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Starting with the two-band description of an orbital Feshbach resonance, we study superfluid properties of
a trapped 173Yb Fermi gas under the assumptions of a local-density approximation for the trapping potential
and a mean-field approximation for the intraband Cooper pairings. In particular, we investigate the competition
and interplay between the pair-breaking effect that is caused by the interband detuning energy, and the pair-
breaking and thermal-broadening effects that are simultaneously caused by the temperature. We predict several
experimental signatures that are directly caused by this interplay including a spatial separation of superfluid and
normal phases within the trap, and could play decisive roles in probing two-band superfluidity in these systems.
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I. INTRODUCTION

Towards the end of last year, two experimental groups have
independently identified a new type of two-body scattering
resonance in an ultracold Fermi gas that is composed of
neutral 173Yb atoms [1,2]. The possible creation of the so-
called orbital interaction-induced Feshbach resonances was
proposed a few months earlier as a result of the scattering
between two (two-electron) alkaline-earth-metal atoms in
different electronic-orbital and nuclear-spin states [3,4]. This
is in contrast to the more familiar magnetic Feshbach reso-
nances, which occur as a result of the coupling between two
(one-electron) alkali-metal atoms in two different hyperfine
states [5].

It turns out that these distinct resonance mechanisms give
rise to important implications for the related many-body
problems, e.g., in the contexts of Cooper pairing and associated
BCS-BEC evolution [3,6,7]. While a single-band description
taking only the open-channel scattering is typically sufficient
for the entire evolution across a magnetic resonance [8], a
two-band description taking both the open- and closed-channel
scatterings on an equal footing is minimally required for an
orbital resonance [3,4]. Thus, these new systems naturally
break the ground for studies on two-band superfluidity and
intrinsic Josephson effect in atomic settings with a high
degree of precision and control [7]. In particular, depending
on the details of the interband interactions, one can explore
not only the competition between the 0-(in)-phase and π -
(out-of)-phase solutions for the relative phase difference
between the intraband superfluid order parameters, but also
the corresponding relative phase fluctuations and the resultant
Gaussian collective modes around the equilibrium values, i.e.,
the phononlike in-phase Goldstone mode and the excitonlike
out-of-phase Leggett mode [7,9,10].

Encouraged by the recent realizations of an orbital Fes-
hbach resonance in a 173Yb Fermi gas [1,2], and unlike
the follow-up theoretical preprints appearing on uniform
systems [3,6,7,9,10], here we focus on the confinement-
induced signatures that can be decisively traced back to
the existence of two-band superfluidity in trapped systems.
For this purpose, we consider a two-band model under the
assumptions of a local-density approximation for the trapping
potential and a mean-field approximation for the intraband
Cooper pairings. We find that the interplay between the

pair-breaking effect that is caused by the interband detuning
energy, and the pair-breaking and thermal-broadening effects
that are simultaneously caused by the temperature gives rise to
nonmonotonous evolutions in some physical observables. In
particular to the zero temperature, we also find that while the
entire trapped gas is a superfluid for low detunings, a spatial
separation between the central superfluid core and the outer
normal edge consisting only of particles in the lower band
eventually appears beyond a detuning threshold that is of the
order of the resonance value.

The rest of the paper is organized as follows. First, assuming
a local-density approximation for the trapping potential, we
introduce a two-band model for the Hamiltonian density in
real space in Sec. II, and relate its bare theoretical parameters
to the two-body scattering parameters of 173Yb atoms. Then,
assuming a mean-field approximation for the intraband Cooper
pairings, we derive the mean-field Hamiltonian density in
Sec. III, and obtain a set of self-consistency equations for the
intraband order parameters and number equations for the two
bands. Having solved these equations numerically in Sec. IV
and provided a thorough analysis for our findings, we end the
paper with a brief summary of our conclusions in Sec. V.

II. LOCAL-DENSITY APPROXIMATION FOR TRAP

The semiclassical method based on a local-density ap-
proximation for the trapping potential is probably one of the
most convenient approaches for studying many-body effects
in finite-sized systems. By shifting the confinement potential
Vtr(r) from the chemical potential μ, one simply introduces
a local chemical potential μ(r) = μ − Vtr(r) that depends
explicitly on the radial distance r . This assumption works
best for large systems with slowly varying potentials since
the relevant Fermi energy scale becomes much larger than the
confinement-induced energy separation between the quantum
levels as the number of particles increases. For instance,
within this approximation, the Hamiltonian density describing
isotropically trapped Fermi gases across an orbital Feshbach
resonance can be written as [7]

H (r) =
∑
iσk

ξik(r)c†iσk(r)ciσk(r) −
∑
ijq

Vijb
†
iq(r)bjq(r),

where the band index i ≡ {1,2} refers to the particles in the
open (lower band) and closed (upper band) channels with
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pseudospin projections σ ≡ {↑ , ↓}, and k is momentum. The
operator c

†
iσk(r) creates a single particle at r with quantum

numbers i, σ , and k, and dispersion ξik(r) = εk − μi(r). Here,
εk = k2/(2m) is in units of � = 1, and μ1(r) = μ − Vtr(r) is
for the lower and μ2(r) = μ − δ/2 − Vtr(r) is for the upper
band, where Vtr(r) = mω2r2/2 is assumed to be harmonic
in space, and the energy shift δ/2 � 0 between the two
bands is a controllable detuning parameter that is used to
access an orbital Feshbach resonance. Similarly, the operator
b
†
iq(r) = ∑

k c
†
i↑,k+q/2(r)c†i↓,−k+q/2(r) creates pairs of ↑ and

↓ particles at r with quantum numbers i and center-of-mass
momentum q. The bare amplitudes for the local intraband
V11 = V22 = (g− + g+)/2 and local interband V12 = V21 =
(g− − g+)/2 interactions are related to the two-body scattering
lengths in vacuum as± via the usual renormalization relations
1/g± = −mV/(4πas±) + ∑

k m/k2, where V is the volume,
in such a way that the orbital resonance occurs precisely when
δ is tuned to a critical threshold δres = 4/[m(as− + as+)2] [3].
These parameters have recently been determined for a 173Yb
Fermi gas, and are given by as+ ≈ 1900a0 and as− ≈ 200a0

with a0 the Bohr radius [1,2], for which both intra- and
interband interactions turned out to be attractive with Vij > 0.

III. MEAN-FIELD APPROXIMATION FOR PAIRING

Assuming that the fluctuations of the pair-creation operators
are small in comparison to their equilibrium values, we
adopt a mean-field approximation for pairing, and introduce
an intraband order parameter �iq(r) = −∑

j Vij 〈bjq(r)〉 for
each band [7], where 〈· · · 〉 is a thermal average. In addition,
restricting ourselves solely to local BCS-like solutions, we set
q = 0 and determine the local complex parameter �i(r) =
�i0(r) self-consistently with the corresponding local number
equation ni(r) = ∑

σk〈c†iσk(r)ciσk(r)〉 for each band at a given
r . Once the total number of particles in a given band is
obtained by Ni = (1/V)

∫
d3r ni(r), then μ is iterated until

N = N1 + N2 is fixed to a specified value given in Sec. IV.
This self-consistent construction is a straightforward extension
of the usual mean-field approach that has extensively been
employed for single-band Fermi gases, and it forms the
fundamental basis for most of the BCS-BEC crossover studies
in the literature, over the past decade or so, in the context of
magnetic Feshbach resonances [8].

Thus, within such a mean-field approximation for the
intraband pairings, the local mean-field Hamiltonian can be
reexpressed as

Hmf(r) =
∑
iσk

ξik(r)c†iσk(r)ciσk(r)

+
∑
iq

[�iq(r)b†iq(r) + �∗
iq(r)biq(r)]

+
∑
ijq

Uij�
∗
iq(r)�jq(r), (1)

where the matrix U is the inverse of the amplitude matrix
V, i.e., its elements can be written explicitly as U11 =
V22/ det V, U22 = V11/ det V, U12 = −V12/ det V, and U21 =
−V21/ det V with det V = V11V22 − V12V21. Note that the
interband coupling gives rise to a Josephson-type contribution

to the Hamiltonian, U12(�∗
1q�2q + �1q�

∗
2q), depending ex-

plicitly on the relative phase between the intraband order
parameters. Then, restricting to local BCS-like solutions, the
resultant self-consistency equations can be compactly put in a
more familiar form as follows [7]:

�i(r) =
∑
jk

Vij

�j (r)

2Ejk(r)
tanh

[
Ejk(r)

2T

]
, (2)

ni(r) =
∑

k

{
1 − ξik(r)

Eik(r)
tanh

[
Eik(r)

2T

]}
, (3)

where Eik(r) =
√

ξ 2
ik(r) + |�i(r)|2 is the energy of the lo-

cal quasiparticle excitations in the ith band with momen-
tum k, T is the temperature, and the Boltzmann constant
kB is set to unity. The summand in Eq. (3) is the lo-
cal momentum distribution ni(r,k) of particles in the ith
band.

Motivated by the success of the analogous mean-field
theories in describing the fundamental properties of alkali-
metal atoms across a magnetic Feshbach resonance [8], here
we apply it to alkaline-earth-metal atoms across an orbital
Feshbach resonance. Therefore, we are interested in the so-
called π -phase solution for the local relative phases between
the local order parameters, i.e., sgn[�1(r)] = −sgn[�2(r)] at
any given r , which is directly linked to the orbital Feshbach
resonance found in a 173Yb Fermi gas [3,7].

IV. π -PHASE SOLUTIONS FOR A 173Yb FERMI GAS

We use the following definitions of an effective Fermi
energy and the associated Fermi momentum εF = k2

F /(2m),
and the corresponding Thomas-Fermi radius rF in presenting
our numerical solutions. Assuming a total of N noninteracting
particles in a single-band Fermi gas at T = 0, and setting μ =
εF , we may write εF = k2

F (r)/(2m) + mω2r2/2 for the lower
band within the local-density approximation. This defines a
local Fermi momentum kF (r) in such a way that the local
number of particles is given by n(r) = V k3

F (r)/(3π2) at a
given r . Noting that kF (rF ) = 0 at the edge of the system
by definition, we may express kF = kF (0) = mωrF , leading
to N = k3

F r3
F /24 or equivalently εF = ω(3N )1/3. Choosing a

typical atomic density n(0)/V ≈ 1014 cm−3 at the center of
the trap and using the scattering parameters of a 173Yb Fermi
gas given in Sec. II, we find 1/(kF as+) ≈ 0.693, 1/(kF as−) ≈
6.582, and δres ≈ 3.144εF . In addition, by choosing a large
momentum cut-off k0 = 100kF in k-space sums, we obtain
k0-independent solutions for the physical observables, even
though all of the bare interaction amplitudes Vij themselves
depend explicitly on k0.

First we consider a resonant Fermi gas with δ = δres, and
present typical ni(r) and �i(r) profiles as functions of r . It is
worth mentioning here that since were are presenting the π -
(out-of)-phase excited-state solutions but not the 0-(in)-phase
ground-state ones, the higher i = 2 band has higher order
parameters in spite of its lower density. As shown in Figs. 1(a)
and 1(b), while |�2(r)| > |�1(r)| > 0 as long as n1(r) >

n2(r) > 0 at T = 0, and therefore, the entire gas is found to be a
superfluid, the pair-breaking effect caused by finite T weakens
|�i(r)| and turns the edge of the gas to normal beyond a
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FIG. 1. Radial profiles at resonance detuning. (a) The numbers of
particles ni(r) [in units of NV/(4πr3

F )], and (b) the order parameters
�i(r) are shown as functions of the radial distance r . (c) The
trap-averaged momentum distributions ni(k) are shown in units of
4πr3

F /V and as functions of the radial momentum k. Here, i = {1,2}
corresponds, respectively, to the lower and upper bands, where
n1(r) > n2(r) in (a), |�2(r)| > |�1(r)| and �1(r) < 0 in (b), and
n1(k) > n2(k) in (c).

critical radius r > rS . Here, the critical radius rS for the spatial
separation of superfluid and normal phases within the trap is
determined by the simultaneous vanishing of |�1,2(r−

S )| →
0+. Increasing T gradually decreases rS towards the center
of the trap, and eventually the entire gas turns to normal,
i.e., rS → 0, beyond the critical superfluid-normal transition
temperature Tc ≈ 0.45εF . The simultaneous disappearance of
the order parameters leads not only to observable cusps in
ni(r) precisely at r = rS but also to the thermal broadening
of the outer normal regions. This is best seen in Fig. 1(c),
where we present the trap-averaged momentum distributions
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FIG. 2. The band-population imbalance P = (N1 − N2)/N and
chemical potential μ are shown as functions of (a) detuning δ at zero
temperature, and (b) temperature T at resonance detuning.

ni(k) = (1/V)
∫

d3r ni(r,k) as functions of k, where ni(r,k) is
the summand of Eq. (3).

We note the following in passing for the radial profiles at
T = 0. Up until δ ∼ δres, the local occupation of the upper
band in the trap turns out to be nonzero as long as the
lower band is also locally occupied there, i.e., if n1(r) �= 0,
then n2(r) �= 0 for any given r . This is a direct result of the
interband coupling, and the entire gas is a superfluid with
�2(r) �= 0 wherever �1(r) �= 0, as illustrated above for a
resonant Fermi gas. On the other hand, when δ � 4εF , we
find that the interband coupling is not locally strong enough
to overcome the detuning barrier towards the edge of the
gas, as a consequence of which the intraband pairings vanish
|�1,2(r → rS)| → 0+ simultaneously at some critical radius
rS . This naturally gives rise to n2(r) = 0 and n1(r) �= 0 for
r > rS , and hence, a spatial separation appears between the
central superfluid core and the outer normal edge consisting
only of particles in the lower band. When rS eventually reduces
to 0 as δ � εF , then the entire trap is effectively occupied by
a single band of noninteracting Fermi gas in the lower band.

To understand the general trends, next we present the band-
population imbalance P = (N1 − N2)/N and μ in Fig. 2(a) as
functions of δ at T = 0. It is clearly seen that while P = 0 or
N1 = N2 and μ < 0 at δ = 0, the particles gradually transfer
from the upper to the lower band as a result of the increased
energy difference δ/2 between the bands and its pair-breaking
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FIG. 3. Central parameters at resonance detuning. (a) The
numbers of particles ni(r = 0) [in units of NV/(4πr3

F )], (b) the
order parameters �i(r = 0), and (c) the trap-averaged momentum
distributions ni(k = 0) (in units of 4πr3

F /V) are shown as functions
of temperature T .

effect, leading eventually to P → 1 or N1 � N2 → 0 and
μ → εF in the δ � εF limit. The evolutions of P and μ are
smooth and monotonous across the resonance, at which point
we find P ≈ 0.400 and μ ≈ 0.578εF . Similarly, in Fig. 2(b),
we present P and μ as functions of T at δ = δres. While μ

is a monotonically decreasing function of T , P first increases
to a peak value of 0.934 at T ≈ 0.43εF and then decreases.
This temperature almost coincides with the critical one where
μ ≈ 0.342εF and P ≈ 0.930 at Tc ≈ 0.45εF .

The nonmonotonous evolution of P with T at fixed δ is
a direct consequence of the competition between the pair-
breaking and thermal-broadening effects of T . To illustrate
this competition, we present the central parameters ni(r = 0)
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FIG. 4. Central parameters at zero temperature. (a) The numbers
of particles ni(r = 0) [in units of NV/(4πr3

F )], (b) the order param-
eters �i(r = 0), and (c) the trap-averaged momentum distributions
ni(k = 0) (in units of 4πr3

F /V) are shown as functions of detuning δ.

and �i(r = 0) in Figs. 3(a) and 3(b), respectively, as functions
of T for a resonant Fermi gas. In accordance with our definition
of εF given above for a noninteracting single-band Fermi gas
at T = 0, the upper band is completely empty for εF < δ/2.
Since δres ≈ 3.144εF in this paper, �i(r) �= 0 promotes some
of the particles to the upper band causing N2 �= 0 at T = 0
in the first place, and thus, the reduction of |�i(r)| at finite
but low T � Tc naturally demotes particles back to the lower
band. However, in the mean time, the particles are thermally
excited back to the upper band as well, leading to the
aforementioned competition as a function of T . The isolated
effects of pair-breaking and thermal-broadening mechanisms
on the occupations of the bands are evidently seen in Fig. 3(c),
where we present ni(k = 0) as functions of T .
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For completeness, next we discuss the central parameters
ni(r = 0), �i(r = 0), and ni(k = 0) as functions of δ at T = 0,
showing purely the crucial role played by the pair-breaking
effect of δ in the absence of thermal effects. As shown in
Fig. 4, while n1(0) = n2(0) and |�1(0)| = |�2(0)| at δ = 0,
the particles gradually transfer from the upper to the lower
band with increased δ due to the simultaneous reduction of
|�2(0)| > |�1(0)|. This eventually leads to n1(0) � n2(0) →
0 and |�1,2(0)| → 0 in the δ � εF limit, and the problem
reduces effectively to a single band of noninteracting Fermi
gas in the lower band.

We would like to remark here that the physical picture out-
lined just above in understanding the general trends presented
in this paper goes beyond the simple mean-field approximation
that is assumed in our numerical calculations. It is widely
believed that while this approximation reliably describes the
low-temperature (T 
 Tc) properties of a weakly interacting
Fermi gas in general, the inclusion of (at least) the Gaussian
pair fluctuations is necessary in order to produce a qualitatively
correct Tc in the strongly interacting regime, especially near
the resonance [6]. However, the nonmonotonous evolutions
caused by the competition between the pair-breaking and
thermal-broadening mechanisms should be manifested in
beyond mean-field calculations as well, apart from expected
minor quantitative differences.

V. CONCLUSIONS

In summary, we analyzed how a trapped 173Yb Fermi gas
and its superfluid properties evolve across an orbital Feshbach
resonance. We used a two-band description for this purpose,
under the assumptions of a local-density approximation for
the trapping potential and a mean-field approximation for the
intraband pairings. One of our primary findings is that the
interplay between the pair-breaking effect that is caused by
the interband detuning energy δ, and the pair-breaking and
thermal-broadening effects that are simultaneously caused by
the temperature T gives rise to nonmonotonous evolutions
in some physical observables, including the band-population
imbalance and trap-averaged momentum distributions. In
addition, we found at T = 0 that while the entire trapped
gas is a superfluid for δ � δres with the resonance detuning
δres ∼ 3εF , a spatial separation between the central superfluid
core and the outer normal edge which consists only of particles
in the lower band eventually appears beyond a critical detuning
that is of the order of δ � 4εF . We also argued that, since
these predictions are physically intuitive and not caused by
any of the approximations used, they may play decisive roles
in probing two-band superfluidity in the cold-atom context.
As an immediate outlook, we look forward to further research
along these lines by especially taking the beyond local-density
and/or mean-field corrections into account for quantitatively
more accurate predictions.
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APPENDIX: EXPERIMENTAL CONTEXT

First of all, we consider two different nuclear-spin states
of a 173Yb atom and denote them with |⇑〉 and |⇓〉. In
addition, assuming that a π -polarized clock laser light can
be used to excite the atoms from their ground (1S 0) state
to a long-lived metastable (3

P 0) one, we also take into
account two different internal-orbital states and denote them
with |g〉 and |e〉 [1,2]. Then, in Eq. (1), the pseudospin
projections σ correspond precisely to |1↑〉 ≡ |e⇑〉 and |1↓〉 =
|g ⇓〉 in the lower (i = 1) band, and to |2↑〉 = |g⇑〉 and
|2↓〉 = |e⇓〉 in the upper (i = 2) band. This reorganization
is in such a way that the nuclear-spin projections and orbital
states are directly linked with each other in the two-particle
scattering channels, where the antisymmetric state |e⇑; g⇓〉 =
(|e⇑〉|g⇓〉 − |g⇓〉|e⇑〉)/√2 corresponds to the open channel,
and |g⇑; e⇓〉 = (|g⇑〉|e⇓〉 − |e⇓〉|g⇑〉)/√2 to the closed
one [3,4].

Since the two-particle interaction between one |g〉 atom
and one |e〉 atom in two different nuclear-spin states is
characterized by the interplay between the orbital-singlet
scattering length (as+) and the orbital-triplet (as−) one given
in the main text, it is possible to have both intrachannel
spin-conserving (direct) interactions as well as an interchannel
spin-flipping (exchange) one. That is, the interaction between
one |g〉 and one |e〉 atom may also involve a spin flip. While
the strengths of the former are equally proportional to an
effective direct scattering length (as+ + as−)/2 in both open
and closed channels, that of the latter one is proportional to
an effective exchange scattering length (as+ − as−)/2 giving
rise to a coupling between the open and closed channels when
as+ �= as−.

Furthermore, the presence of an external magnetic field
splits the nuclear-spin states depending on their Zeeman level,
shifting relatively the energies of the scattering channels by
varying the strength of the field. For instance, a strong magnetic
field weakens the coupling between open and closed channels
as the Zeeman energy dominates the spin-exchange interac-
tions leading to well-defined nuclear-spin states. Therefore,
the two-particle scattering channels may be strongly correlated
with each other at small and intermediate magnetic fields,
allowing for the creation of another type of magnetically
tunable orbital Feshbach resonance, once the Zeeman energy
matches the two-body binding energy of the least bound state
in the closed channel [1–4].

As the effective nuclear magnetic moments involved in
orbital resonances are much smaller than the electronic ones in
alkali-metal-atom resonances, the widths of these resonances
can be broad in magnetic field, despite their large and negative
effective ranges which are characteristic features of narrow,
i.e., closed-channel dominated, alkali-metal-atom resonances.
Therefore, in contrast to the broad alkali-metal-atom reso-
nances where it is sufficient to retain only the open channel
with a single order parameter as the minimal description of
the BCS-BEC crossover physics, here it is necessary to treat
open and closed channels on an equal footing by introducing a
coupled set of two mutually coherent order parameters requir-
ing a self-consistent solution, as discussed in the main text.

Lastly, we restrict ourselves to the balanced number of ↑ and
↓ atoms in each band for its simplicity, and set μ↑ = μ↓ = μ
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in Eq. (1). This is such that the total number N of atoms
are equally distributed over the two states |e⇑〉 and |g⇓〉 of
the open channel in the noninteracting limit when δ > 2εF .
For instance, if all of the atoms are initially prepared in the
ground state |g〉, then one can achieve a balanced system by
exciting all of the ⇑ atoms from |g〉 to the excited state |e〉. The

formalism developed in this paper can easily be extended to
the analysis of the imbalanced problem, and this is one of the
immediate experimental interests to be addressed in the near
future. Furthermore, we assume a common trapping potential
for all atoms, independent of their orbital and nuclear-spin
degrees of freedom [1,2].
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