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Assuming that two-component Fermi gases with opposite artificial magnetic fields on a square optical lattice
are well described by the so-called time-reversal-symmetric Hofstadter-Hubbard model, we explore the thermal
superfluid properties along with the critical Berezinskii-Kosterlitz-Thouless (BKT) transition temperature in this
model over a wide range of its parameters. In particular, since our self-consistent BCS-BKT approach takes the
multiband butterfly spectrum explicitly into account, it unveils how dramatically the interband contribution to the
phase stiffness dominates the intraband one with an increasing interaction strength for any given magnetic flux.
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I. INTRODUCTION

The phase stiffness, also known as the helicity modulus,
measures the response of a system in an ordered phase to a
twist of the order parameter [1] and it is directly linked to the
superfluid (SF) density of the superconducting systems [2,3].
In its most familiar form, the conventional expression for the
elements of the phase stiffness tensor can be written as [4]
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where Vd is the volume element and k is the wave vector in
d spatial dimensions, kν with ν ≡ {x,y, . . .} is the projection
of k, ξk = εk − μ is the single-particle dispersion relation

shifted by the chemical potential, Ek =
√

ξ 2
k + |�k|2 is the

quasiparticle dispersion relation with the order parameter �k,
kB is the Boltzmann constant, and T is the temperature. Here
εk is assumed to be quite general and not limited with the usual
quadratic dependence on kν . In particular, this tensor plays a
special role in two dimensions for which it appears explicitly in
the universal Berezinskii-Kosterlitz-Thouless (BKT) relation
determining the critical SF transition temperature TBKT [2–4].
This is a topological phase transition characterized by the
binding (unbinding) of two vortices with opposite circulations,
i.e., the so-called vortex-antivortex pairs, below (above) TBKT

with algebraically (exponentially) decaying spatial correla-
tions [5–7]. For instance, one of the immediate manifestations
of Eq. (1) is that it rules out the possibility of superfluidity
in systems with a nearly flat k-space dispersion, i.e., the SF
density and current are identically zero since the particles are
strictly immobile in a flatband with ξk ≈ ξ0 for all k.

Motivated by the experimental advances with cold Fermi
gases, the calculation of Dμν has recently been extended to
a class of multiband Hamiltonians that are characterized by a
single mean-field order parameter � with a uniform spread in
real space and that exhibit time-reversal T symmetry [8–11]. It
has been found that, in addition to the intraband contribution to

Dμν that has exactly the same form as the one given in Eq. (1)
for each single-particle band, the interband contribution may
also be necessary for a proper description of the multiband
systems. For instance, in marked contrast with the single
flatband systems, it turns out that superfluidity may prevail
in a flatband in the presence of other bands as a result of the
interband tunnelings [8,9]. See also the related discussion of
two-band superconductivity in graphene for a resolution of
the superconductivity without supercurrent controversy in the
vicinity of its Dirac points [12,13].

In view of the recent realization of the Hofstadter-Hubbard
model with T symmetry [14,15] and the forthcoming exper-
iments, here we study TBKT in this model and address the
interplay between the intraband and interband contributions to
the phase stiffness in the presence of a multiband butterfly spec-
trum. Despite our naive expectations, we find that the maxi-
mum TBKT ≈ 0.253t/kB is attained for the no-flux limit at μ =
0 when the interaction strength is around U ∼ 3.75t . Here t is
the hopping strength. In addition, one of the highlights of this
paper is that increasing the interaction strength always shifts
the relative importance of the intraband and interband contri-
butions in overwhelming favor of the latter and that the proper
description of the Cooper molecules requires an indiscriminate
account of both contributions in the strong-coupling limit.

The remainder of this paper is organized as follows. After
a short overview of the Hofstadter model with T symmetry
in Sec. II A, we introduce the self-consistent BCS-BKT for-
malism in Sec. II B, with the multiband generalization of the
phase stiffness detailed in Sec. II C. We discuss the analytically
tractable strong coupling or molecular limit in Sec. II D and
then our numerical results are presented in Sec. III. We end the
paper with a brief summary of our conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

Assuming that the tight-binding approximation is a viable
description of the kinematics of a two-component Fermi gas
on an optical lattice, we start with the single-particle Hamilto-
nian H0 = −∑

ij c
†
i tij cj , where c

†
i (ci) creates (annihilates)

a spinless fermion at site i so that tij = t∗ji is the element
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of the hopping matrix from site j to i. This model also
offers a convenient way to incorporate the effects of additional
gauge fields, e.g., an external magnetic field B(r) = ∇ × A(r)
may be taken into account via the minimal coupling, i.e.,
tij → tij e

i2πφij , leading to an additional phase factor φij =
(1/φ0)

∫ ri

rj
A(r) · dr in the hopping matrix. Here φ0 is the flux

quantum and A(r) is the magnetic vector potential. In a broader
context, A(r) could be any gauge field, including the artificial
ones created in atomic systems.

In this paper we are interested in a square lattice lying
in the entire (x,y) plane, which is under the influence of a
spatially uniform magnetic field B(r) = B pointing along the
perpendicular z axis. Such a setting can be represented by
A(r) = (0,Bx,0) in the Landau gauge without losing general-
ity. Thus, for a given flux quantum per unit cell α = Ba2/φ0,
witha the lattice spacing, the particle gains an Aharonov-Bohm
phase ei2πα after traversing a loop around the unit cell. Next
we consider the original Hofstadter model [16] and allow
the particle to hop back and forth between only the nearest-
neighbor sites, which by itself gives rise to one of the most
fascinating single-particle energy spectra in nature.

A. Hofstadter butterfly

When the flux α = p/q corresponds precisely to the ratio
of two relatively prime numbers p and q, one can simplify
the single-particle problem considerably by switching to the
reciprocal (k) space representation and making use of the new
translational symmetry [16]. That is, since the B field enlarges
the unit cell by a factor of q in the x direction, the first magnetic
Brillouin zone (MBZ) is reduced to −π/qa � kx < π/qa

and −π/a � ky < π/a. This not only splits the tight-binding
s band of the flux-free system, i.e., εk = −2t cos(kxa) −
2t cos(kya), into q subbands for a given α = p/q, but the com-
petition between the magnetic length scale, i.e., the cyclotron
radius, and the periodicity of the lattice potential also produces
a very complicated energy ε versus p/q landscape with an
underlying fractal pattern. As the overall landscape bears a
resemblance to the shape of a butterfly, the spectrum is usually
referred to as the Hofstadter butterfly in the literature [16].

For a given α = p/q, the multiband spectrum can be
obtained by solving the Schrödinger equation H0k|nk〉 =
εnk|nk〉 in k space, where n = 0, . . . ,q − 1 labels the sub-
bands starting from the lowest-energy branch. This leads to∑q−1

j=0 H
ij

0kg
j

nk = εnkg
i
nk, where gi

nk is the i = 0,1, . . . ,q − 1th
component of the n = 0,1, . . . ,q − 1th eigenvector of the
single-particle problem with energy εnk. Here the Fourier-
expansion coefficient cik of the site operator can be written in
terms of the band operators dnk as cik = ∑q−1

n=0 gi
nkdnk. Thus,

for a given k in the MBZ, the spectrum is determined by solving
the equation
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= 0, (2)

where B
j

k = −2t cos(kya + 2παj ) − εnk with j =
0,1, . . . ,q − 1 and Ck = −teikxa . We note that while
the orthonormalization condition 〈nk|mk〉 = δnm leads
to

∑q−1
j=0 g

j∗
nkg

j

mk = δnm, the completeness relation∑q−1
n=0 |nk〉〈nk| = I leads to

∑q−1
n=0 gi∗

nkg
j

nk = δij for any
given k state, both of which are used throughout the paper in
simplifying the self-consistency equations.

The butterfly spectrum exhibits a number of symmetries.
First of all, it preserves the inversion symmetry in k space, i.e.,
εnk = εn,−k, as a direct manifestation of the gauge invariance
in a uniform flux. In addition, not only is it symmetric
around ε = 0 for a given flux, i.e., εnk(α) = −εq−1−n,−k(α),
due to the particle-hole symmetry of H0 on a bipartite
lattice, but it is also mirror symmetric around α = 1/2 for a
given |nk〉 state, i.e., εnk(α) = εnk(1 − α) for 0 � α � 1.
The latter relation suggests that the flux-free α = 0
system is exactly equivalent to the α = 1 case and hence
α = 1/2 corresponds to the maximally attainable flux [16].
Furthermore, when q is an even denominator, combination
of the inversion and particle-hole symmetries implies the
condition εq/2−1,k = −εq/2,k, from which we infer that the
centrally symmetric bands n = q/2 − 1 and n = q/2 have
degenerate k states with ε = 0. It turns out that these central
bands contain q Dirac cones with q zero-energy touchings
in the first MBZ and therefore are not separated by a bulk
energy gap. For example, setting p/q = 1/2, we obtain
εnk = (−1)n+12t

√
cos2(kxa) + cos2(kya) for the n = 0 and

n = 1 bands, where g0
nk/g

1
nk = − cos(kya)/[cos(kya) +

(−1)n+1
√

cos2(kxa) + cos2(kya)] together with |g0
nk|2 +

|g1
nk|2 = 1. The locations of the Dirac points are kx = −π/2a

and ky = ±π/2a. Since the α = 1/2 case is a nontrivial yet an
analytically tractable one, we often use it as one of the ultimate
benchmarks for the accuracy of our numerical calculations.

Our primary interest in this paper is the superfluidity of
a spin-1/2 Fermi gas on a square lattice that is experiencing
an equal but opposite magnetic field for its spin components
[17–19], i.e., α↑ = −α↓ = α. This restores the T symmetry in
the system in such a way that the solutions of the Hofstadter
model for a ↓ particle can be written in terms of the ↑ ones
(given above) as follows: ε↓nk = ε↑n,−k and g

j

↓nk = g
j∗
↑n,−k.

More importantly, the self-consistent mean-field theory of such
a time-reversal-symmetric Hofstadter-Hubbard model [18,19]
turns out to be dramatically simpler to implement than that
of the usual Hofstadter-Hubbard model [20,21], as we discuss
next.

B. Self-consistent BCS-BKT theory

Having an equal number of ↑ and ↓ particles that are
interacting with on-site and attractive interactions in mind, we
have recently shown that the mean-field Hamiltonian can be
simply written as [18,19]

H =
∑
σnk

ξnkd
†
σnkdσnk − �

∑
nk

(d†
↑nkd

†
↓n,−k + H.c.) (3)

in k space. Here H is given up to a constant M�2/U

term, where M = A/a2 is the number of lattice sites with
A the area of the system, ξnk = εnk − μ is the butterfly
spectrum εnk shifted by the chemical potential μ, and � =
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(U/M)
∑

nk〈d↓n,−kd↑nk〉 is the order parameter characterizing
a spatially uniform SF phase. In addition, U � 0 is the
strength of the interparticle interactions, 〈· · · 〉 denotes the
thermal average, H.c. is the Hermitian conjugate, and � is
assumed to be real without losing generality. In contrast to
the usual Hofstadter-Hubbard model where the competing
vortex-latticelike SF phases involve both intra- and interband
Cooper pairings with nontrivial sets of finite center-of-mass
momenta K and hence require q × q order parameters [20,21],
here the energetically more favorable mean-field solution is
in essence a matter of the superfluidity of intraband Cooper
pairs with K = 0 only [18,19]. This is simply because, as
the T symmetry guarantees the existence of a ↓ partner in
state |n, − k〉 for every ↑ fermion in state |nk〉, the spatially
uniform SF solution allows all particles to take advantage
of the attractive potential by making ↑↓ Cooper pairs with
K = 0. We also emphasize that the disappearance of all of the
interband pairing terms from the mean-field Hamiltonian is a
direct consequence of the uniform SF phase with T symmetry.

Given the quadratic Hamiltonian, minimization of the corre-
sponding thermodynamic potential with respect to �, together
with the number equation N = ∑

σnk〈d†
σnkdσnk〉 that is con-

trolled by μ, leads to a closed set of self-consistency equations
that are analytically tractable. For instance, a compact way to
express these mean-field equations is1 [18,19]

1 = U

2M

∑
nk

Xnk

Enk
, (4)

F = 1 − 1

M

∑
nk

Xnk

Enk
ξnk, (5)

where Xnk = tanh(Enk/2kBT ) is a thermal factor with kB the

Boltzmann constant and T the temperature, Enk =
√

ξ 2
nk + �2

is the energy spectrum of the quasiparticles arising from band
n, and the particle filling 0 � F = N/M � 2 corresponds to
the total number of particles per site. Thus, we use Eqs. (4)
and (5) to determine � and μ for any given set of U , F , T , and
α parameters.

Since neither the amplitude nor the phase fluctuations of
the SF order parameter are included in the mean-field theory,
while the self-consistent solutions of Eqs. (4) and (5) are a
reliable description of the ground state at T = 0 for all U

values, the theory works reasonably well at finite temperatures
T � TBCS � t/kB as long as U � t is weak.2 Here TBCS is
the critical BCS transition temperature that is determined by
setting � → 0. However, as the role played by the temporal
phase fluctuations increases dramatically with stronger U � t

values, the mean-field theory becomes gradually insufficient,
failing eventually at capturing the finite-temperature correla-
tions of the SF phase in the strong-coupling or molecular limit

1The extra q factor appearing in the denominator of Eq. (3) is a
typographical error in Ref. [18].

2Even though the mean-field BCS theory breaks down when T >

TBKT, we find that � = √
3�0

√
1 − T/TBCS works extremely well for

T ≈ TBCS. Here �0 is the T = 0 order parameter and the prefactor√
3 is quite robust in the entire parameter range. See also [19] for a

similar observation.

even though T � TBCS [22,23]. In the U 
 t limit, we note
that the mean-field TBCS is directly proportional to the binding
energy U of the two-body bound state in vacuum and therefore
it characterizes the pair formation temperature of the Cooper
molecules. Thus, away from the weak-coupling limit, TBCS

has obviously nothing to do with the critical SF transition
temperature of the system, for which the phase coherence is
known to be established at a much lower temperature.

Taking only the phase fluctuations into account in our
two-dimensional model characterized by a single SF order
parameter, the critical SF transition temperature is determined
by the universal BKT relation3 [4–7]

kBTBKT = π

8
D0(TBKT), (6)

where D0 is the isotropic measure of the 2 × 2 phase stiffness
tensor, i.e., Dμν = D0δμν with (μ,ν) ≡ {x,y}. Similar to the
usual Hubbard model with a single SF order parameter [4] and
due to the time-reversal symmetry of the current model, the
elements Dμν are identified by making an analogy with the
effective phase-only XY Hamiltonian [8,10], where HXY =
(1/8)

∫
dx

∫
dy

∑
μν ∂μθrDμν∂νθr under the assumption that

�r = �eiθr . Setting θr = K · r for a spatially uniform con-
densate density with h̄K the pair momentum, we note that
HXY = D0AK2/4 = m0Aρsv

2/2, where v = h̄K/2m0 is the
velocity of the SF pairs with m0 the mass of the particles and
ρs = m0D0/h̄

2 is the density of the SF particles. Thus, the
phase stiffness of a SF is essentially equivalent to its SF density.
Here the factor m0ρs is often called the SF mass density of the
system.

We note that since TBCS is determined by the BCS condition
� → 0 and a finite TBKT requires a finite � by definition,
Eq. (6) already puts TBCS as the upper bound on TBKT for any
U �= 0. It turns out that while TBKT ∼ t2/kBU � TBCS in the
U/t 
 1 limit [22,23], TBKT → TBCS in the opposite U/t � 1
limit where the rate D0/t → 0 is the same as �/t → 0 only
when U/t → 0. In fact, we find in Sec. III that the maximum
TBKT ≈ 0.253t/kB is attained for q = 1 at μ = 0 when U ∼
3.75t .

Next we justify that the self-consistent solutions of Eqs. (4)–
(6) for �, μ, and TBKT, along with the proper multiband gener-
alization [10] of Dμν given below, are a reliable description of
the SF transition temperature TBKT for any given set of U , F ,
and α parameters. We note in passing that the self-consistent
BCS-BKT approach amounts to be the simultaneous solutions
of BCS mean-field equations and the universal BKT relation,
i.e., the phase fluctuations are only taken into account by the
latter via the analogy with the underlying XY model. While
this simple description is known to be quite accurate for the
weak-coupling BCS and strong-coupling molecular limits, it
provides a qualitative but reliable picture of the crossover
regime.

C. Phase stiffness

As an alternative to the expression given in Ref. [10], a
compact way to write the elements of the phase stiffness

3If Dμν is not isotropic then the universal relation becomes
kBTBKT = (π/8) det D.
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tensor is

Dμν = �2

A
∑
nmk

(Xnk

Enk
− Xnk − Xmk

Enk − Emk

)

× 2Qnmk
μν

Emk(Enk + Emk)
, (7)

where the independent n and m summations run over all bands,
Xnk = tanh(Enk/2kBT ) is the thermal factor, and the coeffi-
cient Qnmk

μν = Re[〈nk|∂H0k/∂kμ|mk〉〈mk|∂H0k/∂kν |nk〉] is
directly related to the details of the band geometry of the
single-particle problem.4 For instance, since Dμν is isotropic
in space for spatially uniform SFs, we have Qnmk

μν = Qnmk
0 δμν

with the particular coefficient Qnmk
0 = 4t2a2| ∑q−1

j=0 sin(kya +
2παj )gj∗

nkg
j

mk|2 obtained for our model Hamiltonian given in
Eq. (2). Furthermore, by defining Dμν = Dintra

μν + Dinter
μν , we

distinguish the intraband contribution of the phase stiffness
from the interband contribution, which are based, respectively,
on whether n = m or not in Eq. (7). Such an association proves
to be illuminating in some of our analysis given below.

First, let us show that the intraband contribution of Eq. (7)
corresponds precisely to the conventional expression given
in Eq. (1). Setting n → m for the intraband contribution,
the second term in large parentheses implies a derivative
such that d tanh(ax)/dx = a sech2(ax) and the coefficient
Qnnk

μν = (∂εnk/∂kμ)(∂εnk/∂kν) depends only on the spectrum.
After plugging them into Eq. (7), we rearrange the intraband
contribution into two pieces as Dintra

μν = (1/A)
∑

nk(∂ξnk/

∂kμ)∂(ξnkXnk/Enk)/∂kν− (1/2AkBT )
∑

nk sech2(Enk/2kBT )
(∂ξnk/∂kμ)(∂ξnk/∂kν). Since the latter piece already appears
in the conventional expression, next we recast the first
piece into two summations as (1/A)

∑
nk ∂[(∂ξnk/∂kμ)

ξnkXnk/Enk]/∂kν − (1/A)
∑

nk(∂2ξnk/∂kμ∂kν)ξnkXnk/Enk.
Note here that while the first summation integrates to zero
as the derivatives ∂ξnk/∂kμ vanish at the MBZ boundaries,
the second summation is equivalent to (1/A)

∑
nk(1 −

ξnkXnk/Enk)(∂2ξnk/∂kμ∂kν), as the additional summation
(1/A)

∑
nk ∂2ξnk/∂kμ∂kν = 0 integrates to zero for the same

reason given just above. Thus, the intraband contribution of
Eq. (7) is precisely the conventional expression in disguise.

For a more explicit demonstration, we substitute εk =
h̄2k2/2m0 for the dispersion relation in Eq. (7) and obtain
the SF stiffness of a single-band continuum system at T = 0
as Dμν = (h̄2�2/m2

0A)
∑

k kμkν/E
3
k, leading to D0 = (μ +√

μ2 + �2)/2π for any � �= 0. After plugging the mean-
field solutions � = √

2εbεF and μ = εF − εb/2 into this
expression, where εF = h̄2k2

F /2m0 is the Fermi energy and
εb � 0 is the two-body binding energy in vacuum, i.e., 1 =
(U/M)

∑
k 1/(2εk + εb), we obtain D0 = h̄2ρF /m0 for any

� �= 0. Here ρF = N/A = k2
F /2π is the total density of par-

ticles with kF the Fermi wave vector. Alternatively, this result
follows immediately from the T = 0 limits of the conventional
expression D0 = (h̄2/m0A)

∑
k(1 − ξk/Ek), given in Eq. (1),

together with the number equation N = ∑
σk(1/2 − ξk/2Ek).

Thus,D0 suggests that the entire continuum Fermi gas becomes

4Application of this general expression to the superconducting
graphene [10,19] reproduces the results of Ref. [13].

a SF for any � �= 0, i.e., ρs = ρF at T = 0 as soon as U > 0.
By making an analogy with this continuum result, we identify
the SF density of particles for the lattice model in Sec. II D.

Second, in the case of two-band SFs, e.g., when q = 2 in
our model as discussed in Sec. II A, it can be explicitly shown
that [10] the integrand of the interband contribution is linked to
the total quantum metric of the bands

∑
n=± f nk

μν with f +,k
μν =

f −,k
μν , where f nk

μν = Re[〈∂kμ
nk|(I − |nk〉〈nk|)|∂kν

nk〉] or
equivalently f nk

μν = ∑
m{�=n} Qnmk

μν /(εnk − εmk)2 is the quan-
tum metric of bandn in general. Note that, as the eigenfunctions
g

j

nk are only determined up to a random phase factor for a given
|nk〉 in a computer program, their partial derivatives contain
indefinite factors, making the former expression unsuitable for
numerical computation. This ambiguity is nicely resolved by
transforming the derivatives to the Hamiltonian matrix in the
latter expression.

Third, the general expression given in Eq. (7) acquires
a much simpler form at sufficiently low temperatures when
kBT � �. Assuming this is the case, we setXnk → 1 for every
|nk〉 state and obtain

Dμν = �2

A
∑
nmk

2Qnmk
μν

EnkEmk(Enk + Emk)
. (8)

To be exact, this expression is precisely the T = 0 limit of
Eq. (7). However, it is also valid for all T � TBKT in the
molecular limit, since kBTBKT ∼ t2/U when U/t 
 1 and
hence kBTBKT � t � � is well founded.

D. Molecular limit

In the � 
 t or equivalently U 
 t limit of tightly
bound Cooper molecules [22,23], Eqs. (4) and (5) give � =
(U/2)

√
F (2 − F ) and μ = −(U/2)(1 − F ), so

√
μ2 + �2 =

U/2 is independent of T . Therefore, both of these mean-field
parameters not only are proportional to the binding energy U of
the two-body bound state in vacuum, but are also independent
of α as the T symmetry ensures that the center of mass of the
Cooper pairs is neutral against the flux. In other words, the
only mechanism that allows a Cooper molecule to hop from
one site to another is via the virtual breaking of its ↑ and ↓
constituents [22,23]. Since the cost for breaking the bound
state is U , the molecule effectively hops from site j to site i

with tmij = 2t↑ij t↓ij /U . Thus, for our nearest-neighbor lattice
model, we identify tm = 2t2/U as the hopping amplitude of
the molecules and αm = α↑ + α↓ = 0 as their flux.

In addition, this intuition further suggests that the SF
density, and hence the SF phase stiffness, must be inde-
pendent of α in the molecular limit. We prove this phys-
ical expectation by first approximating Eq. (8) as Dμν =
[�2/A(μ2 + �2)3/2]

∑
nmk Qnmk

μν and then noting that the
summation over n and m is equivalent to

∑
nm Qnmk

μν =
Tr[(∂H0k/∂kμ)(∂H0k/∂kν)] for any given k. In particular
to our Hamiltonian given in Eq. (2), we immediately get
4t2 ∑

k∈MBZ

∑q−1
j=0 sin2(kya + 2παj ) for the μν ≡ yy element

and this summation is exactly equivalent to that of the flux-free
system, i.e., 4t2 ∑

k∈BZ sin2(kya) = M/2, since the interval
−π � kya < π remains unchanged in both Brillouin zones.
Thus, we conclude that D0 = 4F (2 − F )t2/U is independent
of both α and T � TBKT in the molecular limit. It is worth
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FIG. 1. The critical SF transition temperature kBTBKT/t is shown in the first row together with the corresponding SF order parameter �/t

in the second row, the relative weight of the intraband and interband contributions to the phase stiffness (Dintra
0 − Dinter

0 )/D0 in the third row,
and the condensate fraction Fc/F in the bottom row.

highlighting that, given the indiscriminate account of both the
intraband and interband contributions in recovering the desired
D0 of the Cooper molecules, our proof offers indirect yet
impartial support of the recent results. In fact, our numerical
calculations presented in Sec. III reveal that Dinter

0 eventually
dominates overDintra

0 with increasingU/t for anyq � 2. While
this domination is substantial even for the simplest two-band
and three-band (q = 2 and 3) cases, it is already quite dramatic
for q > 3 as the butterfly bands get more flattened.

In addition, to make an analogy with the molecular limit of
a continuum Fermi gas that is discussed at length in Sec. II C,
we first recall that the expression D0 = h̄2ρs/m0 is derived for
all � �= 0 including the molecular limit. Second, we rewrite
D0 in terms of the SF density of the continuum molecules
ρsm = ρs/2 and their mass m0m = 2m0 as D0 = 4h̄2ρsm/m0m.
Then, by plugging the effective mass m0m = h̄2/2tma2 of the
lattice molecules into this continuum expression, we identify
Fsm = a2ρsm = UD0/16t2 = (F/2)(1 − F/2) as the filling of
SF molecules. We are able to confirm that Fsm is independent
of α, which need not be the case for the filling of SF particles
Fs = a2ρs = D0/2t in the weak-coupling limit.

On the other hand, by adapting the definition of the number
of condensed particles for our model [24],

Fc = �2

2M

∑
nk

X 2
nk

E2
nk

, (9)

and taking the molecular limit, we obtain Fcm = �2/4(μ2 +
�2) = (F/2)(1 − F/2) as the filling of condensed molecules,
which is also independent of α. Thus, we conclude that all of
the SF molecules are condensed with a fraction of 2Fsm/F =
2Fcm/F = 1 − F/2. In perfect agreement with the continuum
model where we find that the entire Fermi gas is condensed and
becomes a SF in the dilute (F → 0) limit, half of the Fermi
gas is not condensed at half filling (F → 1). This difference
between the dilute continuum and finite-filling lattice has to do
with the fact that Cooper molecules are intrinsically hardcore
by their composite nature, which is strictly dictated by the Pauli
exclusion principle in the U/t → ∞ limit. For this reason,
whether a site is almost empty or singly occupied by one of
the Cooper molecules gives rise to a notable outcome in lattice
models.

III. NUMERICAL RESULTS

To illustrate the numerical accuracy of our analysis given
in Sec. II, next we present the self-consistent solutions of
Eqs. (4)–(6) for two sets of α = 1/q: The even q ∈ {2,4,6} set
is shown in Fig. 1 and the odd q ∈ {3,5,7} is shown in Fig. 2.
Here we primarily focus on the evolution of TBKT together with
the corresponding�,Dintra

0 , andFc in theμversusU plane. The
trivial q = 1 case is included in the Appendix for the sake of
completeness. Due to the particle-hole symmetry of the model
Hamiltonian, we restrict numerics to μ � 0 or equivalently
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FIG. 2. The critical SF transition temperature kBTBKT/t is shown in the first row together with the corresponding SF order parameter �/t

in the second row, the relative weight of the intraband and interband contributions to the phase stiffness (Dintra
0 − Dinter

0 )/D0 in the third row,
and the condensate fraction Fc/F in the bottom row.

F � 1, as the solutions are mirror-symmetric around μ = 0 or
the half filling F = 1.

First of all, since TBKT/t → Tc/t → 0 as �/t → 0 or
U → Uc, where the value of the critical interaction threshold
Uc for SF pairing depends strongly on the energy density
D(ε) of single-particle states, e.g., Uc/t > 0 when μ lies
within the butterfly gaps or at μ = 0 when q is even, the
top two rows in Figs. 1 and 2 recover the overall structure
of the ground-state (T → 0) phase diagrams [18]. We recall
that the multiband butterfly spectrum gives rise to a number
of insulating lobes that are reminiscent of the well-known
Mott-insulator transitions of the Bose-Hubbard model. This
is because while �, and therefore TBKT, grows exponentially
e−1/UD(μ) slow with U �= 0 and D(ε) wherever μ lies within
any of the butterfly bands, it grows linearly U − Uc fast from
the semimetal when μ = 0 and q is even and with a square
root

√
U − Uc from the insulators in general [18,19].

Even though � and TBKT must, in theory, vanish strictly
at U = 0 wherever μ lies within any of the butterfly bands,
this appears not to be the case in Figs. 1 and 2, e.g., the
U → 0 regions appear white instead of black. This is due to
a lack of our numerical resolution as the nonlinear solver fails
to converge once the relative accuracy of two consecutive �

iterations reduces below the order of 10−5. We checked that
using a 10−6 resolution does not improve the phase diagrams,
i.e., the minor corrections are indistinguishable to the eye. On

the other hand, this shortage makes the general structure of
D(ε) visible on the periphery of the white regions. In contrast,
the insulating lobes are determined quite accurately, since �

and TBKT vanish very rapidly as U → Uc �= 0.
The top rows in Figs. 1 and 2 show that the maximum

critical temperatures are always attained at μ = 0 for some
intermediate U ∼ 3.75t–5.5t and are all of the order of
kBT max

c ∼ 0.19t–0.25t for any given α. In particular, we ap-
proximately determine the following (kBT max

c /t,U/t) values
in our numerics: (0.1917,5.45) for q = 2, (0.2027,4.70) for
q = 3, (0.2181,4.25) for q = 4, (0.2260,4.10) for q = 5,
(0.2321,4.00) for q = 6, and (0.2363,3.95) for q = 7. Thus,
increasing q from 2 not only enhances max kBT max

c /t quite
monotonically, but also occurs at a lower U/t . In comparison,
we find (0.2528,3.75) for q = ∞ or equivalently q = 1 corre-
sponding to the usual no-flux model presented in the Appendix.
Assuming that the monotonic trend continues for larger q, we
suspect that the result of the q = ∞ case is an ultimate upper
bound for T max

c in the entire parameter range of the model
Hamiltonian given in Eq. (3). In the molecular limit when
U 
 t , we verify that kBTBKT/t decreases as πF (2 − F )t/2U

in all figures, which is in perfect agreement with the analysis
given above in Sec. II D.

In addition, we present the relative Dintra
0 − Dinter

0 weights
of the intraband and interband contributions to D0 in the
third rows of Figs. 1 and 2. Together with the TBKT figures
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shown in the top rows which are directly proportional to the
sum Dintra

0 + Dinter
0 , these results reveal that Dinter

0 eventually
dominates overDintra

0 with increasingU/t for anyq � 2. While
this domination is substantial even for the simplest two-band
and three-band (q = 2 and 3) cases, it becomes sheer dramatic
for q > 3 once the butterfly bands get more flattened. Thus, our
numerical results unveil and highlight the relative importance
of Dinter

0 contribution without a doubt.
Finally, the condensate fractions Fc/F are shown in the

bottom rows of Figs. 1 and 2. These results show that Fc/F →
0 is directly controlled by � in the weak-coupling limit when
�/t → 0. On the other hand, Fc/F saturates to 1 − F/2
in the molecular limit, which is again in perfect agreement
with the ground-state analysis given above in Sec. II D. This
is because kBTBKT/t → 0 in both the U → Uc and U 
 t

limits. Having achieved the primary objectives of this paper,
next we are ready to end it with a brief summary of our
conclusions.

IV. CONCLUSION

In summary, by studying the thermal SF properties along
with the critical SF transition temperature in the Hofstadter-
Hubbard model with T symmetry, here we analyzed the
competition between the intraband and interband contributions
to the phase stiffness in the presence of a multiband butterfly
spectrum. For instance, one of the highlights of this paper is
that increasing the interaction strength always shifts the relative
importance of the two in favor of the interband contribution.
In marked contrast with the two-band and three-band cases
for which the shift takes place gradually, our numerical results
showed an extremely striking shift for the higher-band ones.
We also showed analytically that the proper description of the
Cooper molecules requires an indiscriminate account of both
contributions in the strong-coupling limit.

Given our convincing evidence that the interband effects
are absolutely non-negligible in a typical multiband butterfly
spectrum, we hope to see further studies along this direction in
other models and/or contexts as well. Presumably, similar to the
resolution of the two-band superconductivity without super-
current controversy near the Dirac points in graphene [12,13],
such effects may already be playing a part in the multiband
family of high-Tc superconductors that are waiting to be
uncovered and characterized.

FIG. 3. The critical SF transition temperature kBTBKT/t is shown
in the first row together with the corresponding SF order parameter
�/t in the second row and the condensate fraction Fc/F in the bottom
row.
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APPENDIX: USUAL HUBBARD MODEL

For the sake of completeness, here we include the self-
consistent solutions of Eqs. (4)–(6) for α = 0 or equiva-
lently α = 1/1, where εk = −2t cos(kxa) − 2t cos(kya). As
we noted in Sec. III, even though � and TBKT must, in theory,
vanish strictly at U = 0 wherever μ lies within the band, i.e.,
−4t < μ < 4t , this appears not to be the case in Fig. 3 as
well, e.g., the U → 0 regions appear white instead of black.
This is again due to a lack of our numerical resolution as the
nonlinear solver fails to converge once the relative accuracy of
two consecutive � iterations reduces below the order of 10−5.
Despite this shortage, we find kBT max

c ≈ 0.2528t at μ = 0
when U ≈ 3.75t , which is in very good agreement with an
earlier estimate [4].
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