our result for the Fermionic system
represents in fact a weakly interacting Bose gas in the strong-
coupling limit. A better estimate for aB,0�0.6a0 can be
found in the literature �44–47�. This is also the case when we
construct the TDGL equation in Sec. VII B.
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For ��0, the zeroth-order coefficient is

A��0,m�,m�
=

15
̂��̃

2�0
��

	��,m�
	2 �,�m�
, �55�

the first-order coefficient is

B��0,m�,m
��

=

��̃

��
�m�,m

��
, �56�

and the second-order coefficients are

C��0,m�,m
��

i,i = Q��0,m�,m
��

i,i =

��̃

4M��
�m�,m

��
, �57�

D1,m�,m
��

= R1,m�,m
��

=
3�̃

8��0	�1	
�m�,m

��
, �58�

D��1,m�,m
��

= R��1,m�,m
��

=
3
̄��̃

4���0

�m�,m
��
, �59�

where �̃=N��F� / �32��0�F� ,
�=���−1/2� /���+1� , 
̄�

=���−3/2� /���+1�, and 
̂�=��2�−3/2� /��2�+2�. Here
��x� is the gamma function, and  �,m�

is an angular averaged
quantity defined in AppendixB

In strong coupling, since B�,m�,m�

2 �A�,m�,m�
R�,m�,m�

, the
sound velocity is simplified to C�,m�

i,j

��A�,m�,m�
Q�,m�,m�

i,j /B�,m�,m�

2 �1/2 for any �. Using the expres-
sions above in Eq. �45�, for ��0, we obtain

C��0,m�

i,i = 
15 �,�m�
	��,m�
	2
̂�

8M
��0

�1/2

�60�

=vF
20 �,�m�
��
̂�


�
2

kF

k0
�1/2

. �61�

Therefore the sound velocity is also very small and its small-
ness is controlled by the interaction range k0 through the
diluteness condition, i.e., �k0 /kF�3�1, for ��0. Notice that
the sound velocity is independent of the scattering parameter
for ��0.

Now, we turn our attention to a numerical analysis of the
phase collective modes during the evolution from weak-
coupling BCS to strong-coupling BEC limits.

D. Evolution from BCS to BEC regime

We focus only on s-wave ��=0,m�=0� and p-wave ��
=1,m�=0� cases, since they may be the most relevant to
current experiments involving ultracold atoms.

In Fig. 13, we show the evolution of C0,0 as a function of
1/ �kFa0� for the s-wave case. The weak-coupling Anderson-
Bogoliubov velocity C0,0=vF /�3 evolves continuously to the
strong-coupling Bogoliubov velocity C0,0=vF�kFa0 / �3��.
Notice that the sound velocity is a monotonically decreasing
function of 1/ �kFa0�, and the evolution across �0=0 is a
crossover.

In Fig. 14, we show the evolution of C1,0
i,j as a function of

1/ �kF
3a1� for the p-wave case. Notice that C1,0

i,i is strongly
anisotropic in weak coupling, since C1,0

x,x =C1,0
y,y �0.44vF and

C1,0
z,z =�3C1,0

x,x �0.79vF, thus reflecting the order-parameter
symmetry. In addition, C1,0

i,i is isotropic in strong coupling,
since C1,0

i,i =vF�3kF / �2�k0��0.049vF for k0�200kF, thus re-
vealing the secondary role of the order-parameter symmetry
in this limit. The anisotropy is very small in the intermediate
regime beyond �1�0. Notice also that C1,0

z,z is a monotoni-
cally decreasing function of 1/ �kF

3a1� in the BCS side until
�1=0, where it saturates. However, C1,0

x,x =C1,0
y,y is a nonmono-

tonic function of 1/ �kFa1�3, and it also saturates beyond �1

=0. Therefore the behavior of C1,0
i,i reflects the disappearance

of nodes of the quasiparticle energy E1�k� as �1 changes
sign.

These collective excitations may contribute significantly
to the thermodynamic potential, which is discussed next.

E. Corrections to ��
sp due to collective modes

In this section, we analyze corrections to the saddle-point
thermodynamic potential ��

sp due to low-energy collective
excitations. The evaluation of Bosonic Matsubara frequency
sums in Eq. �10� leads to ��

fluct→��
coll, where

��
coll = �

q
�
W��q� +

2

�
ln�1 − exp�− �W��q��
� �62�

is the collective-mode contribution to the thermodynamic po-
tential. The prime on the summation indicates that a momen-

FIG. 13. Plots of reduced Goldstone �sound� velocity �C0,0�r

=C0,0 /vF vs interaction strength 1/ �kFa0� for k0�200kF.

FIG. 14. Plots of reduced Goldstone �sound� velocity �C1,0
x,x�r

=C1,0
x,x /vF �solid squares� and �C1,0

z,z �r=C1,0
z,z /vF �hollow squares� vs

interaction strength 1/ �kF
3a1� for k0�200kF. The inset zooms into

the unitarity region.
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tum cutoff is required since a long-wavelength and low-
frequency approximation is used to derive the collective-
mode dispersion. Notice that the first term in Eq. �62�
contributes to the ground-state energy of the interacting
Fermi system. This contribution is necessary to recover the
ground-state energy of the effective Bose system in the
strong-coupling limit.

The corrections to the saddle-point number equation
N�

coll=−���
coll /��� are due to the zero-point motion �N�

zp� and
thermal excitation �N�

te� of the collective modes,

N�
zp = −

�

���
�
q

�W��q� , �63�

N�
te = − �

q

�
�W��q�

���

nB�W��q�� . �64�

Here nB�x�=1/ �exp��x�−1� is the Bose distribution. For �
=0, the last equation can be solved to obtain N0

te=
−6��C0,0 /��0�!�4�T4 / ��2C0,0

2 �, which vanishes at T=0. Here
!�x� is the zeta function. Similarly, N��0

te has a power-law
dependence on T, and therefore vanishes at T=0 since the
collective modes are not excited. N�

zp gives small contribu-
tions to the number equation in weak and strong couplings,
but may lead to significant contributions in the intermediate
regime for all �. The impact of N�

zp on the order parameter
and chemical potential in the intermediate regime may re-
quire a careful analysis of the full fluctuation contributions
�40�.

Until now, we discussed the evolution of superfluidity
from the BCS to the BEC regime at zero temperature. In the
rest of the manuscript, we analyze the evolution of superflu-
idity from the BCS to the BEC limit at finite temperatures.

VI. BCS TO BEC EVOLUTION NEAR T=Tc,�

In this section, we concentrate on physical properties near
critical temperatures T=Tc,�. To calculate Tc,�, the self-
consistency �order-parameter and number� equations have to
be solved simultaneously. At T=Tc,�, then ��,m�

=0, and the
saddle-point order-parameter equation �19� reduces to

MV
4�k0

2�a�

= �
k

��
2�k�� 1

2��k�
−

tanh����k�/�2Tc,���
2���k� � .

�65�

This expression is independent of m� since the interaction
amplitude �� depends only on �. Similarly, the saddle point
number equation reduces to

N�
sp = �

k,s
nF����k�� , �66�

where nF�x�=1/ �exp��x�+1� is the Fermi distribution. No-
tice that the summation over spins �s� is not present in the
SHS case. It is important to emphasize that the inclusion of
N�

fluct around T�=Tc,� is essential to produce the qualitatively
correct physics with increasing coupling, as discussed next.

A. Gaussian fluctuations

To evaluate the Gaussian contribution to the thermody-
namic potential, we sum over the Fermionic Matsubara Fre-
quencies in Eq. �10�, and obtain the action S�

fluct

=��q,m�,m
��
��,m�

† �q�L
�,m�,m

��
−1 �q���,m

��
�q�, where L

�,m�,m
��

−1 �q�

= �F
�,m�,m

��
−1 �11 is the element of the fluctuation propagator

given by

L�,m�,m
��

−1 �q� =
�m�,m

��

4�V−1��

− �
k

1 − nF��+� − nF��−�
�+ + �− − iv j

��
2�k�Y�,m�

�k̂�Y�,m
��

* �k̂� . �67�

This is the generalization of the �=0 case to ��0, where
�±=���k±q /2�. From S�

fluct, we obtain the thermodynamic
potential ��

gauss=��
sp+��

fluct, where ��
sp is the saddle-point

contribution with ���k�=0, and ��
fluct=

− 1
��q ln det�L��q� /�� is the fluctuation contribution.

We evaluate the bosonic Matsubara frequency �iv j� sums
by using contour integration, and determine the branch cut
and pole terms. We use the phase shift "�

fluct�q ,w�
=Arg�det L��q , iv j→w+ i0+�� to replace det L��q�, leading to

��
fluct = − �

q
�

−�

� dw

�
nB�w�"̃�

fluct�q,w� , �68�

where "̃�
fluct�q ,w�="�

fluct�q ,w�−"�
fluct�q ,0� and nB�x�

=1/ �exp��x�−1� is the Bose distribution. Notice that this
equation is the generalization of the s-wave ��=0� case
�11,12� for ��0. Furthermore, the phase shift can be written
as "̃�

fluct�q ,w�= "̃�
sc�q ,w�+ "̃�

bs�q ,w�, where "̃�
sc�q ,w�

= "̃��q ,w�#�w−wq
*�, is the branch cut �scattering� and

"̃�
bs�q ,w� is the pole �bound state� contribution. Here, #�x� is

the Heaviside function, wq
* =wq−2�� with wq= 	q	2 / �4M� is

the branch frequency and �� is the Fermionic chemical po-
tential.

The branch cut �scattering� contribution to the thermody-
namic potential becomes ��

sc=−�q�−�
� dw

� nB�w�"̃�
sc�q ,w�. For

each q, the integrand is nonvanishing only for w�wq
* since

"̃�
sc�q ,w�=0 otherwise. Thus the branch cut �scattering� con-

tribution to the number equation N�
sc=−���

sc /��� is given by

N�
sc = �

q
�

0

� dw

�
� �nB�w̃�

���

− nB�w̃�
�

���
�"̃��q,w̃� , �69�

where w̃=w+wq
*.

When a��0, there are no bound states above Tc,� and N�
sc

represents the correction due to scattering states. However,
when a��0, there are bound states represented by poles at
w�wq

*. The pole �bound-state� contribution to the number
equation is

N�
bs = − �

q
nB�W��q��$��q,W��q�� , �70�

where W��q� corresponds to the poles of L�
−1�q� and

NONZERO ORBITAL ANGULAR MOMENTUM¼ PHYSICAL REVIEW A 74, 013608 �2006�

013608-13



$��q,W��q�� = Res� � det L�
−1�q,W��q��/���

det L�
−1�q,W��q�� � �71�

is the residue. Heavy numerical calculations are necessary to
find the poles as a function of q for all couplings. However,
in sufficiently strong coupling, when nF��±�
1 in Eq. �67�,
the pole �bound-state� contribution can be evaluated analyti-
cally by eliminating �� in favor of the two-body bound-state

energy Ẽb,� in vacuum. Notice that Ẽb,� is related to the Eb,�
obtained from the T-matrix approach, where multiple scatter-
ing events are included. However, they become identical in
the dilute limit.

A relation between �� and Ẽb,� can be obtained by solving
the Schroedinger equation for two fermions interacting via a
pairing potential V�r�. After Fourier transforming from real
to momentum space, the Schroedinger equation for the pair
wave function ��k� is

2��k���k� +
1

V�
k�

V�k,k����k�� = Ẽb��k� . �72�

Using the Fourier expansion of V�k ,k�� given in Eq. �2� and
choosing only the �th angular momentum channel, we obtain

1

��

=
1

V�
k

��
2�k�

2��k� − Ẽb,�

. �73�

This expression relates Ẽb,��0 to �� in order to express Eq.

�74� in terms of binding energy Ẽb,��0. Notice that, this
equation is similar to the order-parameter equation in the
strong-coupling limit ����0 and 	��	�Tc,��, where 1

��

= 1
V�k

��
2�k�

2��k�−2��
. Therefore ��→ Ẽb,� /2 as the coupling in-

creases.
Substitution of Eq. �73� in Eq. �71� yields the pole contri-

bution which is given by W��q�=wq+ Ẽb,�−2��, and the
residue at this pole is $��q ,W��q��=−2�m�

. Therefore the
bound-state contribution to the phase shift in the sufficiently
strong-coupling limit is given by "̃�

bs�q ,w�=�#�w−wq
+�B,��, which leads to the bound-state number equation

N�
bs = 2 �

q,m�

nB�wq − �B,�� , �74�

where �B,�=2��− Ẽb,��0 is the chemical potential of the
Bosonic molecules. Notice that Eq. �74� is only valid for
interaction strengths where �B,��0. Thus this expression
can not be used over a region of coupling strengths where
�B,� is positive.

B. Critical temperature and chemical potential

To obtain the evolution from BCS to BEC, the number
N��N�

gauss=N�
sp+N�

sc+N�
bs and order-parameter �Eq. �65��

equations have to be solved self-consistently for Tc,� and ��.
First, we analyze the number of unbound, scattering, and
bound fermions as a function of the scattering parameter for
the s-wave ��=0� and p-wave ��=1� cases.

In Fig. 15, we plot different contributions to the number
equation as a function of 1/ �kFa0� for the s-wave ��=0, m�

=0� case. Notice that N0
sp �N0

bs� dominates in weak �strong�
coupling, while N0

sc is the highest for intermediate couplings.
Thus all fermions are unbound in the strictly BCS limit �not
shown in the figure�, while all fermions are bound in the
strictly BEC limit.

In Fig. 16, we present plots of different contributions to
the number equation as a function of 1/ �kF

3a1� for the p-wave
��=1, m�=0� case. Notice also that N1

sp �N1
bs� dominates in

weak �strong� coupling, while N1
sc is the highest for interme-

diate couplings. Thus again all fermions are unbound in the
strictly BCS limit, while all fermions are bound in the strictly
BEC limit.

Therefore the total fluctuation contribution N�
sc+N�

bs is
negligible in weak coupling and N�

sp is sufficient. However,
the inclusion of fluctuations is necessary for strong coupling
to recover the physics of BEC. However, in the vicinity of
the unitary limit �1/ �kF

2�+1a��→0�, our results are not strictly
applicable and should be regarded as qualitative.

Next, we discuss the chemical potential and critical tem-
perature. In weak coupling, we introduce a shell about the
Fermi energy 	���k�	�wD, such that ����F�wD�Tc,�.
Then, in Eq. �65�, we set tanh�	���k�	 / �2Tc,���=1 outside the
shell and treat the integration within the shell as usual in the
BCS theory. In strong coupling, we use that min����k��
= 	��	�Tc,� and set tanh����k� / �2Tc,���=1. Therefore, in
strictly weak and strong coupling, the self-consistency equa-
tions are decoupled, and play reversed roles. In weak
�strong� coupling the order-parameter equation determines
Tc,� ���� and the number equation determines �� �Tc,��.

In weak coupling, the number equation N��N�
sp leads to

FIG. 15. Fractions of unbound F0
sp=N0

sp/N0, scattering F0
sc

=N0
sc/N0, bound F0

bs=N0
bs/N0 fermions at T=Tc,0 vs 1 / �kFa0� for

k0�200kF.

FIG. 16. Fractions of unbound F1
sp=N1

sp/N1, scattering F1
sc

=N1
sc/N1, bound F1

bs=N1
bs/N1 fermions at T=Tc,1 vs 1 / �kF

3a1� for
k0�200kF.
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�� � �F �75�

for any �. In strong coupling, the order parameter equation
leads to

�0 = −
1

2Ma0
2 , �76�

���0 = −
��

Mk0
2�−1a�
�

, �77�

where 
�=���−1/2� /���+1� and ��x� is the Gamma func-
tion. This calculation requires a0k0�1 for �=0, and
k0

2�+1a�
�� ��+1��� for ��0 for the order-parameter equa-
tion to have a solution with ���0. Furthermore, we assume
	��	
�0=k0

2 / �2M� to obtain Eqs. �76� and �77�. Notice that
��=Eb,� /2 in this limit.

On the other hand, the solution of the order-parameter
equation in weak coupling is

Tc,0 =
8

�
�F exp� − 2 +

�

2

kF

k0
−

�

2kF	a0	� , �78�

Tc,� � �F exp�t�
 k0

kF
�2�−1

−
�

2kF
2�+1	a�	� , �79�

where  �0.577 is the Euler’s constant, t1=� /4 and t��1
=�2�+1�2�−3�!! /�!. These expressions are valid only when
the exponential terms are small. In strong coupling, the num-
ber equation N��N�

bs leads to

Tc,�
THS =

2�

MB,�� n�

�
m�

!�3/2��2/3

=
0.218


�
m�

�2/3�F, �80�

where MB,�=2M is the mass of the Bosonic molecules. Here,
n�=kF

3 / �3�2� is the density of fermions. For THS Fermi
gases, we conclude that the BEC critical temperature of
s-wave superfluids is the highest, and this temperature is re-
duced for higher angular momentum states. However, for
SHS Fermi gases

Tc,��0
SHS =

2�

MB,�� n�

�
m�

!�3/2��2/3

=
0.137�F


�
m�

�2/3 , �81�

where n�=kF
3 / �6�2� and !�x� is the zeta function. Here, the

summation over m� is over degenerate spherical harmonics
involved in the order parameter of the system, and can be at
most �m�

=2�+1. For SHS states, we conclude that the BEC
critical temperature of p-wave superfluids is the highest, and
this temperature is reduced for higher angular momentum
states.

For completeness, it is also possible to relate a� and Tc,�
when chemical potential vanishes. When ��=0, the solution
of number equation is highly nontrivial and it is difficult to
find the value of the scattering parameter a�

* at ��=0. How-
ever, the critical temperature in terms of a�

* can be found
analytically from Eq. �65� as


Tc,�

�F
��+1/2

=
�/�kF

2�+1a�
*�

�2 − 2−�+3/2��
� +
1

2
�!
� +

1

2
� �82�

to order Tc,� /�0, where �0=k0
2 / �2M��Tc,�. Notice that this

relation depends on k0 only through a�
*.

On the other hand, if temporal fluctuations are neglected,
the solution for T0,� from the saddle-point self-consistency

equations is 	Ẽb,�	=2T0,� ln�3���T0,� /�F�3/2 /4� and ��

= Ẽb,� /2 which leads to

T0,� �
	Ẽb,�	

2 ln�	Ẽb,�	/�F�3/2
�83�

up to logarithmic accuracy. Therefore T0,� grows without
bound as the coupling increases. Within this calculation, the
normal state for T�T0,� is described by unbound and non-
degenerate fermions since ���k�=0 and 	��	 /T0,�

� ln�	Ẽb,�	 /�F�3/2�1. Notice that the saddle-point approxi-
mation becomes progressively worse with increasing cou-
pling, since the formation of bound states is neglected.

We emphasize that there is no phase transition across T0,�
in strong coupling. However, this temperature is related to
the pair breaking or dissociation energy scale. To see this
connection, we consider the chemical equilibrium between
nondegenerate unbound fermions �f� and bound pairs �b�
such that b↔ f ↑ + f↓ for THS singlet states and b↔ f ↑ + f↑
for SHS triplet states.

Notice that T0,� is sufficiently high that the chemical po-
tential of the bosons and the fermions satisfy 	�b	�T and
	�f	�T at the temperature T of interest. Thus both the un-
bound fermions �f� and molecules �b� can be treated as clas-
sical ideal gases. The equilibrium condition �b=2�f for
these nondegenerate gases may be written as

T ln�nb�2� / �MbT��3/2
− Ẽb,�=2T ln�nf�2� / �MfT��3/2
, where
nb �nf� is the boson �fermion� density, Mb �Mf� is the boson

�fermion� mass, and Ẽb,� is the binding energy of a Bosonic
molecule. The dissociation temperature above which some
fraction of the bound pairs �molecules� are dissociated, is
then found to be

Tdissoc,� �
	Ẽb,�	

ln�	Ẽb,�	/�F�3/2
, �84�

where we dropped a few constants of order unity. Therefore
the logarithmic term is an entropic contribution which favors
broken pairs and leads to a dissociation temperature consid-

erably lower than the absolute value of binding energy 	Ẽb,�	.
The analysis above gives insight into the logarithmic factor
appearing in Eq. �83� since T0,��Tdissoc,� /2. Thus T0,� is es-
sentially the pair dissociation temperature of bound pairs
�molecules�, while Tc,� is the phase coherence temperature
corresponding to BEC of bound pairs �Bosonic molecules�.

In Fig. 17, we show Tc,0 for the s-wave ��=0, m�=0�
case. Notice that Tc,0 grows from an exponential dependence
in weak coupling to a constant in strong coupling with in-
creasing interaction. Furthermore, the mean field T0,0 and
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Gaussian Tc,0 are similar only in weak coupling, while T0,0
increases without bound as T0,0�1/ ��Ma0

2�	ln�kFa0�	� in
strong coupling. When �0=0, we also obtain analytically
Tc,0 /�F�2.15/ �kFa0

*�2 from Eq. �82�. The hump in Tc,0

around 1/ �kFa0��0.5 is similar to the those in Ref. �12�, and
might be an artifact of the approximations used here. Thus a
more detailed self-consistent numerical analysis is needed to
determine if this hump is real.

In Fig. 18, we show �0 for the s-wave case, where it
changes from �F in weak coupling to Eb,0 /2=−1/ �2Ma0

2� in
strong coupling. Notice that �0 at Tc,0 is qualitatively similar
to �0 at T=0, however, it is reduced at Tc,0 in weak coupling.
Furthermore, �0 changes sign at 1 / �kFa0��0.32.

In Fig. 19, we show Tc,1 for the p-wave ��=1, m�=0�
case. Tc,1 grows from an exponential dependence in weak
coupling to a constant in strong coupling with increasing
interaction. For completeness, we present the limiting ex-
pressions Tc,1= 8

��F exp� − 8
3 +

�k0

4kF
− �

2kF
3	a1	

�, and Tc,1

= 2�
MB,1

� n1

!�3/2��
2/3

=0.137�F in the weak- and strong-coupling

limits, respectively. Furthermore, the mean field T0,1 and
Gaussian Tc,1 are similar only in weak coupling, while T0,1
increases without bound as T0,1�1/ ��Mk0a1�	ln�kF

2k0a1�	� in
strong coupling. When �1=0, we also obtain analytically
Tc,1 /�F�1.75/ �kF

3a1
*�2/3 from Eq. �82�. The hump in the in-

termediate regime is similar to the one found in fermion-
boson model �36�. But to determine if this hump is real, it
may be necessary to develop a fully self-consistent numeri-
cal calculation.

In Fig. 20, we show �1 for the p-wave case, where it
changes from �F in weak coupling to Eb,1 /2=−1/ �Mk0a1� in
strong coupling. Notice that �1 at Tc,1 is both qualitatively
and quantitatively similar to �1 at T=0. Furthermore, �1
changes sign at 1 / �kF

3a1��0.02.

For any given �, mean-field and Gaussian theories lead to
similar results for Tc,� and T0,� in the BCS regime, while they
are very different in the BEC side. In the latter case, T0,�
increases without bound, however, Gaussian theory results in
a constant critical temperature which coincides with the BEC
temperature of bosons. Notice that the pseudogap region
Tc,��T�T0,� for �=0 state is much larger than ��0 states
since T0,��0 grows faster than T0,��0. Furthermore, similar
humps in Tc,� around 1/ �kF

2�+1a��=0 are expected for any �
as shown for the s-wave and p-wave cases, however, whether
these humps are physical or not may require a fully self-
consistent numerical approach.

As shown in this section, the frequency �temporal� depen-
dence of fluctuations about the saddle point is crucial to de-
scribe adequately the Bosonic degrees of freedom that
emerge with increasing coupling. In the next section, we de-
rive the TDGL functional near Tc,� to emphasize further the
importance of these fluctuations.

VII. TDGL FUNCTIONAL NEAR Tc,�

Our basic motivation here is to investigate the low-
frequency and long-wavelength behavior of the order param-
eter near Tc,�. To study the evolution of the time-dependent
Ginzburg-Landau �TDGL� functional near Tc,�, we need to
expand the effective action S�

eff in Eq. �5� around ��,m�
=0

leading to

S�
eff = S�

sp + S�
gauss + �

2 ��qn,m�n

 b�,�m�n


��qn
���,m�1

†

��q1���,m�2
�q2���,m�3

† �q3���,m�4
�q1 − q2 + q3� .

Here, ��,m�
�q� is the pairing fluctuation field.

FIG. 18. Plot reduced chemical potential �r=�0 /�F �inset� vs
interaction strength 1/ �kFa0� at T=Tc,0 for k0�200kF.

FIG. 17. Plot of reduced critical temperature Tr=Tc,0 /�F vs in-
teraction strength 1/ �kFa0� at T=Tc,0 for k0�200kF.

FIG. 19. Plot of reduced critical temperature Tr=Tc,1 /�F vs in-
teraction strength 1/ �kF

3a1� at T=Tc,1 for k0�200kF.

FIG. 20. Plot of reduced chemical potential �r=�1 /�F �inset� vs
interaction strength 1/ �kF

3a1� at T=Tc,1 for k0�200kF.
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We first consider the static part of L
�,m�,m

��
−1 �q�, and expand

it in powers of qi to get L
�,m�,m

��
−1 �q ,0�=a�,m�,m

��

+�i,jc�,m�,m
��

i,j qiqj

2M +¯ . Next, we consider the time dependence

of the TDGL equation, where it is necessary to expand
L

�,m�,m
��

−1 �0, iv j�−L
�,m�,m

��
−1 �0,0� in powers of w after analytic

continuation iv j→w+ i0+.
In the x= �x , t� representation, the calculation above leads

to the TDGL equation

�
m�2

�a�,m�1
,m�2

− �
i,j

c�,m�1
,m�2

i,j �i� j

2M
+ �

m�3
,m�4

b�,�m�n



��0���,m�3

† �x���,m�4
�x� − id�,m�1

,m�2

�

�t���,m�2
�x� = 0,

�85�

which is the generalization of the TDGL equation to higher
momentum channels of THS singlet and SHS triplet states.
Notice that, for THS triplet states, there may be extra gradi-
ent mixing textures and fourth-order terms in the expansion
�39�, which are not discussed here. All static and dynamic
expansion coefficients are presented in Appendix B. The
condition det a�=0 with matrix elements a�,m�1

,m�2
is the

Thouless criterion, which leads to the order-parameter equa-
tion. The coefficient c�,m�1

,m�2

i,j reflects a major difference be-

tween �=0 and ��0 cases. While c0,0,0
i,j =c0,0,0�i,j is isotropic

in space, c��0,m�1
,m�2

i,j is anisotropic, thus characterizing the

anisotropy of the order parameter. The coefficient b�,�m�n

�0�

is positive and guarantees the stability of the theory. The
coefficient d�,m�1

,m�2
is a complex number. Its imaginary part

reflects the decay of Cooper pairs into the two-particle con-
tinuum for ���0. However, for ���0, imaginary part of
d�,m�1

,m�2
vanishes and the behavior of the order parameter is

propagating reflecting the presence of stable bound states.
Next, we present the asymptotic forms of a�,m�1

,m�2
;

b�,�m�n

�0�; c�,m�1

,m�2

i,j and d�,m�1
,m�2

which are used to recover

the usual Ginzburg-Landau �GL� equation for BCS superflu-
ids in weak coupling and the Gross-Pitaevskii �GP� equation
for a weakly interacting dilute Bose gas in strong coupling.

A. Weak-coupling (BCS) regime

The weak-coupling BCS regime is characterized by ��

�0 and ����F�Tc,�. For any given �, we find the follow-
ing values for the coefficients:

a�,m�1
,m�2

= ��
w ln
 T

Tc,�
��m�1

,m�2
, �86�

b�,�m�n

�0� = 7 �,�m�n



��

w!�3�
8Tc,�

2 
 �F

�0
��

, �87�

c�,m�1
,m�2

i,j = 7%�,m�1
,m�2

i,j ��
w�F!�3�

4�2Tc,�
2 , �88�

d�,m�1
,m�2

= ��
w
 1

4�F
+ i

�

8Tc,�
��m�1

,m�2
, �89�

where ��
w=N��F���F /�0�� / �4�� with N��F�=MVkF / �2�2� is

the density of states per spin at the Fermi energy. Here
�m�1

,m�2
is the Kronecker delta, and %�,m�1

,m�2

i,j and  �,�m�
 are

angular averaged quantities defined in Appendix B. Notice
that the critical transition temperature is determined by
det a�=0.

In the particular case, where only one of the spherical

harmonics Y�,m�
�k̂� is dominant and characterizes the order

parameter, we can rescale the pairing field as

&�,m�

w �x� =�b�,�m�
�0�

��
w ��,m�

�x� �90�

to obtain the conventional TDGL equation

�− '� + 	&�,m�

w 	2 − �
i

���,m�

GL �i
2�i

2 + ��,m�

GL �

�t�&�,m�

w = 0.

�91�

Here, '�= �Tc,�−T� /Tc,� with 	'�	
1, ���,m�
�i

2�T�
=c�,m�,m�

i,i / �2Ma�,m�,m�
�= ���,m�

GL �i
2 /'� is the characteristic GL

length and ��,m�
=−id�,m�,m�

/a�,m�,m�
=��,m�

GL /'� is the charac-
teristic GL time.

In this limit, the GL coherence length is given by
kF���,m�

GL �i= �7%�,m�,m�

i,i !�3� / �4�2��1/2��F /Tc,��, which makes
���,m�

GL �i much larger than the interparticle spacing kF
−1. There

is a major difference between �=0 and ��0 pairings regard-
ing ���,m�

GL �i. While c0,0,0
i,j =c0,0,0�i,j is isotropic, c��0,m�1

,m�2

i,j

=c�,m�1
,m�2

i,i �i,j is in general anisotropic in space �see Appendix

B�. Thus ��0,0
GL�i is isotropic and ����0,m�

GL �i is not.
Furthermore, ��,m�

GL =−i / �4�F�+� / �8Tc,�� showing that the
dynamics of &�,m�

w �x� is overdamped reflecting the con-
tinuum of Fermionic excitations into which a pair can decay.
In addition, there is a small propagating term since there is
no perfect particle-hole symmetry. As the coupling grows,
the coefficient of the propagating term increases while that of
the damping term vanishes for ���0. Thus the mode is
propagating in strong coupling reflecting the stability of the
bound states against the two particle continuum.

B. Strong-coupling (BEC) regime

The strong-coupling BEC regime is characterized by ��

�0 and �0=k0
2 / �2M�� 	��	�Tc,�. For �=0, we find the fol-

lowing coefficients:

a0,0,0 = 2�0
s�2	�0	 − 	Ẽb,0	� , �92�

b0,�0
�0� =
�0

s

8�	�0	
, �93�

c0,0,0
i,j = �0

s�i,j , �94�
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d0,0,0 = 2�0
s , �95�

where �0
s =N��F� / �64��F	�0	�. Similarly, for ��0, we obtain

a��0,m�1
,m�2

= 2��
s
��2	��	 − 	Ẽb,�	��m�1

,m�2
, �96�

b��0,�m�n

�0� = 15 �,�m�n



��

s
̂�

2�0
, �97�

c��0,m�1
,m�2

i,j = ��
s
��m�1

,m�2
�i,j , �98�

d��0,m�1
,m�2

= 2��
s
��m�1

,m�2
, �99�

where ���0
s =N��F� / �64���F�0�. Here 
�=���−1/2� /���

+1� and 
̂�=��2�−3/2� /��2�+2�, where ��x� is the
gamma function. Notice that c��0,m�1

,m�2

i,j is isotropic in space

for any �. Thus the anisotropy of the order parameter plays a
secondary role in the TDGL theory in this limit.

In the particular case, where only one of the spherical

harmonics Y�,m�
�k̂� is dominant and characterizes the order

parameter, we can rescale the pairing field as

&�,m�

s �x� = �d�,m�,m�
��,m�

�x� , �100�

to obtain the conventional Gross-Pitaevskii �GP� equation

��B,� + U�,m�
	&�,m�

s 	2 −
�2

2MB,�
− i

�

�t
�&�,m�

s = 0 �101�

for a dilute gas of bosons. Here, �B,�=−a�,m�,m�
/d�,m�,m�

=2��− Ẽb,� is the chemical potential, MB,�
=Md�,m�,m�

/c�,m�,m�

i,i =2M is the mass, and U�,m�

=b�,�m�
�0� /d�,m�,m�

2 is the repulsive interactions of the
bosons. We obtain U0,0=4�a0 /M and U��0,m�

=240�2��
̂� �,�m�
 / �M
�
2k0� for �=0 and ��0, respec-

tively. Notice that the mass of the composite bosons is inde-
pendent of the anisotropy and symmetry of the order param-
eter for any given �. However, this is not the case for the
repulsive interactions between bosons, which explicitly de-
pends on �.

For �=0, U0,0=4�aB,0 /MB,0 is directly proportional to
the fermion �boson� scattering length a0 �aB,0�, where aB,0

=2a0 is the boson-boson scattering length. A better estimate
for aB,0�0.6a0 can be found in the literature �44–47�. While
for ��0, U�,m�

is a constant �independent of the scattering
parameter a�� depending only on the interaction range k0 and
the particular �� ,m�� state. For a finite range potential,
nB,�U�,m�

is small compared to �F, where nB,�=n� /2 is the
density of bosons. In the �=0 case nB,0U0,0 /�F
=4kFa0 / �3�� is much smaller than unity. For ��0 and even,

nB,�U�,m�
/�F=80��
̂� �,�m�
 /
�

2�kF /k0�. In the case of SHS
states where ��0 and odd, nB,�U�,m�

/�F

=40��
̂� �,�m�
 /
�
2�kF /k0�. The results for higher angular

momentum channels reflect the diluteness condition
�kF /k0�3
1.

To calculate ���,m�

GL �i in the strong-coupling limit, we need
to know ��� /�T evaluated at Tc,� �see below�. The tempera-
ture dependence of �� in the vicinity of Tc,� can be obtained
by noticing that �B,�= ñ�T�U�,m�

, where ñ�T�=nB,��1
− �T /Tc,��3/2�. This leads to kF���,m�

GL �i= ��2 / �2MkFU�,m�
��1/2

in the BEC regime. Using the asymptotic values of U�,m�
, we

obtain kF��0,0
GL�i= �� / �8kFa0��1/2 for �=0 and kF����0,m�

GL �i

= �
�
2 / �480�� �,�m�

̂���1/2�k0 /kF�1/2 for ��0. Therefore

���,m�

GL �i is also much larger than the interparticle spacing kF
−1

in this limit, since kFa0→0 for �=0 and k0�kF for any �.

C. Ginzburg-Landau coherence length versus average Cooper
pair size

In the particular case, where only one of the spherical

harmonics Y�,m�
�k̂� is dominant and characterizes the order

parameter, we can define the GL coherence length as
���,m�

�i
2�T�=c�,m�,m�

i,i / �2Ma�,m�,m�
�. An expansion of the pa-

rameters a�,m�,m�
and c�,m�,m�

i,i in the vicinity of Tc,� leads to

���,m�
�i

2�T�����,m�

GL �i
2 Tc,�

Tc,�−T , where the prefactor is the GL co-
herence length and given by

���,m�

GL �i
2 =

c�,m�,m�

i,i

2MTc,�
� �a�,m�,m�

�T
�

T=Tc,�

−1

. �102�

The slope of the coefficient a�,m�,m�
with respect to T is given

by
�a�,m�,m�

�T =�k�Y��k�

2T2 +
���

�T � Y��k�

2T���k� −
X��k�

��
2�k� �� ��

2�k�

8� . Here X��k� and

Y��k� are defined in Appendix B. Notice that while ��� /�T
vanishes at Tc,� in weak coupling, it plays an important role
in strong coupling. Furthermore, while ���,m�

GL �i representing
the phase coherence length is large compared to interparticle
spacing in both BCS and BEC limits, it should have a mini-
mum near ���0.

The prefactor ���,m�

GL �i of the GL coherence length must be
compared with the average Cooper pair size ��

pair defined by

���
pair�2 =

�Z��k�	r2	Z��k��
�Z��k�	Z��k��

= −
�Z��k�	�k

2	Z��k��
�Z��k�	Z��k��

,

�103�

where Z��k�=���k� / �2E��k�� is the zero-temperature pair
wave function. In the BCS limit, ��

pair is much larger than the
interparticle distance kF

−1 since the Cooper pairs are weakly
bound. Furthermore, for ���0, we expect that ��

pair is a de-
creasing function of interaction for any �, since Cooper pairs
become more tightly bound as the interaction increases.
Next, we compare ���,m�

GL �i and ��
pair for s-wave ��=0� and

p-wave ��=1� states.
In Fig. 21, a comparison between ��0,0

GL�i and �0
pair is shown

for s-wave ��=0, m�=0�. �0
pair changes from kF�0

pair

= �e /�2����F /Tc,0� in the BCS limit to kF�0
pair

= ��F / �2	�0	��1/2=kFa0 /�2 in the BEC limit as the interaction
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increases. Here  �0.577 is the Euler’s constant. Further-
more, when �0=0, we obtain kF�0

pair=�7��2�1/4� /���1/3 /4
�1.29, where ��x� is the Gamma function. Notice that �0

pair

is continuous at �0=0, and monotonically decreasing func-
tion of 1 / �kFa0� with a limiting value controlled by a0 in
strong coupling. However, ��0,0

GL�i is a nonmonotonic function
of 1/ �kFa0� having a minimum around 1/ �kFa0��0.32 ��0

=0�. It changes from kF��0,0
GL�i= �7!�3� / �12�2��1/2��F /Tc,0� in

the BCS to kF��0,0
GL�i= �� / �8kFa0��1/2 in the BEC limit as the

coupling increases, where !�x� is the Zeta function. Notice
that, ��0,0

GL�i grows as 1/�kFa0 in strong-coupling limit.
In Fig. 22, a comparison between ��1,0

GL�z and �1
pair is shown

for p wave ��=1, m�=0�. Notice that, �1
pair is nonanalytic at

�1=0, and is a monotonically decreasing function of
1/ �kF

3a1� with a limiting value controlled by kF /k0 in strong
coupling. This nonanalytic behavior is associated with the
change in E1�k� from gapless �with line nodes� in the BCS to
fully gapped in the BEC side. However, ��1,0

GL�z is a nonmono-
tonic function of 1/ �kF

3a1� having a minimum around
1/ �kF

3a1��0.02 ��1=0�. It changes from kF��1,0
GL�x=kF��1,0

GL�y

=kF��1,0
GL�z /�3= �7!�3� / �20�2��1/2��F /Tc,1� in the BCS to

kF��1,0
GL�i= ��k0 / �36kF��1/2 in the BEC limit as the coupling

increases. Notice that, �1,0
GL saturates in strong-coupling limit

reflecting the finite range of interactions.
It is important to emphasize that ���,m�

GL �z shown in Figs.
�21� and �22� is only qualitative in the intermediate regime
around unitarity 1 / �kF

2�+1a��=0 since our theory is not
strictly applicable in that region.

VIII. CONCLUSIONS

In this manuscript, we extended the s-wave ��=0� func-
tional integral formalism to finite angular momentum � in-
cluding two hyperfine states �THS� pseudospin singlet and
single hyperfine states �SHS� pseudospin triplet channels. We
analyzed analytically superfluid properties of a dilute Fermi
gas in the ground state �T=0� and near critical temperatures
�T�Tc,�� from weak coupling �BCS� to strong coupling
�BEC� as a function of scattering parameter �a�� for arbitrary
�. However, we presented numerical results only for THS
s-wave and SHS p-wave symmetries which may be relevant
for current experiments involving atomic Fermi gases. The
main results of our paper are as follows.

First, we analyzed the low-energy scattering amplitude
within a T-matrix approach. We found that bound states oc-
cur only when a��0 for any �. The energy of the bound
states Eb,� involves only the scattering parameter a0 for �
=0. However, another parameter related to the interaction
range 1/k0 is necessary to characterize Eb,� for ��0. There-
fore all superfluid properties for ��0 depend strongly on k0
and a�, while for �=0 they depend strongly only on a0 but
weakly on k0.

Second, we discussed the order parameter, chemical po-
tential, quasiparticle excitations, momentum distribution,
atomic compressibility, ground-state energy, collective
modes, and average Cooper pair size at T=0. There we
showed that the evolution from BCS to BEC is just a cross-
over for �=0, while the same evolution for ��0 exhibits a
quantum phase transition characterized by a gapless super-
fluid on the BCS side to a fully gapped superfluid on the
BEC side. This transition is a many body effect and takes
place exactly when chemical potential ���0 crosses the bot-
tom of the fermion band ����0=0�, and is best reflected as
nonanalytic behavior in the ground-state atomic compress-
ibility, momentum distribution, and average Cooper pair size.

Third, we discussed the critical temperature, chemical po-
tential, and the number of unbound, scattering and bound
fermions at T=Tc,�. We found that the critical BEC tempera-
ture is the highest for �=0. We also derived the time-
dependent Ginzburg-Landau functional �TDGL� near Tc,�
and extracted the Ginzburg-Landau �GL� coherence length
and time. We recovered the usual TDGL equation for BCS
superfluids in the weak-coupling limit, whereas in the strong-
coupling limit we recovered the Gross-Pitaevskii �GP� equa-
tion for a weakly interacting dilute Bose gas. The TDGL
equation exhibits anisotropic coherence lengths for ��0
which become isotropic only in the BEC limit, in sharp con-
trast to the �=0 case, where the coherence length is isotropic
for all couplings. Furthermore, the GL time is a complex
number with a larger imaginary component for ���0 re-
flecting the decay of Cooper pairs into the two-particle con-
tinuum. However, for ���0 the imaginary component van-
ishes and Cooper pairs become stable above Tc,�.

In summary, the BCS to BEC evolution in higher angular
momentum ���0� states exhibit quantum phase transitions
and is much richer than in conventional �=0 s-wave sys-
tems, where there is only a crossover. These ��0 states
might be found not only in atomic Fermi gases, but also in

FIG. 21. Plots of GL coherence length kF�0,0
GL �solid squares�,

and zero-temperature Cooper pair size kF�0,0
pair �hollow squares� vs

interaction strength 1/ �kFa0� at T=Tc,0 for k0�200kF.

FIG. 22. Plots of GL coherence length kF�1,0
GL �solid squares�,

and zero-temperature Cooper pair size kF�1,0
pair �hollow squares� vs

interaction strength 1/ �kF
3a1� at T=Tc,1 for k0�200kF.
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nuclear �pairing in nuclei�, astrophysics �neutron stars� and
condensed-matter �high-Tc and organic superconductors�
systems.
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APPENDIX A: EXPANSION COEFFICIENTS AT T=0

From the rotated fluctuation matrix F̃�
−1�q� expressed in

the amplitude-phase basis, we can obtain the expansion co-
efficients necessary to calculate the collective modes at T
=0. In the long-wavelength �	q	→0� and low-frequency

limit �w→0� the condition �w ,
qiqj

2M


min�2E��k�
 is used.

While there is no Landau damping and a well defined expan-
sion is possible for �=0 case for all couplings, extra care is
necessary for ��0 when ���0 since Landau damping is
present.

In all the expressions below we use the following simpli-

fying notation: �̇�
i =����k+q /2� /�qi, �̈�

i,j =����k
+q /2� / ��qi�qj�, �̇�

i =����k+q /2� /�qi, and �̈�
i,j =�2���k

+q /2� / ��qi�qj�, which are evaluated at q=0.
The coefficients necessary to obtain the matrix element

�F̃
�,m�,m

��
−1 �11 are

A�,m�,m
��

=
�m�,m

��

4�V−1��

− �
k

��
2

2E�
3��

2�k�Y�,m�
�k̂�Y�,m

��
* �k̂� ,

�A1�

corresponding to the �q=0, w=0� term,

C�,m�,m
��

i,j = �
k

���k�
4E�

7�k�
��̈�

i,jE�
2�k����

2�k� − 2��
2�k��

+ 3�̈�
i,jE�

2�k����k����k� + 5�̇�
i �̇�

j ��
2�k���

2�k�

+ �̇�
i �̇�

j ���k����
2�k� − 4��

2�k�� + ��̇�
i �̇�

j + �̇�
j �̇�

i ����k�

��2��
2�k� − 3��

2�k��
��
2�k�Y�,m�

�k̂�Y�,m
��

* �k̂� , �A2�

corresponding to the qiqj term, and

D�,m�,m
��

= �
k

��
2�k�

8E�
5�k�

��
2�k�Y�,m�

�k̂�Y�,m
��

* �k̂� , �A3�

corresponding to the w2 term. Here �m�,m
��

is the Kronecker
delta.

The coefficients necessary to obtain the matrix element

�F̃
�,m�,m

��
−1 �22 are

P�,m�,m
��

=
�m�,m

��

4�V−1��

− �
k

1

2E��k�
��

2�k�Y�,m�
�k̂�Y�,m

��
* �k̂� ,

�A4�

corresponding to the �q=0, w=0� term,

Q�,m�,m
��

i,j = �
k

1

4E�
5�k�

��̈�
i,jE�

2�k����k� + �̈�
i,jE�

2�k����k�

+ 3�̇�
i �̇�

j ��
2�k� + 3�̇�

i �̇�
j ��

2�k� − 3��̇�
i �̇�

j

+ �̇�
j �̇�

i ����k����k�
��
2�k�Y�,m�

�k̂�Y�,m
��

* �k̂� ,

�A5�

corresponding to the qiqj term, and

R�,m�,m
��

= �
k

1

8E�
3�k�

��
2�k�Y�,m�

�k̂�Y�,m
��

* �k̂� , �A6�

corresponding to the w2 term.
The coefficients necessary to obtain the matrix element

�F̃
�,m�,m

��
−1 �12 is

B�,m�,m
��

= �
k

���k�
4E�

3�k�
��

2�k�Y�,m�
�k̂�Y�,m

��
* �k̂� , �A7�

corresponding to the w term.

APPENDIX B: EXPANSION COEFFICIENTS AT T=Tc,�

In this section, we perform a small q and iv j→w+ i0+

expansion near Tc,�, where we assumed that the fluctuation
field ��,m�

�x , t� is a slowly varying function of x and t.
The zeroth-order coefficient L

�,m�,m
��

−1 �0,0� is diagonal in

m� and m��, and is given by

a�,m�,m
��

=
�m�,m

��

4� � V
��

− �
k

X��k�
2���k�

��
2�k�� , �B1�

where X��k�=tanh�����k� /2�. The second-order coefficient
M�2L

�,m�,m
��

−1 �q ,0� / ��qi�qj� evaluated at q=0 is given by

c�,m�,m
��

i,j =
1

4�
�
k
�� X��k�

8��
2�k�

−
�Y��k�
16���k���m�,m

��
�i,j

+ %�,m�,m
��

i,j �2k2X��k�Y��k�
16M���k� ���

2�k� , �B2�

where Y��k�=sech2�����k� /2� and the angular average

%�,m�,m
��

i,j =� dk̂k̂ik̂ jY�,m�
�k̂�Y�,m

��
* �k̂� .

Here, dk̂=sin�	k�d	kd
k, k̂x=sin�	k�cos�
k�, k̂y

=sin�	k�sin�
k� and k̂z=cos�	k�. In general, %
�,m�,m

��
i,j is a

fourth-order tensor for fixed �. However, in the particular

case where only one of the spherical harmonics Y�,m�
�k̂� is

dominant and characterizes the order parameter, %
�,m�,m

��
i,j

=%�,m�,m�

i,j �m�,m
��

is diagonal in m� and m��. In this case, we use
Gaunt coefficients �48� to show that %�,m�,m�

i,j is also diagonal

in i and j leading to %
�,m�,m

��
i,j =%�,m�,m�

i,i �m�,m
��
�i,j.
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The coefficient of fourth-order term is approximated at
qn=0, and given by

b�,�m�n

�0� =

 �,�m�n



4�
�
k
� X��k�

4��
3�k�

−
�Y��k�

8��
2�k� ���

4�k� ,

�B3�

where the angular average

 �,�m�n

 =� dk̂Y�,m�1

�k̂�Y�,m�2

* �k̂�Y�,m�3
�k̂�Y�,m�4

* �k̂� .

To extract the time dependence, we expand Q�,m�,m
��
�iv j�

=L
�.m�,m

��
−1 �q=0, iv j�−L

�,m�,m
��

−1 �0,0� in powers of w after the

analytic continuation iv j→w+ i0+. We use the relation
�x± i0+�−1=P�1/x�( i���x�, where P is the principal value
and ��x� is the delta function, to obtain

Q�,m�,m
��
�iv j� = −

�m�,m
��

4� ��
k

X��k�

4��
2�k�

��
2�k�

− i��
k

X��k���2���k� − w���
2�k�� .

�B4�

Keeping only the first-order terms in w leads to Q�,m�,m
��
�w

+ i0+�=−d�,m�,m
��
w+. . ., where

d�,m�,m
��

=
�m�,m

��

4� ��
k

X��k�

4��
2�k�

��
2�k�

+ i
��

8
N��F����

�F
��

2����#����� �B5�

is also diagonal in m� and m��. Here N��F�=MVkF / �2�2� is
the density of states per spin at the Fermi energy, ��

2�x�
= ��0x�� / ��0+x��+1 is the interaction symmetry in terms of
energy, and #�x� is the Heaviside function.
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