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We consider a Fermi gas that is loaded onto a square optical lattice and subjected to a perpendicular artificial
magnetic field, and determine its superfluid transition boundary by adopting a BCS-like mean-field approach
in momentum space. The multiband structure of the single-particle Hofstadter spectrum is taken explicitly into
account while deriving a generalized pairing equation. We present the numerical solutions as functions of the
artificial magnetic flux, interaction strength, Zeeman field, chemical potential, and temperature, with a special
emphasis on the roles played by the density of single-particle states and center-of-mass momentum of Cooper
pairs.
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I. INTRODUCTION

Experiments with ultracold atomic systems have inces-
santly progressed in the past two decades or so, since the
creation of the very first Bose-Einstein condensate (BEC)
with a dilute gas of bosonic atoms. Equipped with unique
opportunities to control a wide range of parameters, these
systems have successfully been employed in not only testing
numerous theoretical models developed in the condensed-
matter literature, but also studying new phenomena which
do not have a direct analog in other fields [1]. For instance,
by changing the effective interaction strength between atoms
through what is known as magnetic Feshbach resonances,
the so-called BCS-BEC crossover has been experimentally
realized with a superfluid (SF) Fermi gas, although such
a phenomenon was originally explored from a theoretical
perspective in the context of high-Tc superconductors [2].
Similarly, the basic mechanism for unconventional pairings
that has been experimentally realized with a population-
imbalanced SF Fermi gas was originally proposed as a mech-
anism for inhomogeneous superconductivity that is caused
by the Zeeman-induced mismatch of the Fermi surfaces, long
before the advent of atomic systems [3,4]. More recently, there
has been fervent activity in the cold-atom community to realize
quantum-Hall-like effects with charge-neutral atoms through
the use of artificial gauge fields and synthetic dimensions [5].

In this paper, we are interested in a merger of these
topics, i.e., we study the SF transition of a Fermi gas that
is loaded onto a square optical lattice and subjected to
a perpendicular artificial magnetic field in the context of
the so-called attractive Hofstadter-Hubbard model. Limited
aspects of this problem were investigated both in momentum
space within the BCS-like mean-field approach, while paying
attention to single-particle degeneracies [6,7], and in real space
within the Bogoliubov–de Gennes formalism including the
possibility of imbalanced chemical and/or vector potentials
[8]. Here, we focus on determining the SF transition boundary
as a function of the artificial magnetic flux, interaction
strength, Zeeman field, chemical potential, and temperature.
In comparison to the existing literature, we not only develop a
better understanding of the pairing mechanism in momentum
space, but also locate the transition boundary more precisely
within the adopted approximations. We also examine the roles
played by the density of single-particle states and center-of-

mass (CoM) momentum of Cooper pairs on the transition
boundary, providing clear insights into the intriguing reentrant
superfluidity behavior found in the numerical solutions. We
trace the origin of this reentrant behavior back to the strongly
modified density of single-particle states in the presence of a
magnetic flux. The magnetic flux splits the original band of the
field-free case into several subbands [9]. As a result of such
a change in the band structure, the density of single-particle
states becomes a nonmonotonic function of energy, imposing
a similar nonmonotonic behavior on the phase boundaries.

The rest of the paper is organized as follows. In Sec. II,
we first introduce the attractive Hofstadter-Hubbard model,
and then obtain a self-consistent equation for the SF transition
boundary by tackling the model Hamiltonian with a BCS-like
mean-field approach in momentum space. Our numerical
results are given in Sec. III, where we present the phase
boundaries in interaction strength–Zeeman field, interaction
strength–chemical potential, and temperature–chemical poten-
tial planes for a number of magnetic flux values. We conclude
the paper with a brief summary in Sec. IV. In addition, detailed
derivations of the Hofstadter spectrum and generalized pairing
equation are outlined, respectively, in Appendices A and B, and
additional phase diagrams are included in Appendix C.

II. MEAN-FIELD THEORY

Our fundamental assumption is that the motion of a single
particle in a tight-binding square optical lattice that is subjected
to a perpendicular magnetic field is well described by the
famous Hofstadter model,

HB = −t
∑
〈ij〉σ

(ei2πφij c
†
iσ cjσ + H.c.), (1)

where c
†
iσ (ciσ ) creates (annihilates) a fermion with pseudospin

σ ≡ {↑,↓} at site i, H.c. is the Hermitian conjugate, t > 0 is the
hopping amplitude between nearest-neighbor sites 〈ij 〉, and
φij = (1/φ0)

∫ ri

rj
A · dr is the spin-independent phase factor

the particle acquires while hopping from site j to i. Here,
φ0 = �/q0 is the effective magnetic-flux quantum with q0 the
effective charge, and A = (0,Bx) is the vector potential in the
Landau gauge with B the magnitude of the effective magnetic
field. Note that neither q0 nor B corresponds to a physical
quantity by itself in atomic systems that are engineered to
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simulate artificial gauge fields; only their product is physically
meaningful. When the particle traverses a loop encircling a
unit cell of the lattice, its wave function acquires the Aharonov-
Bohm phase factor ei2πα , where α = Ba2/φ0 is the flux quanta
per unit cell with a → 1 the lattice constant. As we outline in
Appendix A for completeness, when α is a rational fraction
p/q with p and q co-prime integers, the tight-binding s band of
the single-particle spectrum in the field-free case splits into q

subbands, yielding the so-called Hofstadter butterfly which is a
self-similar function of α [9]. The noninteracting Hamiltonian
H0 = HB − ∑

iσ μσniσ in the grand-canonical ensemble can
equivalently be expressed as H0 = HB − μ

∑
i(ni↑ + ni↓) −

h
∑

i(ni↑ − ni↓), where niσ = c
†
iσ ciσ is the number operator,

μ = (μ↑ + μ↓)/2 is the average chemical potential, and h =
(μ↑ − μ↓)/2 can be interpreted as an out-of-plane Zeeman
field.

We restrict ourselves to on-site atom-atom interactions
that are described by the attractive Hubbard Hamiltonian
HI = U

∑
i c

†
i↑c

†
i↓ci↓ci↑, where U � 0. Adopting a BCS-like

mean-field approximation for pairing, i.e., assuming that the
fluctuations of the quadratic operators ci↓ci↑ are small in
comparison to their equilibrium values, we may decouple HI

as

HI ≈ −
∑

i

(
�ic

†
i↑c

†
i↓ + �∗

i ci↓ci↑ + |�i |2
U

)
, (2)

where the complex order parameter �i = U 〈ci↑ci↓〉 describes
the on-site atom-atom correlations in thermal equilibrium
as denoted by the thermal average 〈. . .〉. The SF phase is
characterized by �i 
= 0 at least for some i. When �i = 0
for all i, the spin-σ particles are either a normal Fermi
gas or form a band insulator, depending on their thermal
average numbers determined by Niσ = 〈niσ 〉. Due to the
Pauli exclusion principle, Nσ = ∑

i Niσ can at most be the
total number of lattice sites M = MxMy , corresponding to
a fully occupied spectrum for any given α. However, when
the number of fully occupied magnetic subbands for spin-σ
particles is precisely an integer s � q such that Nσ/M = s/q,
or, equivalently, μσ is inside the corresponding single-particle
energy gap, the particles form a band insulator. Otherwise,
they are normal.

A compact closed-form expression for the SF transition
boundary can be obtained in momentum (k) space where it
is relatively easier to diagonalize HB . For this purpose, we
introduce the k-space operators,

ckβσ =
√

q

MxMy

Mx/q∑
s=0

My∑
iy=0

csβiyσ e−ikx sqe−iky iy , (3)

where Mx and My are, respectively, the number of lattice
sites along the x and y directions with periodic boundary
conditions in mind, and k = (kx,ky) is the momentum vector.
Here, the real-space coordinate of site i is expressed as ri =
(ix,iy), where ix = sq + β with s = 0, . . . ,Mx/q denoting
the location of the enlarged (q × 1) unit cell in the lattice
and β = 0, . . . ,q − 1 denoting a particular site inside the
enlarged unit cell. Since such choice of an enlarged unit cell
restores the translational symmetry of the original lattice for
the particular Landau gauge of interest, it allows us to retain the

Bloch description of the eigenstates with a reduced (magnetic)
Brillouin zone (MBZ): kx ∈ [−π/q,π/q) and ky ∈ [−π,π )
[9,10].

Using Eq. (3) in Eq. (1), we obtain HB =∑
kσ

∑
αβ c

†
kασ H

αβ

kσ ckβσ , where the matrix elements H
αβ

kσ are
explicitly given in Appendix A. Diagonalization of this q × q

matrix yields q eigenvalues εknσ for a given k, with n =
1, . . . ,q corresponding to q subbands that split from the
original field-free band. Note that the single-particle spectrum
εknσ = εkn is spin independent. Using the band operators
dknσ defined through the relation ckβσ = ∑

n gn
β(k)dknσ , where

gn
β(k) is the βth component of the nth eigenvector of the

single-particle problem with energy εkn, and including μσ ,
the noninteracting Hamiltonian finally reads as

H0 =
∑
knσ

εknσ d
†
knσ dknσ , (4)

where εknσ = εkn − μσ with k restricted to the first MBZ.
Following a similar procedure, the Hamiltonian (2) can be
written in k space as

HI = −
∑
lβ

{∑
nn′k

[
�l

βgn∗
β (kl

+)gn′∗
β (kl

−)

× d
†
kl+n↑d

†
kl−n′↓ +H.c.

]+ M

qU

∣∣�l
β

∣∣2
}
, (5)

where the complex coefficients �l
β = −(qU/M)∑

nn′k gn
β(kl

+)gn′
β (kl

−)〈dkl−n′↓dkl+n↑〉 are defined in such a
way that �i = ∑

l �
l
βei(Qlxs+Qly iy ). Here, kl

± = ±k + Ql/2
with Ql = (Qlx,Qly) the CoM momentum of Cooper pairs.
While all possible CoM momenta must, in principle, be
allowed in the calculations, such a task is not numerically
tractable for arbitrary α. For this reason, we limit our
numerical calculations mainly to BCS-like pairings and
consider a finite set Ql = (0,2πlp/q) with l = 0, . . . ,q − 1.
Finite CoM pairing Ql = (0,2πlp/q) with l 
= 0, in addition
to the usual BCS pairing with Ql = (0,0), needs to be taken
into account due to the degeneracy of the single-particle
energies in any given band n for momenta k and k + Ql ,
i.e., εkn = εk+Ql ,n [6]. In the absence of a Zeeman field,
we do not expect this limitation to a finite set of CoM
momenta to have any effect on the SF transition boundary
of interest here, even though the SF order parameter may
slightly be affected by it deeper into the SF region. In the
presence of imbalanced populations, while we expect this
limitation to have some but minor influence on the SF
transition boundary, we note that extending the calculation
to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like pairings
(e.g., by including additional CoM momenta to explicitly take
the Zeeman-induced mismatch of the Fermi surfaces into
account) may lead to a dramatic improvement in case a more
accurate real-space description of the SF order parameter is
desired.

Under these approximations and noting that all of the
coefficients �l

β are expected to be small in the vicinity of the
SF transition boundary, HI may be treated as a perturbative
correction to H0. Using the first-order perturbation theory
outlined in Appendix B, we obtain a compact expression for

023611-2



SUPERFLUID TRANSITION IN THE ATTRACTIVE . . . PHYSICAL REVIEW A 94, 023611 (2016)

the generalized pairing equation,

�l
β = −qU

M

∑
nn′kβ ′

gn
β(kl

+)gn′
β (kl

−)gn∗
β ′ (kl

+)gn′∗
β ′ (kl

−)

×�l
β ′

1 − f (εkl+n↑) − f (εkl−n′↓)

εkl+n↑ + εkl−n′↓
, (6)

which determines the SF transition boundary for a given
Ql . Here, f (x) = 1/[ex/(kBT ) + 1] is the usual Fermi-Dirac
distribution function, with kB the Boltzmann constant and
T the temperature. Note that Eq. (6) has to be supplied si-
multaneously with the number equations Nσ = ∑

nk f (εnkσ ),
forming a complete set of self-consistency equations for
�l = (�l

0, . . . ,�
l
q−1) and μσ . It is convenient to express

Eq. (6) in the form of a matrix-eigenvalue equation, where
�l

β = ∑
β ′ Ml

ββ ′�
l
β ′ or, equivalently, �l = Ml�l , from which

the condition for a nontrivial yet arbitrarily small �l solution
is determined by setting det(I − Ml) = 0, with I the identity
matrix. In the case of multiple solutions for Ul

c and T l
c

that are allowed by the determinant condition, we ultimately
identify Uc = max{Ul

c} (or, equivalently, |Uc| = min{|Ul
c|})

as the critical interaction strength and Tc = max{T l
c } as the

critical temperature of the system.
These critical parameters depend sensitively on α directly

through the resultant density of single-particle states D(ε) =
dN (ε)/dε, where N (ε) is the number of states per unit
area with energy smaller than ε, and it can be calculated by
simply counting the number of states �N (ε) contained in a
small interval of energy [ε,ε + �ε] with fixed �ε. Since the
spectrum is symmetric around ε = 0, we only consider ε � 0,
as discussed below.

III. NUMERICAL RESULTS

First of all, in the absence of a magnetic field (B → 0
or α → 0), which can equivalently be accounted for by
taking p = q = 1 and l = β = 0, the determinant condition
reduces to the usual expression −M/Uc = ∑

k[1 − f (εk↑) −
f (ε−k↓]/(εk↑ + ε−k↓), where ε±kσ = −2t(cos kx + cos ky) −
μσ is the usual tight-binding spectrum shifted by the chemical
potential. We recall that FFLO-like pairings [4] are not
considered in this work for the simplicity of the followup
discussion. In Fig. 1(a), we show that |Uc| is a monotonously
increasing function of the Zeeman field h, which closely
follows the monotonous decrease of D(ε) with increasing ε

(� 0) that is presented in Fig. 1(b). This is simply because,
since h 
= 0 changes the effective chemical potentials for
spin-↑ and -↓ particles as μ↑,↓ = μ ± h, it directly affects
the available number of states near the Fermi surface involved
in pairing. When D(ε) gets lower (higher), the formation of
Cooper pairs is facilitated with a relatively large (small) Uc,
which is a generic observation valid also in the presence of a
magnetic field.

As the first example of a case with nonvanishing magnetic
flux, we consider α = 1/2 and set μ = 0 for simplicity. The
original field-free band splits into two bands that are touching
each other at ε = 0. The singular peak of D(ε) that is seen in
Fig. 2(b) at ε = 2t is due to a van Hove singularity, and it is
directly reflected as a dip in |Uc| precisely at h = 2t that is

FIG. 1. (a) Critical interaction strength |Uc|/t vs the Zeeman field
h/t with α = 1/1 and μ = 0 for various temperatures T . The inset is
a close-up for h � 0.5t . |Uc|/t at h = 0 increases with T . (b) Density
of states D(ε) in arbitrary units.

FIG. 2. (a) Critical interaction strength |Uc|/t vs the Zeeman field
h/t with α = 1/2, μ = 0, and kBT = 0.005t . The solid blue curve is
for Q = (0,0) and the red dashed curve is for Q = (0,π ). The curve
in the inset traces the minimum value of the two curves at each h/t .
(b) Density of states D(ε) in arbitrary units. Horizontal dashed lines
show the band edges including ε = 0.
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FIG. 3. (a) Critical interaction strength |Uc|/t vs the Zeeman field
h/t with α = 1/3, μ = 0, and kBT = 0.005t . The solid blue curve
is the phase boundary obtained for Ql = (0,2πl/3), with l = 0,1,2.
The dashed red curve is for Q = (0,π/6) and Q = (0,π/2), the dash-
dotted black curve is for Q = (0,π/3), and the dotted green curve
is for Q = (π/3,π/3). (b) Density of states D(ε) in arbitrary units.
Horizontal dashed lines show the band edges.

shown in Fig. 2(a). More importantly, the figure inset illustrates
that Uc is determined either by Q0 = (0,0) or Q1 = (0,π ),
depending on the particular value of h.

As a second example, shown in Fig. 3, we consider α =
1/3 and again set μ = 0. While there are three subbands in
the spectrum, only the highest band and half of the middle
band are seen in Fig. 3(b) since D(ε) is restricted to ε � 0.
Figure 3(a) shows that Ul

c are degenerate functions of h for
Ql = (0,2πl/3), with l = 0,1, and 2, and the calculated dips
correspond again to the peaks of D(ε). It would be curious to
check whether the set Ql yields degenerate solutions for any
α with odd denominators, e.g., see Appendix C for α = 1/5.
When μ↑ = −μ↓ = h is inside the single-particle band gap,
i.e., between 0.73t and 2t , |Uc| remains constant until new
pairing possibilities appear as μσ crosses over to the upper
or lower bands, leading to the observed reentrant superfluidity
behavior. Note in the gapped region that the ground state of
the system is a band insulator with fillings N↑/M = 2/3 and
N↓/M = 1/3 for |U | < |Uc|.

In Fig. 3(a), we also present the transition boundary for three
additional values of CoM momenta, namely Q = (0,π/6),
Q = (0,π/3), and Q = (0,π/2). While |Uc| is smaller for our
original set Ql = (0,2πl/3), with l = 0,1 and 2 near the peaks
of D(ε), these additional CoM momenta lead, in general, to
close but lower |Uc|. Although we do not systematically study
the dependence of Uc on the additional CoM momentum for a
given α and h, here we provide the plausibility argument for
this observation.

FIG. 4. (a) The most plausible pairing is sketched between a
spin-↑ particle with momentum −k + Q1 and a spin-↓ particle with
momentum k for α = 1/3 and μ = 0. Fermi surfaces μ↑ = 0.05t

and μ↓ = −0.05t are shown by solid and dashed lines, respectively.
(b) A similar sketch for h = 0.25t shows that the CoM momenta
Q1/4,Q1/2, and 3Q1/4 give better matching of the Fermi surfaces in
comparison to the original Q1.

In Fig. 4, we set α = 1/3 and μ = 0, and sketch the
Fermi surfaces of spin-↑ (solid curves) and spin-↓ (dashed
curves) particles for two h values, showing a number of
pairing possibilities inside the middle band of the spectrum.
For small h = 0.05t , Fig. 4(a) shows that a spin-↓ particle with
momentum k can be easily coupled to a spin-↑ particle with
momentum −k + Q1. Note that even though it is possible to
find an arbitrary Q for a given k with the property of carrying
−k close to a solid curve, Q1 and its integer multiples have
this property for all k. Therefore, we expect such pairings to be
enhanced over other types of pairing. For a larger h = 0.25t ,
Fig. 4(b) clearly shows that the pairing of a spin-↓ particle with
momentum k and a spin-↑ particle with momentum −k + Q1

is energetically much harder than the previous case, instead
of which pairings with Q1/4,Q1/2 and 3Q1/4 are relatively
easier with a better match of the Fermi surfaces. Furthermore,
relaxing the condition on the vanishing x component of the
CoM momenta, e.g., QD = (π/3,π/3), allows for a nesting
vector with perfect overlap between the Fermi surfaces, despite
an energy gap. Hence, we expect such CoM momentum vectors
to be optimal when they are relevant. For example, Fig. 3(a)
shows that QD not only leads to the lowest |Uc| when h is inside
a band gap, but also its result may deviate significantly from
other possibilities when μ↑,↓ is close to the highest or lowest
band edge. A comprehensive analysis of such generalized
pairing schemes is beyond the scope of this work, and we
defer it to a future one.

The third example is shown in Fig. 5, where we consider
α = 1/4 and set μ = 0. The original field-free band splits into
a total of four bands, two of which are touching each other at
ε = 0. Figure 5(a) shows that Ul

c solutions corresponding to
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FIG. 5. (a) Critical interaction strength |Uc|/t vs the Zeeman
field h/t with α = 1/4, μ = 0, and kBT = 0.005t . The solid blue
curve is for Q = (0,0) and Q = (0,π ); the red dashed curve is for
Q = (0,π/2) and Q = (0,3π/2). The inset shows the minimum value
of the two curves at each h/t . (b) Density of states D(ε) in arbitrary
units. Horizontal dashed lines show the band edges including ε = 0.

the l = (0,2) and l = (1,3) CoM momentum Ql = (0,2πl/4)
are degenerate functions of h, and it would be curious to check
whether such a grouping of solutions is possible for any α

with even denominators, e.g., see Appendix C for α = 1/6.
In accordance with the previous discussion, while |Uc| again
remains a constant when μσ = ±h are inside the energy gap
between the two highest single-particle bands, its ground state
is a band insulator with fillings N↑/M = 3/4 and N↓/M =
1/4 for |U | < |Uc|.

For completeness, next we again consider α = 1/4, but
analyze the effects of μ 
= 0 by setting μ = −t . Since μσ

is lowered by −t , Fig. 6 shows that |Uc| has a single dip
at around h 
 1.7t within the range of h presented. This
peak corresponds to the enhanced pairing between a spin-↑
particle with μ↑ 
 0.7t from the middle band of the spectrum
and a spin-↓ particle with μ↓ 
 −2.7t from the lowest band.
Similar to the μ = 0 case, we again see that Ul

c solutions
corresponding to the l = (0,2) and l = (1,3) CoM momentum
Ql = (0,2πl/4) are degenerate functions of h.

The pairing equation (6) can also be used to determine |Uc|
as a function of μ. For instance, we consider a population-
balanced system with three distinct α = 1/3,1/4, and 1/5
values in Fig. 7, where we set h = 0 for simplicity. The results
are symmetric around μ = 0 due to the particle-hole symmetry
of the Hamiltonian. In all three cases, we observe that the local
minima of |Uc| coincide intuitively with the local maxima of
D(ε). This follows from the fact that if μ↑ = μ↓ is inside a
band and there exist a large number of states in the vicinity of
μ available for pairing, then |Uc| is small. However, as D(ε)

FIG. 6. (a) Critical interaction strength |Uc|/t vs the Zeeman
field h/t with α = 1/4, μ = −t , and kBT = 0.005t . The solid blue
curve is for Q = (0,0) and Q = (0,π ); the red dashed curve is for
Q = (0,π/2) and Q = (0,3π/2). The inset shows the minimum value
of the two curves at each h/t .

vanishes when μ enters a band gap, |Uc| gets larger, attaining
its maximum value roughly in the middle of the gap. It is
remarkable that the maximum values of |Uc| in the topmost
band gaps of the spectra range somewhere between 4.3t and
4.9t without much variation.

FIG. 7. Critical interaction strength |Uc|/t vs the chemical
potential μ/t for (a) α = 1/3, (b) α = 1/4, and (c) α = 1/5. Here,
h = 0 and kBT = 0.005t . The density of states D(ε) is also shown in
arbitrary units by a red dashed curve. Horizontal dashed lines mark
the band edges including ε = 0 in (b).
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FIG. 8. Critical temperature kBTc/t as a function of the chemical
potential μ/t . Here, α = 1/3, |U | = t , and h = 0. The density of
states D(ε) is also shown in arbitrary units by a red dashed curve.
Horizontal dashed lines mark the band edges.

As a last application of Eq. (6), we determine Tc in Fig. 8 as
a function of μ, where we consider α = 1/3, and set |U | = t

and h = 0. As increasing T weakens the SF state by breaking
the Cooper pairs, the enhanced pairing due to high D(ε) is
eventually beaten by higher T . When μ is inside the band
gap, the system remains as an insulator even at T ∼ 0 for the
chosen small value of |U |. However, when μ is inside a band,
the system remains as a SF up to a critical Tc, the peak values
of which coincide with the peak values of D(ε) around the
middles of the bands.

IV. CONCLUSION

To summarize, here we thoroughly analyzed the superfluid
transition in the attractive Hofstadter-Hubbard model, as an
attempt to describe neutral Fermi gases that are loaded onto
square optical lattices and subjected to perpendicular and
uniform artificial magnetic fields. Adopting a BCS-like mean-
field approach in momentum space, we derived a generalized
pairing equation in the vicinity of the superfluid transition.
We solved this equation for the critical interaction strength
and critical temperature as functions of the Zeeman field
and chemical potential by taking primarily into account
the finite center-of-mass momentum pairing caused by the
degeneracies of the single-particle Hofstadter spectrum. The
nonmonotonic variations of the critical interaction strength and
critical temperature are traced back to the sharp changes in the
density of single-particle states and to the multiple bands of
the Hofstadter spectrum, justifying the reentrant superfluidity
behavior found in the phase diagrams.

An extension of this study would be to more precisely
determine the contribution of Cooper pairs with additional
center-of-mass momentum in building up especially the super-
fluid state. This may be accomplished through an optimization

procedure which fully accounts for the interplay between
the Zeeman field and the complex band structure arising
from the artificial magnetic field. As another avenue, our
analysis for a square lattice can be extended to different lattice
geometries such as triangular or honeycomb ones in light of
the recent experiments which demonstrated the possibility of
deforming different lattice types into one another by tuning
lattice parameters [11]. In particular, it would be interesting
to study how the topological transitions [12] that could be
effected in such tunable lattices change the phase boundaries
under the combined action of a complex band structure and
population imbalance.

ACKNOWLEDGMENTS

R.O.U. is supported by the TÜBİTAK BİDEB 2232
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APPENDIX A: SINGLE-PARTICLE SPECTRUM

The single-particle spectrum is determined by diagonaliz-
ing the q × q matrix,

Hkσ =Hk=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D1 F 0 . 0 C

F ∗ D2 F 0 . 0

0
. . .

. . .
. . . 0 .

. 0 F ∗ Dm F 0

0 . 0
. . .

. . .
. . .

C∗ 0 . 0 F ∗ Dq

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

FIG. 9. Hofstadter butterfly spectrum displaying the single-
particle energy ε/t as a function of the magnetic flux quanta per
unit cell α = p/q. For each α, there are a total of q energy bands.
Vertical dashed lines correspond to α values considered in this work.
Each band at such an α value is represented by a different color. When
q is even, two bands touch each other at ε = 0.
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where Dm = −2t cos(2πmα − ky), F = −t , and C =
−te−iqkx . Note that reversing the sign of α → −α changes
the diagonal elements to D′

m = −2t cos(2πmα + ky), having
no effect on our results since such a change corresponds to
reversing the direction of the magnetic field. In addition, a
basis transformation of the form ckβσ → ckβσ e±iβkx changes
F to F ′ = −te±ikx and C to C ′ = −te∓ikx , again having no
effect on our results. Representations of the Hofstadter matrix
(A1) with the primed quantities are occasionally encountered
in the literature [10]. In Fig. 9, we show the Hofstadter butterfly
spectrum as determined by the eigenvalues of the matrix (A1)
for all k in the first MBZ.

APPENDIX B: GENERALIZED PAIRING EQUATION

For completeness, here we follow Poole et al. [13] and
briefly outline the derivation of Eq. (6). For an alternative
method of derivation, see de Gennes [14]. We work in the
interaction picture with τ = it the imaginary time, and treat
the interaction Hamiltonian (5) as a perturbation.

The propagator κ(τ ) satisfies

−dκ(τ )

dτ
= HI (τ )κ(τ ), (B1)

where HI (τ ) is the interaction Hamiltonian HI in the interac-
tion picture,

HI (τ ) = eτH0HIe
−τH0 . (B2)

By integrating Eq. (B1) to first order in HI , we find

κ(τ ) 
 1 −
∫ τ

0
HI (τ ′)dτ ′. (B3)

FIG. 10. (a) Critical interaction strength |Uc|/t vs the Zeeman
field h/t with α = 1/5, μ = 0, and kBT = 0.005t . The phase
boundary is degenerate for all Ql = (0,2πl/5) with l = 0,1, . . . ,4.
(b) Density of states D(ε) in arbitrary units. Horizontal dashed lines
show the band edges.

The inverse of the propagator in this approximation,

κ−1(τ ) 
 1 +
∫ τ

0
HI (τ ′)dτ ′, (B4)

obeys the relation κ−1(τ )κ(τ ) = 1 up to first order in �l
β .

In order to construct a self-consistent equation for �l
β , we

need to determine the average value 〈dkl−n′↓dkl+n↑〉 in terms of
�l

β . For this purpose, using 〈. . .〉 = Z−1Tr[e−τH . . .] with Z

the partition function, and the cyclic property of the trace, we
find

〈dkl−n′↓dkl+n↑〉=〈dkl+n↑(τ )dkl−n′↓〉, (B5)

where we define

dkl+n↑(τ ) ≡ eτHdkl+n↑e−τH

= e
−τεkl+n↑κ−1(τ )dkl+n↑κ(τ ). (B6)

An explicit form for dkl+n↑(τ ) can be found by using Eqs. (B2)–
(B4) and (B6), and keeping terms up to first order in �l

β ,
leading to

dkl+n↑(τ ) = e
−τεkl+n↑

⎡
⎣dkl+n↑ +

∑
n′l′β ′

�l′
β ′g

n∗
β ′ (kl

+)gn′∗
β ′ (kl

− + Ql′)

× e
τ (εkl+n↑+ε−kl++Q

l′ ,n′↓) − 1

εkl+n↑ + ε−kl++Ql′ ,n′↓
d
†
−kl++Ql′ ,n′↓

]
. (B7)

FIG. 11. (a) Critical interaction strength |Uc|/t vs the Zeeman
field h/t with α = 1/6, μ = 0, and kBT = 0.005t . The solid blue
curve is for Q = (0,0), Q = (0,2π/3), and Q = (0,4π/3); the red
dashed curve is for Q = (0,π/3), Q = (0,π ), and Q = (0,5π/3).
(b) Density of states D(ε) in arbitrary units. Horizontal dashed lines
show the band edges including ε = 0.
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Then, inserting Eq. (B7) into Eq. (B5), we find

〈dkl−n′↓dkl+n↑〉 =
∑
β ′

�l
β ′g

n∗
β ′ (kl

+)gn′∗
β ′ (kl

−)f (εkl−n′↓)

× f (εkl+n↑)
e
τ (εkl+n↑+εkl−n′↓) − 1

εkl+n↑ + εkl−n′↓
, (B8)

where f (x) = 1/(eτx + 1). Here, we use 〈d†
αdγ 〉 
 δαγ f (εα),

which is valid up to first order. Finally, inserting Eq. (B8) into
the definition of �l

β , rearranging the exponential terms, and
replacing τ with 1/(kBT ), we obtain the generalized pairing
Eq. (6) given in the main text.

APPENDIX C: PHASE DIAGRAMS FOR α = 1/5
AND α = 1/6

For these lower magnetic flux values, since there are,
respectively, five and six subbands in the energy spectrum,

Figs. 10 and 11 show much narrower bands in comparison to
those presented in the main text with smaller q. In particular,
the highest bands (as well as the lowest ones, which are not
shown) of the α = 1/5 and 1/6 spectra turn out to be very
narrow, causing a sharp variation of D(ε) with ε and giving
rise to a large dip in |Uc| as a function of increasing h.
A notable distinction between these two cases is that while
Ul

c are degenerate functions of h for all Ql = (0,2πlp/q)
with l = 0,1, . . . ,4 when α = 1/5, there are two distinct
solution sets corresponding to l = (0,2,4) and l = (1,3,5)
when α = 1/6.

As a final remark, we note that all of our numerical
results for low q = 1,2, . . . ,6 values show that while Ul

c are
degenerate functions of h for all Ql when q is odd, there are two
distinct solution sets corresponding to l = (0,2, . . . ,q − 2)
and l = (1,3, . . . ,q − 1) when q is even. It would be curious
to check whether this observation applies to arbitrary q values
in general.
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and I. B. Spielman, Light-induced gauge fields for ultracold
atoms, Rep. Prog. Phys. 77, 126401 (2014).

[6] H. Zhai, R. O. Umucalılar, and M. Ö. Oktel, Pairing and Vortex
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