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We explore the trap profiles of a two-dimensional atomic Fermi gas in the presence of a Rashba spin-orbit
coupling and under an adiabatic rotation. We first consider a noninteracting gas and show that the competition
between the effects of Rashba coupling on the local density of single-particle states and the Coriolis effects caused
by rotation gives rise to a characteristic ring-shaped density profile that survives at experimentally accessible
temperatures. Furthermore, Rashba splitting of the Landau levels gives the density profiles a ziggurat shape in the
rapid-rotation limit. We then consider an interacting gas under the BCS mean-field approximation for local pairing,
and study the pair-breaking mechanism that is induced by the Coriolis effects on superfluidity, where we calculate
the critical rotation frequencies both for the onset of pair breaking and for the complete destruction of superfluidity
in the system. In particular, by comparing the results of a fully-quantum-mechanical Bogoliubov–de Gennes
approach with those of a semiclassical local-density approximation, we construct extensive phase diagrams for
a wide range of parameter regimes in the trap where the aforementioned competition may, e.g., favor an outer
normal edge that is completely phase separated from the central superfluid core by vacuum.
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I. INTRODUCTION

Most of the exotic many-body phenomena observed in
an atomic Fermi gas are triggered by a variety of couplings
between single-particle states and externally applied fields, and
therefore they relate directly to the single-particle properties of
a normal Fermi gas (NG). For instance, appropriate couplings
between the internal atomic degrees of freedom and laser
fields have made it possible to create and engineer effective
electromagnetic fields, i.e., artificial Abelian gauge fields, for
neutral atoms [1]. Alternatively, since the effects of rotation
are analogous to those of an effective magnetic field on a
particle, where the Coriolis force on a neutral atom mimics the
Lorentz force on a charged particle, such a coupling may be
used to form Landau levels in a trapped Fermi gas exhibiting
an integer quantum-Hall effect [2]. In addition, recent progress
in creating effective spin-orbit couplings (SOC), i.e., artificial
non-Abelian gauge fields, also opens the door for analogous
cold-atom studies on quantum spin-Hall effect [3,4] and
topological insulators [3,5]. Bringing such couplings together
naturally generates further novel effects. For example, while
the simultaneous presence of Rashba SOC and the Zeeman
field may give rise to an anomalous-Hall effect [6], the
interplay of Rashba coupling and adiabatic rotation may lead to
the formation of a ring-shaped annulus in a trapped Fermi gas
[7]. For instance, in the absence of an external Zeeman field,
such an interplay can effectively be thought of a spin-rotation
coupling, inducing angular spin-polarization textures as a
consequence of the resultant angular Zeeman field.

SOC and related contemporary phenomena have arisen
as some of the key components in the interdisciplinary
contexts of modern many-body quantum systems, including
the cold atoms, and their understanding is premised on the
possibility of engineering cutting-edge technologies that are
based on topological solid-state materials. In this respect, the
experimental realizations of an effective SOC via artificial
gauge fields [8–14], including the possibility of real-time

control [15], extend the stage to investigate SOC physics
in experimentally controllable settings. Even though early
experimental works were limited to a one-dimensional SOC,
which may be considered as an equal-weight combination of
Rashba and Dresselhaus couplings, a two-dimensional SOC
has recently been realized [16] by using a three-laser Raman
scheme, paving the way for the realization of a purely Rashba
coupling. There are various other theoretical proposals that are
based on magnetic or generalized Raman schemes for creating
a Rashba coupling as well [17–23]. Furthermore, motivated
by the experimental realizations of a 2D Fermi gas [24–29],
the effects of SOC on a 2D Fermi gas have recently been the
subject of many theoretical works [30–38].

An essential signature of a trapped atomic superfluid (SF) is
the appearance of quantized vortices when the system is rotated
[39,40]; i.e., the vortex cores consist of rotating NG atoms
with quantized angular momenta, as the rotation gradually
destroys the SF phase by breaking the time-reversal symmetry.
In particular, when the rotation is introduced adiabatically
without exciting vortices in a SF Fermi gas, some of the Cooper
pairs may be broken due to the Coriolis effects and form a
rotating NG edge carrying the transferred angular momentum.
This possibility was first proposed for a 3D resonant Fermi gas
using the energy densities obtained from the Monte Carlo sim-
ulations together with a local-density approximation (LDA)
for the trap [41,42]. It was shown that an adiabatic rotation
gives rise to a phase separation between the nonrotating SF
at the center and a rigidly rotating NG at the edge, which
was further supported by the results of both LDA [43] and
Bogoliubov–de Gennes (BdG) [44] approaches that are based
on the microscopic BCS mean-field theory. The latter works
also showed that the central SF core and the outer NG edge are
connected by a coexistence region, i.e., a partially rotating
gapless SF (gSF) phase in between. Furthermore, such a
pair-breaking scenario has shown to be energetically preferred
against the vortex formation in a sizable parameter regime
even in the absence of the adiabaticity assumption [45,46].
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E. DOKO, A. L. SUBAŞI, AND M. ISKIN PHYSICAL REVIEW A 95, 013601 (2017)

By assuming a BCS mean-field approximation for local
pairing and an LDA for the trap, we earlier this year reported
our initial results for the effects of an adiabatic rotation
on a Rashba-coupled 2D Fermi gas [7]. In contrast to the
nonrotating case, we showed that the pairing can either be
enhanced or suppressed via Rashba coupling in a rotating
system, and that the gSF region may disappear entirely
from the trap forming an outer ring-shaped NG edge that
is completely phase separated from the central SF core by
vacuum. Here, we not only extend this LDA analysis to a wider
parameter regime but also compare its results with those of the
BdG approach showing a perfect agreement for the most parts.

The rest of the paper is organized as follows. The details
of the theoretical framework are given in Sec. II, where we
introduce the BCS mean-field formalism for pairing, and the
BdG and LDA approaches for the harmonic trap. Through a
thorough analysis of the resultant self-consistency equations,
we characterize the trap profiles of first a noninteracting Fermi
gas in Sec. III and then an interacting one in Sec. IV, with
a special emphasis on the formation of a characteristic ring-
shaped NG edge. In Sec. V, we calculate the critical rotation
frequencies both for the onset of pair breaking and for the
complete destruction of superfluidity, and construct extensive
phase diagrams for a wide-range of parameter regimes in
the trap demonstrating all possible phase profiles. We end the
paper with a brief summary of our conclusions and outlook
in Sec. VI, followed by a short appendix on the details of the
BdG approach.

II. THEORETICAL FRAMEWORK

To study the interplay between Rashba coupling and
adiabatic rotation in a 2D Fermi gas, we may consider a
harmonic-confinement potential that is isotropic in space for
its simplicity, and a short-ranged (i.e., contact) attractive
interaction that is most relevant in the cold-atom context. For
this purpose, we start with the introduction of the parameters of
the model Hamiltonian, and then derive the self-consistency
equations for the fully-quantum-mechanical BdG as well as
the semiclassical LDA approaches, by restricting ourselves to
the BCS mean-field approximation for pairing.

A. Hamiltonian

In the rotating frame of reference, the noninteracting part
Hni of the total grand-canonical Hamiltonian H = Hni + Hint

can be written as a sum of three terms Hni = Hsho + Hrot +
Hsoc, corresponding, respectively, to the contributions of the
simple-harmonic-oscillator potential, adiabatic rotation, and
Rashba coupling. In particular, by denoting ψ

†
rσ and ψrσ

as the creation and annihilation operators for a pseudospin
σ ≡ {↑,↓} ≡ {1/2, − 1/2} fermion at position r ≡ (x,y), the
harmonic-oscillator term can be expressed as

Hsho =
∑

σ

∫
d2r ψ†

rσ

(
p2

2M
+ Vr − μ

)
ψrσ , (1)

where p = −i∇ is the linear-momentum operator in units of
� = 1,M is the mass of the particles, Vr = Mω2r2/2 is the
harmonic potential with ω the trapping frequency, and μ is the
chemical potential. Likewise, choosing the perpendicular (z)

direction as the rotation axis, the adiabatic-rotation term can
be expressed as

Hrot = −�
∑

σ

∫
d2r ψ†

rσ Lz
rψrσ , (2)

where � � 0 is the rotation frequency and Lz
r is the z

projection of the angular-momentum operator Lr = r × p.
Note that there is a well-known upper bound on � as the
harmonic potential can only trap the particles for � < ω.
Lastly, the Rashba-coupling term can be expressed as

Hsoc = α
∑
σσ ′

∫
d2r ψ†

rσ (p · �σ )σσ ′ψrσ ′, (3)

where α � 0 is the strength of the spin-momentum coupling,
and �σ ≡ (σx,σ y) is a vector of Pauli spin matrices.

Lastly, the interacting part Hint of the total Hamiltonian can
be expressed as

Hint = −g

∫
d2r ψ

†
r↑ψ

†
r↓ψr↓ψr↑, (4)

where g � 0 is the strength of the bare attraction between
↑ and ↓ particles. To make connection with the literature,
we follow the usual convention, and relate g to the two-body
binding energy Eb � 0 of ↑ and ↓ particles in vacuum via the
relation 1/g = (1/A)

∑
k 1/(2εk + Eb), where A is the area of

the system, and εk = k2/(2M) is the free-particle dispersion
with k = |k| the magnitude of momentum k. This leads to
g = 4π/[M ln(1 + 2Ec/Eb)] in two dimensions, where Ec is
the energy cutoff used in the k-space sum. We note that the
ultraviolet dependence on Ec is a direct reflection of the zero-
ranged nature of the contact interaction, and that none of our
numerical results depend strongly on its specific value as long
as it is chosen sufficiently high. See Sec. IV for more details
on its numerical implementation.

B. Mean-field theory

To make further progress with the interacting term, we
adopt the BCS mean-field approximation for pairing, and
introduce the pair potential 	r = g〈ψr↑ψr↓〉, which serves
as the order parameter for pairing characterizing the SF phase.
Here, 〈· · · 〉 is a thermal average. This approximation reduces
the interaction part of the Hamiltonian to

H mf
int =

∫
d2r

(
	rψ

†
r↑ψ

†
r↓ + 	∗

rψr↓ψr↑ + |	r|2
g

)
, (5)

and therefore the total mean-field Hamiltonian H mf = Hni +
H mf

int has effectively the form of a single-particle one. In order to
obtain self-consistent solutions, one needs to solve 	r and H mf

together with the number density nr =∑σ 〈ψ†
rσ ψrσ 〉, in such

a way that the total number of particles N = ∫ d2rnr is fixed
to a specified value through the parameter μ. Furthermore,
while a vanishing/nonzero |	r| is a characteristic property
of the NG/SF phase in general, the SF phase may further
be classified as being gapped or gapless depending on its
excitation spectrum in momentum space. Having this purpose
in mind, we are also interested in the mass-current density Jr in
this paper, which can be extracted from the continuity equation
M∂tnr + ∇ · Jr = 0. Next we derive explicit expressions for
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the resultant self-consistency equations using both BdG and
LDA approaches.

1. Bogoliubov–de Gennes approach

Using a generalized Bogoliubov-Valatin transformation,
we first diagonalize H mf, leading to the matrix-eigenvalue
equation H BdG

r �rη = Eη�rη, where the BdG Hamiltonian can
be expressed as

H BdG
r =

⎛
⎜⎜⎝

Kr Sr 0 	r

S
†
r Kr −	r 0

0 −	∗
r −Kr −S

†
r

	∗
r 0 −Sr −Kr

⎞
⎟⎟⎠− �Lz

r. (6)

Here, Kr = −∇2/(2M) + Vr − μ and Lz
r = x∂y − y∂x are

the spin-conserving single-particle terms, and Sr = α(∂x −
i∂y) is the spin-flipping Rashba one. The eigenfunctions
are formed by a four-component Nambu spinor �rη =
[ur↑η,ur↓η,vr↑η,vr↓η]T, and the associated quasiparticles have
energy Eη > 0, where the creation (annihilation) operator
γ †

η (γη) is such that H mf = Egs +∑η Eηγ
†
η γη, with Egs the

ground-state energy of the system.
We then make use of the inverse transformations ψrσ =∑
η (urσηγη + v∗

rσηγ
†
η ), and determine the self-consistency

equations for 	r and μ as

	r = g
∑

η

[ur↑ηv
∗
r↓ηf (−Eη) + ur↓ηv

∗
r↑ηf (Eη)], (7)

nr =
∑
ησ

[|urση|2f (Eη) + |vrση|2f (−Eη)], (8)

where f (x) = 1/[1 + exp(βx)] is the Fermi function with
the inverse temperature β = 1/(kBT ). In addition, Jr has a
nonvanishing component in the azimuthal direction, which can
be written as a sum of two terms J θ

r =∑σ J θσ
r + 2MαJ

θ↑↓
r ,

corresponding, respectively, to the usual contribution and the
Rashba one, where

J θσ
r =

∑
η

[
u∗

rση

∂

r∂θ
urσηf (Eη) + vrση

∂

r∂θ
v∗

rσηf (−Eη)

]
,

J θ↑↓
r =

∑
η

[|u∗
r↑ηur↓η|f (Eη) + |vr↑ηv

∗
r↓η|f (−Eη)]. (9)

Here, while all of the η sums are restricted to Eη < Ec, none of
our results depend strongly on the specific value of the cutoff
energy Ec as noted above in Sec. II A.

Lastly, by expanding the components of �rη in the angular-
momentum basis of a simple-harmonic oscillator, it is possible
to obtain closed-form expressions for all of these equations as
briefly summarized in the Appendix.

2. Local-density approximation

Unlike the BdG approach where the harmonic-oscillator
potential is taken exactly into account in a fully-quantum-
mechanical manner, the LDA approach is a semiclassical one,
as it amounts to treating the local system at r as a uniform gas
with the local chemical potential μr = μ − Vr and a rotation
�Lz

rk = vr · k term, where vr = �ẑ × r. Note that the trap
center is immune to the direct effects of rotation. Within this
approach, we expand the field operators in the plane-wave

basis, i.e., ψrσ = (1/
√

A)
∑

k eik·rakσ and its Hermitian conju-
gate, where akσ is the annihilation operator for a pseudospin σ

fermion at momentum k = (kx,ky), and obtain the local Hamil-
tonian density H LDA

r = (1/2)
∑

k �
†
kH

LDA
rk �k + Cr. Here, the

LDA Hamiltonian can be expressed as

H LDA
rk =

⎛
⎜⎝

ξrk Sk 0 	r
S∗

k ξrk −	r 0
0 −	∗

r −ξrk S∗
k

	∗
r 0 Sk −ξrk

⎞
⎟⎠− �Lz

rk, (10)

where ξrk = εk − μr with the free-particle dispersion εk =
k2/(2M), Sk = α(kx − iky) is the Rashba coupling, 	r =
(g/A)

∑
k〈ak↑a−k↓〉 is the local order parameter, �k =

[ak↑,ak↓,a
†
k↑,a

†
−k↓]T is the spinor operator, and Cr =∑

k(ξrk + �Lz
rk) + A|	r|2/g is a local constant. This Hamil-

tonian can be written in its diagonal form as H LDA
r =∑

ks(Erksγ
†
ksγks − Erks/2) + Cr, where the operator γ

†
ks (γks)

creates (annihilates) a quasiparticle with momentum k, helicity
s = ± (spin parallel/anti-parallel to momentum), and local
excitation energy

Erks =
√

(ξrk + sαk)2 + |	r|2 − �Lz
rk. (11)

We note that while a locally gapped SF has a nonzero Erks > 0
everywhere in k space, the locally gapless SF (i.e., gSF) has
Erks = 0 for some k-space points even though |	r| > 0.

In order to determine the self-consistency equa-
tions, we first calculate the local thermodynamic poten-
tial Gr = −(1/β)Tr{ln[exp(−βH LDA

r )]}, leading to Gr =
(1/2)

∑
ks{(1/β) ln[1 − f (Erks)] − Erks} + Cr, and then

minimize it, i.e., ∂Gr/∂|	r| = 0 together with nr =
−(1/A)∂Gr/∂μr . This procedure gives rise to the following
closed-form expressions:

1

g
= 1

4A

∑
ks

1 − 2f (Erks)

Erks + �Lz
rk

, (12)

nr = 1

2A

∑
ks

{
1 − ξrk + sαk

Erks + �Lz
rk

[1 − 2f (Erks)]

}
, (13)

for 	r and μ. Furthermore, the components of the mass-current
density Jr = (J x

r ,J
y
r ) can again be written as a sum of two

terms(
J x

r ,J y
r

) = 1

A

∑
kσ

(kx,ky)nrkσ + (P x
r ,P y

r

)
Mαnr. (14)

We note that while the usual contribution is related directly to
the local momentum distribution nrkσ = 〈a†

kσ akσ 〉 of particles
which can be extracted from the summand of Eq. (13) as nr =
(1/A)

∑
kσ nrkσ , the Rashba one is related directly to the local

average spin polarization P i
r = [1/(Anr)]

∑
σσ ′ 〈a†

kσ �σ i
σσ ′akσ ′ 〉

of particles with its components determined by P x
r + iP

y
r =

[2/(Anr)]
∑

k〈a†
k↑ak↓〉.

Having presented the details of the BdG and LDA ap-
proaches, next we analyze the resultant self-consistency equa-
tions for a noninteracting Fermi gas, and show that the compe-
tition between the effects of Rashba coupling on the local den-
sity of single-particle states and the Coriolis effects caused by
rotation gives rise to a characteristic ring-shaped number den-
sity that survives at experimentally accessible temperatures.

013601-3
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III. NONINTERACTING FERMI GAS

Given that the LDA results are in very good agreement
with those of numerically exact quantum-mechanical ones for
a wide range of parameter regimes and with the additional
advantage that they permit analytical insights into the limiting
cases [7], we rely mostly on the LDA approach throughout this
section and analyze the generic trap profiles of a noninteracting
Fermi gas in the presence of Rashba coupling and under slow
or moderate rotations. We note in passing that, since the LDA
approach does not capture the correct physics in the Landau
regime of a rapidly rotating Fermi gas, we rely only on the
BdG approach in this extreme regime as discussed towards the
end in Sec. III E.

By setting 	r = 0 in Eq. (11), we get the local dispersion
relation εrks = k2/(2M) + sαk − r�k sin(θk − θr) − μr for
the noninteracting particles, where θk and θr are, respectively,
the polar angles in k and r spaces. Since the trapping potential
is assumed to be isotropic in space in this paper, and limiting
ourselves only to the rotationally symmetric solutions, we
may take θr = 0 corresponding to the positive x direction
in space without the loss of generality. Given the local
dispersion, we may express the total local energy density
of states (LDOS) as Dr (ε) =∑s Drs(ε), where Drs(ε) =∑

k δ(ε − εrks) is the LDOS with helicity s. Similarly, the total
number density may also be expressed as nr =∑s nrs, where
nrs = (1/A)

∑
k f (εrks) = (1/A)

∫
dεDrs(ε)f (ε) is the num-

ber density with helicity s. Furthermore, the local Fermi
surfaces are defined by εrks = 0, leading to the following
curves:

ks
1,2 = M(�r sin θk − sα)

±
√

M2(�r sin θk − sα)2 + 2Mμr. (15)

To gain as much insight as possible into the basic properties
of a noninteracting Fermi gas, we first discuss these quantities
in a few analytically tractable limits, prior to the presentation
of our numerical results for the generic case with arbitrary �

and α.

A. Trapped Fermi gas (ω �= 0, α = 0, and � = 0)

The first analytically tractable limit is a usual 2D Fermi
gas with neither Rashba coupling nor rotation, for which case
the local dispersion relation is simply a paraboloid with its
minimum at the origin k = 0. This is shown in Fig. 1(a) for
reference, and the Fermi surface is trivially a circle around the
origin. Since the DOS of a uniform Fermi gas is a constant
in 2D, the LDOS of a trapped gas can be written within the
LDA approach as Dr (ε) = MA�(εr )/π, where �(x) is the
Heaviside-step function and εr = ε − Vr , and it is shown in
Fig. 2(a). The resulting number density is an inverted parabola,
nr = M(EF − Mω2r2/2)/π, where EF is the Fermi energy
at the trap center, and the Thomas-Fermi radius RF is given by
definition nRF

= 0 as RF =
√

2EF /(Mω2). In addition, the
central density can be written as n0 = k2

F /(2π ), where kF is
the Fermi momentum in such a way that EF = k2

F /(2M) =
ω

√
N. We use EF , kF , and RF as, respectively, the energy,

momentum, and length scales in our numerical calculations.

FIG. 1. Local dispersion relations for (a) � = 0 and α = 0: the
usual paraboloid, (b) � �= 0 and α = 0: finite momentum states that
are energetically favored by rotation result in a shifted paraboloid, (c)
� = 0 and α �= 0: the negative-helicity band has a degenerate circular
minima, and (d) � �= 0 and α �= 0: rotation causes an asymmetric
minimum.

B. Trapped Fermi gas with Rashba coupling
(ω �= 0, α �= 0, and � = 0)

The second analytically tractable limit is a 2D Fermi gas
with Rashba coupling, for which case the main effect of this
coupling on the trap profiles is to increase the number density
at the trap center through the increased low-energy LDOS. To
see this effect, we first note that, by breaking the spin-rotation

FIG. 2. Local energy density of states (LDOS) in the trap within
the LDA approach. In the absence of a Rashba coupling, the LDOS is
a constant except for the outward extension due to rotation as shown
in (a) for � = 0 and α = 0 and (b) for � = 0.4ω and α = 0. In the
absence of rotation, Rashba coupling enhances the LDOS for the
lowest energies as shown in (c) for � = 0 and α = 3EF /kF . In the
generic case shown in (d) for � = 0.8ω and α = 3EF /kF , rotation
not only pushes the minimum of the LDOS away from the trap center
but it also removes the divergence for r �= 0 as discussed in the main
text.
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symmetry, the Rashba coupling splits the local dispersion
relation into two (s = ±) local helicity branches. Here, the spin
is oriented parallel to the momentum k in the higher-energy
+ branch and antiparallel in the lower-energy − one. While
the energy of the + branch increases monotonically with k,
the minimum of the spectrum is shifted to finite momentum
for the − branch forming a circle with radius k = Mα as
shown in Fig. 1(c). Thus, in the local regions with μr > 0,
there are two circular Fermi surfaces around the origin in
k space corresponding to + and − branches. When the +
branch disappears for μr � 0, an additional circular Fermi
surface appears in the − branch, in which case, however,
all of the k states that are below the Fermi energy have
finite momentum.

Within the LDA approach, it is easy to show that
the LDOSs are given by Drs(ε) = MA(1 − sMα/√

M2α2 + 2Mεr )/(2π ) in the local regions with
εr > 0, and Drs(ε) = (1 − s)M2Aα�(M2α2 + 2Mεr )/
(2π
√

M2α2 + 2Mεr ) in the local regions with εr � 0. This
indicates that, in sharp contrast to the εr > 0 regions where
the total LDOS is clearly unaffected by the Rashba coupling,
it displays a 1D-like energy dependence in the εr � 0 regions
arising solely from the − branch; i.e., the divergence of LDOS
in the local regions satisfying the condition εr = −Mα2/2
is very much like that of a uniform Fermi gas in 1D. This
behavior is a reflection of the degenerate minima discussed
above, and it gives rise to the enhanced low-energy LDOS
shown in Fig. 2 (c). This effect reduces the radius of the gas
as the number density increases around the trap center due to
the increased low-energy LDOS.

Furthermore, since the Rashba coupling indirectly af-
fects the density profile through the depletion of parti-
cles from the + branch, we determine the critical ra-
dius rc = [−2α2/ω2 +

√
4α4/(3ω4) + R4

F ]1/2 for the complete
depletion by setting μrc

= 0. In addition, we find nrs =
M2(−sα +

√
α2 + 2μr/M)2/(4π ) in the local regions with

μr > 0 or equivalently r < rc, and nr+ = 0 and nr− =
M2α

√
α2 + 2μr/M/π in the local regions with μr < 0 or

equivalently r > rc. Since rc > 0 for weak couplings, there is
an outer ring-shaped region in the trap where the local + branch
is completely empty. Setting rc = 0, we find the critical Rashba
coupling αc = 4

√
6EF /kF , beyond which the + branch is never

occupied in the entire trap. We note that even though the num-
ber density acquires a relatively simple form when α > αc, it
is quite different from the usual inverted-parabola dependence
of a trapped Fermi gas discussed in Sec. III A. Furthermore,
the edge of the gas can be extracted from the number density
as R0

O = [−α2/ω2 +
√

4α4/(3ω4) + R4
F ]1/2 for α < αc, and

R0
O = RF [3EF /(4αkF )]1/3 for α � αc, showing explicitly that

the edge of the gas R0
O moves inward with increasing α

and the gas contracts. By integrating the number density,
we also find μ = −α2M +

√
α4M2/3 + E2

F for α < αc, and
μ = −α2M/2 + [6E2

F /(α
√

2M)]2/3/4 for α > αc.

C. Trapped Fermi gas with adiabatic rotation
(ω �= 0, α = 0, and � �= 0)

Another analytically tractable limit is a 2D Fermi gas
with adiabatic rotation, for which case the main effect of

rotation on the trap profiles is to spread out the number
density supported by the imparted centripetal acceleration on
the particles. To see this effect, we first note that, by breaking
the inversion symmetry of the dispersion relation, i.e., tilting
of the excitation spectrum, rotation causes an asymmetry in
k space. This shifts the minimum of the paraboloid from the
origin shown in Fig. 1(a) to a finite k = r�M as shown in
Fig. 1(b) where the Fermi surface is a circle centered around
this finite momentum.

We find that the LDOS is simply given by Dr (ε) =
MA�(εr + M�2r2/2)/π, showing that it remains to be a
constant except for the radial extension, and that its parabolic
shape is retained as shown in Fig. 2(b). As a consequence, μ =
EF

√
1 − �2/ω2, and the resultant number density is still an

inverted parabola nr = M2[2μ/M − (ω2 − �2)r2]/(2π ). We
note that since the curvature of the trap profile decreases with
increasing �, the edge of the gas R0

O = RF (1 − �2/ω2)−1/4

expands with � until � = ω, beyond which the trap cannot
supply the necessary centripetal acceleration. In addition, the
associated mass-current density J θ

r = Mnr�r is that of a
rigidly rotating gas. We note in passing that the asymmetric
occupation of the finite-angular-momentum states with respect
to the rotation along with and opposite to the azimuthal
direction causes a pair-breaking effect on the Cooper pairs
with zero center-of-mass momentum, as further discussed in
Sec. IV C.

D. Trapped Fermi gas with Rashba coupling and rotation
(ω �= 0, α �= 0, and � �= 0)

Having shown analytically that the Rashba coupling and
adiabatic rotation have competing effects on the trap profiles,
we are ready to discuss the generic case with arbitrary �

and α, for which case the main effect of their interplay is
to change the number density from the shape of a disk to a
ring-shaped annulus. To see this effect, we first note that, by
breaking the degeneracy in the lowest-energy states, rotation
tilts the minima of the − branch as shown in Fig. 1(d). Since
the tilting-effect is proportional to k, it is further enhanced by
the Rashba coupling, giving rise to three topologically distinct
Fermi surfaces for the − branch and one for the + one. For
instance, in the local regions with μr > 0, the local Fermi
surface of the − branch is a circle around some finite k. In
the local regions with μr < 0, however, while the local Fermi
surface is a deformed ring centered around the origin when√−2μr/M − α � −2�r, it is of the crescent shape when
|√−2μr/M − α| � �r. In contrast, the local Fermi surface
of the + branch is a deformed circle centered at some finite k.
Note that, unlike the nonrotating case discussed in Sec. III B,
the + branch is locally occupied even in the regions with
μr � 0 as long as

√−4μr + α � 2�r .
The radial position of the lowest-energy state in the trap

can be determined by minimizing εrk− with respect to both k
and r , leading to k = αMω2/(ω2 − �2) with θk = π/2, i.e.,
opposite to the direction of the mass-current density, and r =
α�/(ω2 − �2). Note that k → 0 and r → 0 are recovered for
the usual case when α → 0 and � → 0. To gain further insight,
we calculate the LDOS via the following representation of the
Dirac-delta function δ(x) ≈ (1/π ) limς→0 ς/(x2 + ς2) with
ς = 10−3, and the results are shown in Fig. 2(d). We see
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that, by breaking the degeneracy of the lowest-energy states in
the − branch, rotation removes the 1D-like divergence from
the LDOS profile for all r �= 0. Recall that r = 0 is immune
to the direct-effects of rotation. In addition, since the higher
the angular momentum of the single-particle state the further
away its localization distance from the trap center, we conclude
that the lowest-energy states have finite angular momentum,
and that a comparison between Figs. 2(c) and 2(d) reveals
that the lowest energy of the finite-angular-momentum states
is lower than the lowest energy of the nonrotating gas. Thus,
depending on the strengths of Rashba coupling and adiabatic
rotation, it may be energetically more costly for any of the
particles to occupy the trap center, in which case the number
density forms a ring-shaped annulus.

Alternatively, the depletion of the number density at the
trap center and the accompanying formation of a ring-shaped
annulus can also be deduced analytically as follows. First of all,
the central density turns out to be nr=0 = M(α2M + μ)/π for
μ � 0, and nr=0 = αM2

√
α2 + 2μ/M/π for μ < 0, showing

explicitly that nr=0 = 0 when the parameters satisfy the critical
condition α2 + 2μ/M � 0. Here, � enters into this condition
implicitly through its dependence on μ. Then, we note that
the locations at which the number density vanishes, i.e., the
local Fermi surface disappears, are exactly the inner and outer
radii forming the edges of the gas. Since the presence of a
local Fermi surface implies real solutions for ks

1,2, we find
the edges by setting the square root to zero in Eq. (15), i.e.,
M(�r − sα)2 + 2μr = 0, leading to

R0
I,O = RF

ω�α ± ω
√

α2ω2 + 2μ(ω2 − �2)/M

kF (ω2 − �2)/M
, (16)

where I (O) denotes the inner (outer) edge. The gas may
form an annulus only if the inner radius satisfies R0

I � 0,
leading again to the critical condition α2 + 2μ/M � 0. Thus,
the critical rotation frequency �0

c for the emergence of such
an annulus can be calculated by a self-consistent solution
of the number equation together with the critical condition
α2 + 2μ/M = 0. The resultant phase diagram is shown in
Fig. 3, where �0

c decreases monotonically with increasing α,

αkF/EF

Ω
0 c
/ω

FIG. 3. The critical rotation frequency �0
c for the depletion of the

noninteracting number density at the trap center at T = 0. Increasing
the Rashba coupling beyond a critical value transforms the disk-
shaped density of the Fermi gas into a ring-shaped annulus. While an
annulus may ultimately form for any � < ω as long as α is sufficiently
high, �0

c → ω in the α → 0 limit signifying the crucial interplay
between Rashba coupling and adiabatic rotation for this effect.

r/RF

n
r
/n

0 αkF/EF = 0

r/RF

n
r
/n

0 αkF/EF = 0

FIG. 4. Noninteracting number-density maps at T = 0 with
changing Rashba coupling for (a) � = 0.15ω and (b) � = 0.5ω.
A few exemplary radial density profiles are plotted in (c) and (d),
showing explicitly that the rotating Fermi gas eventually takes on a
ring-shaped annulus with increasing α.

and it is in perfect agreement with our fully numerical solutions
for the trap profiles as illustrated below. We also note in passing
that while the gas never forms an annulus in the α → 0 limit
given the upper bound on � as the harmonic potential can only
trap the particles for � < ω, it may form an annulus at any
finite α with �0

c < ω.
In Figs. 4 and 5, the trap profiles are shown for a wide range

of parameters. For instance, we set � = 0.15ω in Figs. 4(a)
and 4(c), and plot the number-density maps in the entire trap
as a function of α together with a few exemplary radial density
profiles. As discussed above, the Rashba coupling not only
increases the LDOS around the trap center but it also favors
energetically some finite-angular-momentum states, causing
simultaneously an increase in the central density due to the
former effect and an expansion of the edge due to the latter
one as a function of α. This competition sharply decreases the
number density away from the trap center. Once α approaches
the critical value α = √−2μ/M , the latter effect gradually

r/RF

n
r
/n

0 Ω/ω = 0.00

r/RF

n
r
/n

0 Ω/ω = 0.00

FIG. 5. Noninteracting number-density maps at T = 0 with
changing rotation frequency for (a) α = 1kF /EF and (b) α =
4kF /EF . A few exemplary radial density profiles are plotted in (c) and
(d), showing explicitly that the Rashba-coupled Fermi gas eventually
takes on a ring-shaped annulus with increasing �.
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FIG. 6. Energy levels as a function of angular momentum for a rapidly rotating Fermi gas with Rashba coupling in the Landau regime
when � = 0.99ω. Here, the α = 0 limit is shown in purple dots for the first three Landau levels as a reference. (a) α = 0.2

√
ω/M: Rashba

coupling splits each of the Landau levels into two helicity branches with a widening energy gap in between as a function of angular momentum.
(Blue solid line corresponds to the perturbation expression given in the text.) (b) α = 0.4

√
ω/M: the helicity branches display avoided level

crossings. (c) α = 0.8
√

ω/M: all of the negative-helicity branches not only occupy lowest energies but they also develop minimum at finite
angular momentum.

dominates leading to a reduction in the central density as the
gas continues to expand. There is an intriguing appearance
of an additional local maximum in the number density in the
vicinity of critical α, beyond which it is completely depleted
at the trap center, and the radius R0

I of the depleted region
grows linearly with α. We consider a higher � = 0.5ω in
Figs. 4(b) and 4(d), showing that the central density decreases
and the edge expands immediately with increasing α, leading
to the depletion of the trap center at a much lower critical
α. Similarly, these effects are also seen in Fig. 5, where �

is increased at fixed α values. In contrast to Fig. 4, here we
see that a faster rotation leads to a monotonic reduction of the
central density and a monotonic expansion of the edge.

E. Rapidly rotating Fermi gas with Rashba coupling
(ω �= 0, α �= 0, and � → ω)

Since the effects of rotation are analogous to those of
an effective magnetic field on a particle, where the Coriolis
force on a neutral atom mimics the Lorentz force on a
charged particle, a rapidly rotating Fermi gas may form highly
degenerate Landau levels in the � → ω limit and exhibit an
integer quantum-Hall effect [2]. Since the LDA approach fails
to capture the correct physics in the Landau regime of a rapidly
rotating Fermi gas, we resort to exact quantum-mechanical
calculations in the following discussion.

In the absence of a Rashba coupling, and assuming ω− =
ω − � is small, it is convenient to label the single-particle
states with nL = (n − l)/2 the Landau-level index and l

the angular momentum, leading to the dispersion relation
εnLl = ω(2nL + 1) + ω−l. Here, nL = {0,1,2, . . . } and l =
{0,1,2, . . . }, so that εnLl increases linearly with l. Note that all
of the consecutive Landau levels are separated by an equal en-
ergy gap 2ω for any given l, and that each of these energy states
is twofold degenerate due to the pseudospin σ of the particles.
We set � = 0.99ω in Fig. 6, and show this spectrum in purple
for the first three Landau levels as a reference. Since each fully
filled Landau level below a given μ results in a uniform density,
this spectrum gives rise to a ziggurat-shaped density profile in
the trap, where the number of plateaus directly reflects the
number of underlying Landau levels involved. For instance,
such staircase-looking number densities are clearly visible in
Figs. 7(a), 7(b), and 7(c), where α = 0 limits are shown as the
purple-dotted lines corresponding, respectively, to one, two,
and three filled Landau levels.

When α �= 0, by breaking the spin-rotation symmetry,
the Rashba coupling lifts the spin degeneracy, leading to
two (s = ±) helicity branches for each Landau level. For
instance, in the perturbative regime when α � 2a0ω with
a0 = 1/

√
Mω the characteristic harmonic-oscillator length

scale, we approximately find εnL,l,s = ω(2nL + 1) + ω−l +
ω−/[2 + 2s

√
1 + α2(nL + l + 1)/(a0ω−)2]. We checked that

0

0.05

0.1

1 3r/RF

n
/n

0

(a)

0

0.05

0.1

0.15

1 3r/RF

n
/n

0

(b)

0

0.05

0.1

0.15

1 3r/RF

n
/n

0

(c)

FIG. 7. Radial density profiles at T = 0 in the Landau regime when � = 0.99ω. The purple-dotted, green-dashed, and blue-solid lines
correspond, respectively, to higher Rashba couplings (in units of

√
ω/M) where α = {0,0.2,0.4} in (a) with N = 750 particles in the lowest

Landau level, α = {0,0.2,0.4} in (b) with N = 900 particles in the first two Landau levels, and α = {0,0.4,0.8} in (c) with N = 1600 particles
in the first three Landau levels. These intriguing profiles directly reflect the corresponding energy-level structures shown in Fig. 6, where the
higher the angular momentum of the single-particle state the further away its localization distance from the trap center.
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this expression is in excellent agreement with all of the exact
results presented in Fig. 6; e.g., our perturbative results (solid
blue lines) are shown to lie right on top of the exact ones
(green crosses) in Fig. 6(a). As l gets higher, Fig. 6(b) shows
that the helicity branches ultimately display avoided level
crossings. In addition, as α is increased to α � a0ω−, all of
the negative-helicity branches develop a minimum near some
finite l given by lmin = α2/(4a0ω−)2. This is shown in Fig. 6(c)
for α = 0.8

√
ω/M , where all of the energy gaps between the

two consecutive same-helicity branches are approximately 2ω

in this perturbative regime. Thus, the main effect of weak
Rashba coupling on the trap profiles is expected to be doubling
of the number of plateaus in the number density as a reflection
of the lifted spin degeneracy of the Landau levels. In addition,
the interplay of Rashba coupling and rapid rotation may
ultimately lead to the formation of a ring-shaped annulus with
a ziggurat texture as shown in Fig. 7(c).

F. Spin-polarization textures

In this system the effect of rotation on spin polarization
is indirectly mediated via the SOC, k · �σ , i.e., introducing
the rotation via −k · (�ẑ × r) in the rotating frame results
in an effective spin-rotation coupling �σ · (�ẑ × r). Since the
Rashba coupling splits the spin degeneracy of the free-particle
energy bands into ±-helicity branches with spins oriented
parallel/antiparallel to the momentum k, and the rotation
favors momentum states that are parallel to the direction of
mass-current density, their interplay polarizes the average spin
of the particles in the azimuthal direction. The azimuthal
component of the local average spin-polarization texture can be
written as P θ

r = −P x
r sin θr + P

y
r cos θr, with its components

defined in Sec. II B 2. In the absence of a Zeeman field as
considered in this paper, we note that the average spin of
the system is unpolarized not only in the α → 0 as the spin
and k are uncoupled, but also in the � → 0 limit as the
contributions of ±k states are equal in magnitude but opposite
in direction. Therefore, the interplay between Rashba coupling
and adiabatic rotation is proved to be crucial for the appearance
of spin textures.

For instance, the radial spin-polarization profiles are shown
in Fig. 8 for three sets of α and �. The azimuthal polarization
increases from zero at the trap center as r = 0 is immune to the
direct effects of rotation, and reaches unity at the edge as only

r/RF

P
θ r

(
Ω
ω , αk

E

)
=

FIG. 8. The azimuthal component of the average spin polarization
increases monotonically from zero at the trap center to unity at the
edge, and the gas is almost fully polarized within the ring-shaped
annulus.

FIG. 9. Noninteracting number-density maps at finite T . In-
creasing either � or α from (a) � = 0.5ω and α = 1EF /kF , the
disk-shaped profile transform into a ring-shaped annulus for (b)
� = 0.8ω and α = 1EF /kF and (c) � = 0.5ω and α = 3EF /kF .
While the depletion of the central density that is clearly visible at low
T is eventually blurred by the thermal broadening, it can be sustained
at very high T with increasing either � and/or α. This is shown in (d)
for � = 0.8ω and α = 3EF /kF .

the nondegenerate lowest-energy states of the negative-helicity
branch having antiparallel spin orientations with respect to the
angular direction are occupied. As a result of the disappearance
of the positive-helicity band and increasing asymmetry in the
energy dispersion, we find that increasing α and � gradually
increases the polarization in the intermediate region between
the trap center and the edge as well. Furthermore, we also find
that the polarization approaches unity everywhere in the trap
once the number density forms a ring-shaped annulus, and this
is shown in Fig. 8 when � = 0.5ω and α = 3EF /kF .

G. Thermal effects

Before moving to the effects of interactions, here we
conclude the noninteracting Fermi gas section by addressing
how much of our zero-temperature trap profiles survives at
finite T . For this purpose, we fix � and α in Fig. 9, and plot
the number-density maps in the entire trap as a function of
T . It is clearly shown that the thermal-broadening effects on
the number density are most significant in the ring-shaped
regions, as the system eventually recovers the disk-shaped
profile at sufficiently high T . However, it is encouraging to
see that, by increasing either � and/or α, a visible ring-shaped
annulus may still form at very high T that is of the order of
a Fermi temperature TF = EF /kB , making its experimental
observation quite feasible. We note that the number density
first appears as nearly flat in a wide region, the width of which
is of the order of RF , at some intermediate T , and then it
ultimately attains the usual Gaussian shape at high T .

Having convincingly shown that the interplay between the
effects of Rashba coupling on the LDOS and the Coriolis
effects caused by rotation gives the number density of a
noninteracting Fermi gas a characteristic ring-shaped annulus
form that survives at experimentally accessible temperatures,
we next analyze how this interplay effects the trap profiles of
an interacting Fermi gas, and the associated SF properties.
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FIG. 10. The radial order-parameter and number-density profiles
at T = 0 showing an excellent agreement between the LDA and
BdG results, where (a) Eb = 0.5EF , α = 0, and � = 0, (b) Eb =
0.5EF , α = 0, and � = 0.7ω, (c) Eb = 0.5EF , α = 2EF /kF , and
� = 0 with N = 500 particles, and (d) Eb = 2EF , α = 2EF /kF ,
and � = 0.7ω with N = 100 particles.

IV. INTERACTING FERMI GAS

Armed with a thorough understanding of the generic
properties of a noninteracting Fermi gas with Rashba coupling
under adiabatic rotation, we are ready to discuss the effects of
interaction as characterized by the two-body binding energy
Eb > 0 in vacuum. The SF ground state of an interacting
Fermi gas is protected by an energy gap in the low-energy
excitation spectrum, and the gap is directly related to the
order parameter 	r of the underlying Cooper pairs that
are made of time-reversed particles. Thus, while this order
parameter acts as an energy barrier and protects the pairs,
by breaking the time-reversal symmetry, rotating a SF Fermi
gas may energetically favor a state with broken pairs beyond
a critical rotation frequency. Our primary objective here is
to study such a pair-breaking mechanism that is induced
by the Coriolis effects on superfluidity, where we calculate
the critical rotation frequencies both for the onset of pair
breaking and for the complete destruction of superfluidity
in the system. In particular, by comparing the results of
the fully-quantum-mechanical BdG approach with those of
semiclassical LDA one, we construct extensive phase diagrams
consisting of nonrotating gapped SF, partially rotating gSF,
and rigidly rotating NG regions. These diagrams allow us to
predict all sorts of phase profiles in the trap for a wide range
of parameter regimes, where the interplay between Rashba
coupling and adiabatic rotation may favor, e.g., an outer NG
edge that is completely phase separated from the central SF
core by vacuum.

Similarly to Sec. III, we again rely mostly on the LDA
approach throughout this section, given that the LDA results
are in very good agreement with those of BdG ones for a wide
range of parameter regimes and with the additional advantage
that they permit analytical insights into the limiting cases.
For instance, we benchmark our LDA and BdG results in
Fig. 10, where we set N = 500 particles with Eb = 0.5EF

and Ec ∼ 27EF in Figs. 10(a), 10(b), and 10(c), and N = 100
particles with Eb = 2EF and Ec ∼ 60EF in Fig. 10(d). It is

not surprising that the LDA approach works very well in the
regions where the changes in |	r| and nr are slow. To gain
as much insight as possible into the basic properties of an
interacting Fermi gas, we again discuss these quantities first
in a few analytically tractable limits, prior to the presentation
of our numerical results for the generic case with arbitrary �

and α.

A. Trapped Fermi gas (ω �= 0, α = 0, and � = 0)

The first analytically tractable limit is a usual 2D Fermi
gas with neither Rashba coupling nor rotation, for which case
the gas becomes a SF as soon as Eb �= 0. While the energy
gap of the local excitation spectrum is given by |	r | and it
is located at k = √

2Mμr in the local regions with μr � 0,
it gradually moves towards the origin with decreasing μr ,
where it ultimately changes to

√
μ2

r + |	r |2 at k = 0 in the
local regions with μr < 0. Thus, the μr = 0 point signals a
critical change from a BCS- to BEC-like state in the so called
BCS-BEC crossover.

By integrating the order-parameter and number equa-
tions given in Eqs. (12) and (13), it is possible to obtain
μ = EF − Eb/2, nr = M(EF − Mω2r2/2)/π, and |	r | =√

2EF Eb

√
1 − r2/R2

F . We note that not only the dependencies
of μ on Eb have exactly the same form in both trapped and
uniform 2D systems [47], but also nr is independent of Eb as
can be seen in Sec. III A. These peculiar results follow from the
LDA approach for the trap under the BCS mean-field approx-
imation for pairing [48]. Since |	r | �= 0 in the regions where
nr �= 0, the entire trapped gas is a disk-shaped SF with gapped
excitations, and its edge is located at RO = RF for any Eb.

B. Trapped Fermi gas with Rashba coupling
(ω �= 0, α �= 0, and � = 0)

The second semianalytically tractable limit is a 2D Fermi
gas with Rashba coupling, for which case the main effect
of this coupling on the excitation spectrum is similar to that
of the noninteracting problem. In particular, by shifting the
minimum of the energy spectrum to finite momentum for the
lower-energy − branch, it increases the low-energy LDOS
leading to an enhanced pairing. To see this effect we first note
that the spectrum of the − branch can have one or two minima
at finite momentum depending on α and Eb. For instance,
while the energy gap |	r | of the local spectrum is at k = Mα +√

M2α2 + 2Mμr in the local regions with μr > 0, and an
additional gap |	r | also opens at k = Mα −

√
M2α2 + 2Mμr

in the local regions with −Mα2/2 < μr < 0, they eventually
merge at k = Mα with decreasing μr where the gap
becomes

√
(μr + Mα2/2)2 + |	r |2 in the local regions with

μr < −Mα2/2.
Even though it is not possible to obtain a closed-

form analytic expression for the order-parameter and num-
ber equations for arbitrary α, we perturbatively find μ �
EF − Eb/2 − Mα2 and |	r | � 	0

√
1 − r2/R2

F with 	0 =√
2EF Eb

√
1 + 2M2α4/3(Eb + 2EF )2 in the Mα2 � Eb +

2EF limit [49]. This suggests that neither |	r | nor nr are
affected much by weak Rashba coupling as clearly illustrated
in our numerical solutions presented in Figs. 11(a) and 11(b)
for Eb = 0.5EF and α � 1EF /kF . Increasing α energetically
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FIG. 11. The radial (a) order-parameter and (b) number-density
profiles at T = 0 when Eb = 0.5EF . While the radial profiles remain
unchanged for α � EF /kF , increasing α eventually increases both
the order parameter and the number density at the trap center.

favors more and more the finite-angular-momentum states in
the − branch leading to an increased low-energy LDOS. When
Mα2 ∼ Eb + 2EF , we see that the monotonic contraction of
the gas towards the trap center with RO < RF , which is similar
to what happens in the noninteracting case, monotonically
increases |	r |. Thus, the Rashba coupling alone enhances
pairing in general, and the entire gas remains to be a disk-
shaped SF with gapped excitations.

C. Trapped Fermi gas with adiabatic rotation
(ω �= 0, α = 0, and � �= 0)

Another analytically tractable limit is a 2D Fermi gas
with adiabatic rotation, for which case the main effect of
this coupling is to break some of the Cooper pairs that are
made of time-reversed particles within the BCS mean-field
approximation for pairing. Note that since the vortices are
assumed not to be excited by rotation and that the gapped SF
cannot carry any angular momentum, these broken pairs carry
the extra angular momentum.

The pair-breaking mechanism is based on the Coriolis
effects and it can be analyzed by looking at the excitation
spectra shown in Fig. 12. In the � → 0 limit shown in
Fig. 12(a), both the quasiparticle Erk =

√
ξ 2
rk + |	r |2 − �Lz

rk

Erk

ky

Erk

(a)

Erk

ky

(b)
Erk

αErk−

Erk−

ky

(c)

ky

Erk−

Erk− α

(d)

FIG. 12. Schematic diagrams showing the excitation spectrum
Erk with � �= 0 for (a) a gapped SF at r = 0 for α = 0, (b) a gapless
SF at r > 0 for α = 0, (c) a gapped SF at r = 0 for α > 0, and (d)
a gapless SF at r > 0 for α > 0. The broken Cooper pairs occupy k-
space regions with negative/positive quasiparticle/quasihole energies.

and quasihole E′
rk = −

√
ξ 2
rk + |	r |2 − �Lz

rk excitation ener-
gies are particle-hole symmetric around the zero-energy axis,
corresponding to an ideal situation for the formation of Cooper
pairs with zero center-of-mass momentum. On the other hand,
while � �= 0 still preserves the particle-hole symmetry, it
breaks the symmetry between the time-reversed pairing states
(k, ↑; −k, ↓), leading to asymmetric excitation energies that
depend on the direction of momentum as shown in Fig. 12(b).
Increasing � increases this asymmetry, and it eventually
leads to negative/positive quasiparticle/quasihole energies and
broken pairs in the ground state; i.e., the k-space regions with
Erk < 0 and −E′

r,−k > 0 are not occupied by pairs but by
single particles. These k-space regions k1 < k < k2 are found
by setting Erk = 0, leading to k2

1,2 = 2Mμr + 2M2�2r2 ±
2M

√
Ar with Ar = 2M�2r2μr + M2�4r4 − |	r |2. Thus,

Ar � 0 is a necessary condition for the emergence of local
phases with gapless excitations, i.e., a gapless SF (gSF) or
NG phase.

This LDA analysis suggests that the Cooper pairs are
robust for sufficiently slow rotations, and low � has no effect
whatsoever on μ, nr , and |	r |, for which case the entire gas
remains to be a disk-shaped SF with gapped excitations, and
its edge is located at RO = RF . Once the critical rotation
frequency �c for the onset of pair breaking is reached,
the gapless excitations naturally appear at the edge of the
gas, i.e., Ar=RF

= 0, suggesting that the radius of the NG
having the same μ coincides with the Thomas-Fermi radius
at �c, i.e., R0

O(α = 0,� = �c) = RF . Thus, transitions from
SF to gSF and gSF to NG phase first emerge at the edge
of the system, and then the SF region contracts toward the
trap center as a function of increasing �. In contrast to
the 3D case, we are able to obtain an analytic expression
�c = ω

√
Eb/(2EF ) for arbitrary Eb, and given the upper

bound on � � ω, it follows that pairs are robust against
rotation for Eb > 2EF . The fact that μ also changes sign at
Eb = 2EF is not a lucky coincidence, since the pairs are known
to be robust for μ < 0 in earlier works on a 3D Fermi gas
[43,44].

When � > �c, we reach a generic conclusion that the trap
profile consists of three regions, where the central SF core
and the outer NG edge are connected by a coexistence region
gSF phase in between. Unlike the NG region where |	r | =
0 and the associated mass-current density J θ

r = Mnr�r is
exactly of the form of a rigidly rotating gas, the gSF region
is characterized by |	r | > 0 and a partially rotating gas with
J θ

r < Mnr�r . While the NG region expands both inwards and
outwards as a function of increasing �, the SF and gSF regions
survive around the trap center even in the � → ω limit since
the trap center is immune to the direct effects of rotation. We
note in passing that sufficiently fast rotations may cause a kink
in nr right at the SF-NG interface (not shown), which is a
direct consequence of the competition between the curvature
of nr in the SF region which is not effected by rotation and
that of the NG region which increases with increasing �.

D. Trapped Fermi gas with Rashba coupling and rotation
(ω �= 0, α �= 0, and � �= 0)

Having shown analytically that the Rashba coupling and
adiabatic rotation have competing effects on superfluidity, we
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are ready to discuss the generic case with arbitrary � �= 0 and
α �= 0, for which case the main effect of their interplay is to
form an outer ring-shaped NG edge that is completely phase
separated from the central SF core by vacuum. This is clearly
a remnant of the characteristic ring-shaped density profile that
is found in Sec. III D considering a noninteracting Fermi gas.

For a given α, since the entire SF gas is robust against
rotation up to again a critical � < �c, all of the physical
quantities remain the same as the � = 0 case discussed above
in Sec. IV B. Furthermore, the rigidity of the SF phase can
also be used to determine �c using the following recipe. We
first remark that �c is the lowest � satisfying the inequality
condition R0

O(α,� = �c) � RO(α,� = 0); i.e., the radius of
the rotating NG phase becomes equal to or greater than the
radius of the nonrotating SF phase. Then, we observe that
the emergent outer NG edge is connected (disconnected) to
(from) the SF phase by an intermediate gSF region (vacuum)
when this equality (inequality) condition is satisfied. Assuming
� > �c, the former profile is realized for α2 + 2μ/M > 0
with a nonrotating SF core that is characterized by |	r | �= 0
and J θ

r = 0 near the trap center, an outer NG edge that is
characterized by |	r | = 0 rotating rigidly with J θ

r = Mnr�r ,
and a gSF region in between that is characterized by |	r | �= 0
rotating partially with J θ

r < Mnr�r . See Fig. 18(b) for such
a trap profile. On the other hand, assuming again � > �c,
the latter profile may be realized for α2 + 2μ/M < 0 (this
condition is necessary but not sufficient) with a nonrotating
central SF core and a rigidly rotating ring-shaped NG annulus.
See Fig. 10(d) for such a trap profile, where the region with
|	r | = 0 fully overlaps with the one with J θ

r = Mnr�r .
Increasing � beyond �c leads ultimately to the complete

expulsion of superfluidity from the entire trap at a higher
critical rotation frequency �s . In contrast to the α → 0 limit
discussed in Sec. IV B where the trap center remains a SF
even at � = ω thanks to its immunity to the direct-effects of
rotation, α �= 0 allows such an expulsion since the ring-shaped
NG annulus that is formed by broken pairs is energetically
more favorable than the gapped SF at the trap center.

Next we calculate the critical rotation frequencies both for
the onset of pair breaking and for the complete destruction
of superfluidity in the system, and construct extensive phase
diagrams and trap profiles for a wide-range of parameter
regimes.

V. NUMERICAL ANALYSIS AND DISCUSSION

In comparison to the noninteracting phase diagram
presented in Fig. 3, here we show that the complex interplay
between Rashba coupling, adiabatic rotation, and interaction
gives rise to much richer phase diagrams and trap profiles. For
the onset of pair breaking and the associated emergence of an
outer NG edge, the inequality condition discussed above in
Sec. IV D, i.e., R0

O(α,� = �c) � RO(α,� = 0), turns out to
be a very convenient one for determining �c. This is because
even though RO(α,� = 0) is still obtained through the
numerical solutions of the self-consistency equations, such an
implicit calculation is much more effective than an explicit one
requiring self-consistent solutions of the trap profiles in the
entire parameter space of interest. For the complete destruction
of the central SF core, by noting that this is linked to the

depletion of the central density as the trap center is immune
to the direct effects of rotation, solving simultaneously the
conditions nr=0 → 0 and 	r=0 → 0 turns out to be a very
convenient approach for determining �s . We achieved this
by first setting 	r=0 → 0 in the order-parameter equation
and obtain μ, and then extract �s from the number equation
by substituting μ. Let us first construct �c and �s phase
diagrams based on these two implicit conditions, and then
verify their validity by looking explicitly at the trap profiles.

A. Phase diagrams

In Fig. 13, we show �c as a function of α and Eb. In contrast
to the α → 0 limit discussed in Sec. IV C where pairs are
shown to be robust against rotation for Eb > 2EF , Fig. 13(a)
shows that α �= 0 eventually leads to pair breaking at some
�c no matter what Eb is. For instance, when Eb � 2EF as
illustrated by the top three curves in this figure, �c = ω first
remains unchanged up to some low but finite α threshold,
and then it decreases monotonically as pair breaking starts at
lower � with increasing α. In this strongly interacting regime,
the outer NG edge always emerges disconnectedly from the
central SF core by vacuum for � > �c.

On the other hand, when Eb � 2EF as illustrated by the
bottom three curves in the same figure, �c first decreases up to
some critical α threshold, and then it increases with a minimum
in between. This is a result of the competing Rashba effects
discussed in Sec. IV B. The dominant effect at low α is that,
by shifting the excitation minima to higher momentum states
some of which are more susceptible to rotation, the interplay of
Rashba coupling and adiabatic rotation makes pair breaking
easier. In sharp contrast, increasing α causes two additional
effects; i.e., it not only increases |	r | and nr near the trap center
but also decreases the radius of the gas, making pair breaking
more difficult. Once these latter effects dominate beyond some
intermediate α, then �c increases with α exhibiting a minimum
in between. The location of the minimum shifts to higher α

with increased Eb as the latter effects become significant only
at relatively higher α.

Even though it is not possible to obtain a closed-form
analytic expression for �c for arbitrary α, we approximate
the initial drop of �c for low α using the following recipe.
By neglecting the secondary effect of Rashba coupling on
the radius of the gas, i.e., taking RO ≈ RF , and inserting
μ that is derived in Sec. IV B for a perturbative α into
the dispersion relation, the value of � for which the dis-
persion relation becomes zero at the edge of the gas then
gives �c ≈ ω

√
α2k2

F /(2E2
F ) + Eb/(2EF ) − ωαkF /(2EF ). We

checked the validity of this expression with the numerical data
given in Fig. 13(a), and find an excellent agreement between
the two in the low α regime. For even higher values of α,
since the NG edge is favored under adiabatic rotation, it is
pushed to longer distances away from the trap center. This
changes the mechanism of suppressing the SF phase by directly
favoring previously unoccupied unpaired states and alters the
behavior of the �c curve. Beyond the points marked by “x”
in Fig. 13, the curve first goes through a maximum and then
decreases with increasing α. In this regime, the ring-shaped
NG annulus emerges disconnectedly from the central SF core
by vacuum. Increasing Eb lowers the location of this point
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FIG. 13. The critical rotation frequency for the onset of pair
breaking as a function of (a) Rashba coupling, and (b) binding
energy at T = 0. The “x” marks indicate the point beyond which
the ring-shaped NG annulus emerges disconnectedly from the central
SF core by vacuum (see the main text for details). The radial phase
profiles along the dashed blue (horizontal) and the dash-dotted brown
(vertical) lines in (a) are shown, respectively, in Figs. 15 and 16.
Similarly, the radial phase profiles along the dashed blue (horizontal)
lines in (b) are shown in Fig. 17.

in the α axis because of the condition given above and the
fact that μ decreases with increasing Eb, in such a way that it
ultimately approaches α = 0 and � = ω for Eb � 2.5EF .

In Fig. 13(b), we plot �c as a function of Eb, showing
that �c increases monotonically with Eb until it saturates at
�c = ω. In addition, we see that increasing α shifts �c curves
upwards (downwards) in the low (high) Eb regime as the
Rashba coupling favors (supports) pairing (pair breaking). The
points indicated by “x” again mark the critical Eb threshold

Ω
s/

ω

αkF/EF

Eb/EF = 0.1

0.5
1
2
3
4

Ω
s/

ω

Eb/EF

0.10
0.25
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αkF/EF = 4.00

FIG. 14. The critical rotation frequency for the complete destruc-
tion of superfluidity as a function of (a) Rashba coupling, and (b)
binding energy at T = 0. The complete expulsion of SF core from
the trap is accompanied by the depletion of the central density,
requiring the interplay of Rashba coupling and adiabatic rotation.
The horizontal and vertical lines are the same as the ones drawn in
Fig. 13.

beyond which the ring-shaped NG annulus emerges discon-
nectedly from the central SF core by vacuum. There is only
one “x” mark up to Eb � 2.5EF , indicating that a gSF region
never appears for Eb � 2.5EF . This is in agreement with our
analysis given in Sec. IV D, as the condition α2 + 2μ/M < 0
is satisfied for any α at higher Eb. However, there are two “x”
marks for Eb ∼ 2EF –2.5EF at different α values, indicating
that while the NG region is initially disconnected from the SF
one at lower α, it first expands with increasing α and connects
to the SF with an intermediate gSF region in between, and then
it re-disconnects from the SF at a higher α. This explains the
structure of the “x” marks in Fig. 13(b) for Eb ∼ 2EF –2.5EF

curves, but it is not shown in Fig. 13(a).
Lastly, in Fig. 14, we show �s as functions of α and Eb.

Increasing Eb shifts �s curves upwards in Fig. 14(a) as the
complete destruction of the SF core is expected at higher �. In
addition, �c = ω remains unchanged at first up to some low
but finite α threshold, and then it decreases monotonically as
pair breaking starts at lower � with increasing α. This can also
be seen in Fig. 14(b), where the critical curves move downward
with increasing α, and monotonically increase with increasing
Eb. In addition, all of the curves saturate at �s = ω beyond the
critical Eb threshold once Eb is high enough to protect the pairs
against the effects of maximally allowed rotation frequency ω.

The phase diagrams shown in Figs. 13 and 14 are some of
our most important contributions in this paper, as they can be
used to predict all sorts of phase profiles in the trap for a wide
range of parameter regimes. Next we demonstrate this along
several lines drawn in these figures by directly solving the self-
consistency equations for the trap profiles in the entire trap.

B. Trap profiles

To demonstrate the practicality of �c and �s phase
diagrams shown, respectively, in Figs. 13(a) and 14(a), we
first show the resultant phase profiles in Fig. 15 along the
dashed blue (horizontal) lines drawn in Figs. 13(a) and 14(a).
This figure explicitly shows the emergence and disappearance
of N and/or gSF regions in the trap with varying α.

For instance, we set Eb = EF and � = 0.5ω in Fig. 15(c),
corresponding to the bottom horizontal line in Fig. 13(a),
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FIG. 15. Radial phase profiles at T = 0 with changing Rashba
coupling for (a) Eb = 3EF and � = 0.8ω, (b) Eb = 2EF and � =
0.68ω, and (c) Eb = 1EF and � = 0.5ω. Here, the dark blue regions
are gapped superfluid (SF), the green regions are normal (N), and the
white regions are vacuum (V). The gapless superfluid (gSF) at the
SF-N boundaries is not visible on this scale.

and illustrating an exemplary phase profile where the normal
gas N region appears at the edge of the gas beyond a
critical α threshold, as the first intersection point of the
bottom horizontal line with the �c curve is to the left of
the corresponding “x” mark. There is a very thin gSF layer
connecting SF and N regions but it is hardly visible on this
scale. This α threshold is consistent with the first intersection
point of the bottom horizontal line with the �c curve in
Fig. 13(a). Increasing α in Fig. 15(c) first expands and then
contracts the N region. The disappearance of the N edge is
due to the interplay of competing Rashba effects discussed
in Sec. V A, and its α threshold is again consistent with
the second intersection point of the bottom horizontal line
with the �c curve. Increasing α further, we see that an N
region that is disconnected from central SF core reappears,
forming a ring-shaped annulus in the trap, with an increasing
width as the SF region is gradually suppressed by α. The
reappearance of the α threshold is also consistent with the
third intersection point of the bottom horizontal line with

Ω
/ω

r/RF

Ω
/ω

r/RF

FIG. 16. Radial phase profiles at T = 0 with changing rotation
frequency for (a) Eb = 0.1EF and α = 0.6EF /kF , and (b) Eb =
0.1EF and α = 7EF /kF . Here, the dark blue regions are gapped
superfluid (SF), the green regions are normal (N), and the white
regions are vacuum (V). The gapless superfluid (gSF) at the SF-N
boundary is hardly visible in (a) on this scale.

the �c curve. Lastly, Fig. 15(c) shows that the complete
destruction of the SF region occurs beyond α ≈ 8EF /kF ,
and its α threshold is again consistent with the intersection
points of the bottom horizontal line with the �s curve in
Fig. 14(a).

Similarly, we set Eb = 2EF and � = 0.68ω in Fig. 15(b),
corresponding to the middle horizontal line in Fig. 13(a), and
illustrating an exemplary phase profile where the N region
first appears at the SF edge of the gas beyond a critical α

threshold, as the intersection point of the middle horizontal
line with the �c curve is to the left of the corresponding
“x” mark, and then it separates and moves away from the SF
region with an increasing width as the SF region is gradually
suppressed by α. However, we set Eb = 3EF and � = 0.8ω in
the remaining Fig. 15(a), corresponding to the top horizontal
line in Fig. 13(a), and illustrating an exemplary phase profile
where the N region first appears away from the SF region
beyond a critical α threshold, as the intersection point of the
top horizontal line with the �c curve is to the right of the
corresponding “x” mark, and then it moves further away from
the SF region with again an increasing width as the SF region
is gradually suppressed by α. In both of these figures, the α

thresholds for the appearance of the N edge are consistent with
the only intersection points of the middle/top horizontal lines
with �c curves in Fig. 13(a). In addition, the α thresholds for
the complete destruction of the SF regions are again consistent
with the intersection points of the middle/top horizontal lines
with �s curves in Fig. 14(a).

We next verify the consistency of our �c and �s phase
diagrams along the dash-dotted brown (vertical) lines drawn in
Figs. 13(a) and 14(a) with the resultant phase profiles shown
in Fig. 16. This figure explicitly shows the emergence and
disappearance of N and/or gSF regions in the trap with varying
�. For instance, Fig. 16(a) exemplifies the low α < 2EF /kF

and/or low Eb < 2EF regimes, where the N and gSF regions
appear simultaneously at the edge of the gas at a critical �

threshold, as the intersection point of the left vertical line with
the �c curve is to the left of the corresponding “x” mark,
beyond which increasing � ultimately disconnects the N edge
from the SF core which is accompanied by the disappearance
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FIG. 17. Radial phase profiles at T = 0 with changing binding
energy for (a) α = 0.5EF /kF and � = 0.7ω, (b) α = 2EF /kF and
� = 0.7ω, and (c) α = 4EF /kF and � = 0.6ω. Here, the dark blue
regions are gapped superfluid (SF), the light blue regions are gapless
superfluid (gSF) [not visible in (b)], the green regions are normal (N),
and the white regions are vacuum (V).

of the gSF region. However, in the high α and/or high Eb

regimes, the N region first appears away from the SF region
beyond a critical � threshold, as the intersection point of the
right vertical line with the �c curve is to the right of the
corresponding “x” mark, and then the N edge moves farther
away from the SF region with an increasing width as the
SF region is gradually suppressed by �. In addition, the �

thresholds for the complete destruction of the SF regions are
again consistent with the intersection points of the left/right
vertical lines with the �s curves in Fig. 14(a).

Similarly, to demonstrate the practicality of �c and �s

phase diagrams shown, respectively, in Figs. 13(b) and 14(b),
we next show the resultant phase profiles in Fig. 17 along the
dashed blue (horizontal) lines drawn in Figs. 13(b) and 14(b).
This figure explicitly shows the emergence and disappearance
of SF and/or gSF regions in the trap with varying Eb. For
instance, Fig. 17(a) exemplifies the low α and/or low �

regimes, where the SF and gSF regions appear simultaneously
at the trap center at a critical Eb threshold, as the intersection
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r /n
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FIG. 18. (a) Radial phase profiles at T = 0 with changing Rashba
coupling for Eb = 0.1EF and � = 0.3ω. The interplay of Rashba
coupling and adiabatic rotation increases the gSF region. (b) An
exemplary radial trap profile is plotted along the red dashed line in
(a) where α = 0.8EF /kF , comparing the results of LDA (dot-dashed)
and BdG (solid lines, N = 500) approaches for the order parameter,
number density, and mass-current density.

point of the top horizontal line with �c curve is to the left
of the corresponding “x” mark, beyond which increasing Eb

ultimately turns the entire gas into a SF, i.e., once Eb is
high enough to protect all of the pairs against the effects
of �, which is accompanied by the disappearance of the
gSF region. In addition, Fig. 17(a) shows that the complete
destruction of the N region occurs beyond Eb ∼ 1.6EF , and
its Eb threshold is again consistent with the intersection point
of the top horizontal line with the �c curve in Fig. 13(b).
However, in the high α and/or � regimes, the SF region first
appears away from the N region beyond a critical Eb threshold,
as the intersection points of the top horizontal line with the �c

curve is to the right of the corresponding “x” mark. Note that
since the α and � parameters of Figs. 17(b) and 17(c) are above
the �0

c(α) curve shown in Fig. 3, while the entire gas forms
a ring-shaped annulus in the Eb → 0 limit, we see that a SF
core that is disconnected from the outer N edge appears with
an increasing width as the N region is gradually suppressed by
Eb. In addition, the Eb thresholds for the complete destruction
of the N regions are again consistent with the intersection
points of the top/bottom horizontal lines with �c curves in
Fig. 13(b).

We remark here that the interplay between the Rashba
coupling and adiabatic rotation may also favor a much wider
gSF region in the trap, especially in the low Eb regime with
an intermediate α. For instance, we set Eb = 0.1EF and
� = 0.3ω in Fig. 18(a), illustrating an exemplary phase profile
where the emerging gSF region is sandwiched between the
central SF core and the outer N edge. In addition, the radial
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trap profiles are also shown in Fig. 18(b) along the horizontal
line drawn in Fig. 18(a), where we compare the results of
the LDA approach with those of BdG one for |	r |, nr and
J θ

r . Unlike the N region where |	r | = 0 and the associated
J θ

r = Mnr�r is exactly of the form of a rigidly rotating gas,
while the SF region is characterized by |	r | > 0 and J θ

r = 0,
the gSF region is characterized by |	r | > 0 and a partially
rotating gas with J θ

r < Mnr�r . In comparison to the LDA
results, we find that the BdG ones exhibit a somewhat wider
gSF region in the trap, but such finite-size effects are expected
to become more and more negligible with increasing N . See
also Sec. IV for further comparison.

Having accomplished our primary objective, i.e., the explo-
ration the trap profiles of a 2D Fermi gas in the presence of a
Rashba coupling and under an adiabatic rotation, next we end
the paper with a brief summary of our main findings and an
outlook for further research.

VI. CONCLUSIONS AND OUTLOOK

To conclude, here we considered a harmonically trapped
2D Fermi gas in the presence of a Rashba coupling and
under an adiabatic rotation. By adopting the BCS mean-field
approximation for local pairing, for the isotropic trap, we not
only extended our earlier LDA analysis to a wider parameter
regime but also compared its results with those of the BdG
approach showing a perfect agreement for the most part.
For instance, we first analyzed a noninteracting system and
showed that the competition between the effects of Rashba
coupling on the LDOS and the Coriolis effects caused by
rotation gives rise to a characteristic ring-shaped density
profile that survives at experimentally accessible temperatures.
Furthermore, we also showed that the Rashba splitting of the
Landau levels gives the density profiles a ziggurat shape in the
rapid-rotation limit. We then analyzed an interacting system
and studied the pair-breaking mechanism that is induced by
the Coriolis effects on superfluidity, where we calculated
the critical rotation frequencies both for the onset of pair
breaking and for the complete destruction of SF regions in
the system. We also constructed extensive phase diagrams

consisting of nonrotating gapped SF, partially rotating gSF,
and rigidly rotating NG regions, and used these diagrams to
predict all sorts of phase profiles in the trap for a wide range
of parameter regimes, where the aforementioned competition
may, e.g., favor an outer NG edge that is completely phase
separated from the central SF core by vacuum.

This problem offers many extensions for future research.
For instance, the interplay between Rashba coupling and
adiabatic rotation in a population-imbalanced Fermi gas is
a promising one, as these systems manifest topologically
nontrivial SF phases in the nonrotating limit [30]. Since a finite
population imbalance is analogous to a perpendicular Zeeman
field, we expect not only rich spin-polarization textures
reminiscent of skyrmions but also diverse density profiles
including the formation of successive ring-shaped regions.
Another promising direction is to analyze the effects of real-
and/or momentum-space anisotropies on the trap profiles, i.e.,
trapping potential and/or SOC. In the case of an anisotropic
SOC, we again expect exotic density profiles including not
only the ring-shaped ones with more than one local maxima
in general but also isolated pocket-shaped ones (like a cut
through the ring-shaped density) in the 1D SOC limit, i.e.,
an equal-weight combination of Rashba and Dresselhaus
couplings.
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APPENDIX: EXPANSION OF BdG EQUATIONS IN A
SIMPLE-HARMONIC-OSCILLATOR BASIS

Using the conservation of total angular momentum about
the axis of rotation, we first decompose the BdG eigenvectors
into |l| + 1/2 sectors with |l| � 0, and then expand the wave
functions in terms of the angular-momentum basis of a 2D
harmonic oscillator as

ur↑η = ul
r↑m =

∑
n

ul
n↑mR|l|

rne
ilθ , ur↓η = ul+1

r↓m =
∑

n

ul+1
n+1↓mR

|l|+1
rn+1e

i(l+1)θ , (A1)

vr↓η = vl
r↓m =

∑
n

vl
n↓mR|l|

rne
ilθ , vr↑η = vl+1

r↑m =
∑

n

vl+1
n+1↑mR

|l|+1
rn+1e

i(l+1)θ , (A2)

where the harmonic-oscillator wave functions are given by

〈rθ |nl〉 ≡ R|l|
rne

ilθ = (−1)(n−|l|)/2

√
[(n − |l|)/2]!

πa2
0[(n + |l|)/2]!

eilθ

(
r

a0

)|l|
e−r2/(2a2

0 )L
|l|
(n−|l|)/2

(
r2/a2

0

)
. (A3)

Here, a0 = 1/
√

Mω with � = 1 is the characteristic length scale for the harmonic oscillator, and the associated Laguerre
polynomials L

|m|
n (x) can be generated from the recursion relation

L
|m|
n+1(x) = 1

n + 1

[
(2n + 1 + |m| − x)L|m|

n (x) − (n + |m|)L|m|
n−1(x)

]
, (A4)

where n > 1, L
|m|
0 (x) = 1 and L

|m|
1 (x) = 1 + |m| − x.
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E. DOKO, A. L. SUBAŞI, AND M. ISKIN PHYSICAL REVIEW A 95, 013601 (2017)

Using the orthogonality of the basis states, we obtain the following matrix-eigenvalue equation for each |l| + 1/2 sector,

∑
n′

⎛
⎜⎜⎜⎜⎝

Kl
nn′ S

−,l+1
n,n′+1 0 	l′

nn′

S
+,l
n+1,n′ Kl+1

n+1,n′+1 −	l+1
n+1,n′+1 0

0 −(	l+1
n+1,n′+1)∗ −K−l−1

n+1,n′+1 −S
+,−l
n+1,n′

(	l
nn′)∗ 0 −S

−,−l−1
n,n′+1 −K−l′

nn′

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ul
n′↑m

ul+1
n′+1↓m

vl+1
n′+1↑m

vl
n′↓m

⎞
⎟⎟⎟⎟⎠ = El

m

⎛
⎜⎜⎜⎜⎝

ul
n↑m

ul+1
n+1↓m

vl+1
n+1↑m

vl
n↓m

⎞
⎟⎟⎟⎟⎠ (A5)

with the matrix elements

Kl
nn′ = 〈nl|Kr − �Lz

r|n′l〉 = [ω(n + 1) − μ − �l]δnn′ , (A6)

	l
nn′ = 〈nl|	r |n′l〉 = 2π

∫ ∞

0
rdr	rR

|l|
rnR

|l|
rn′ , (A7)

S
−,l
nn′ = αi

2a0
〈nl − 1|Sr|n′l〉 = αi

2a0

∫
d2rR|l|−1

rn e−i(l−1)θSrR
|l|
rn′e

ilθ

= αi

2a0
[
√

(n′ + l)/2δn,n′−1 −
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(n′ − l)/2 + 1δn,n′+1] = −S
+,l−1
n′n . (A8)

Recall that we restrict our numerical calculations to rotationally symmetric solutions for 	r . Similarly, expanding the order
parameter, number density, and mass-current density equations, we obtain

	r = g
∑
lm

(∑
n
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n↑mR|l|

rn

∑
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l
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∑
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l
m

)
, (A9)
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where f l
m = 1 − hl

m = f (El
m). These are alternative to the BdG expressions given in the main text.
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