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We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb
Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s-wave
superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset
in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions
have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field
approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -
phase) solutions in the entire BCS-BEC evolution at zero temperature.
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Introduction. Over the past decade or so, the cold-atom
systems have emerged as versatile quantum simulators of few-
and many-body physics theories [1–5]. Thanks partly to their
high degree of tuning capacities, they proved to be ideal test
beds for exploring not only few-body phenomena including
the simplest two-body and exotic Efimov bound states [1,6]
but also macroscopic phases of matter ranging from BEC and
superfluidity of atomic Bose gases, BCS superfluidity and
BCS-BEC crossover of atomic Fermi gases, superfluid–Mott
insulator transition and quantum magnetism of lattice gases,
and topological insulators and superfluids [2–5]. In addition,
atomic systems also bridge the gap between the macroscopic
properties of many-body systems to microscopic physics of
their constituent particles under the same setting, providing
hindsights into the realm of mesoscopic systems as well [7,8].

One of the most crucial ingredients behind this success is the
ability to control the strength and symmetry of the interparticle
interactions with atomic precision [1]. In particular, since
alkali atoms (with a single valence electron) have nonzero
electronic angular momentum in their ground states, they are
highly sensitive to externally applied magnetic fields, and
the Zeeman shifts of their different electronic spin states
provide a knob to control the inter-hyperfine-state interactions.
More specifically, alkali atoms allow for tunable couplings
between the energies of a two-body closed-channel bound
state and of two interacting open-channel atoms via what
is known as the magnetic Feshbach resonance [1]. On the
other hand, while the zero electronic angular momentum
of 173Yb-like alkaline-earth-metal atoms (with two valence
electrons) make them highly insensitive to external magnetic
fields, it is still possible to control the inter-orbital-state
interactions with only tens of Gauss via what is known as
the orbital Feshbach resonance [9–13]. Here, it is the Zeeman
shifts of different nuclear-spin states of atoms that are used to
tune the coupling between closed and open channels. Given
that experimentalists are now pursuing the superfluid regime
[10–12], the newly realized orbital Feshbach resonance in a
173Yb Fermi gas promises a new wave of interdisciplinary
interest for studying many-body phenomena in an uncharted
atomic-physics territory due to their direct connection to a wide
class of so-called two-band superconductors, which includes
many of the recently discovered iron-based superconductors
[14–17].

For instance, it turns out that the many-body Hamiltonian
governing the physical properties of alkaline-earth-metal
Fermi gases across an orbital Feshbach resonance [9,13] is
exactly analogous to that of two-band s-wave superconductors
with contact interactions in one of its most simplest forms
[18–21]. That is, even though the free-particle bands are shifted
by a tunable energy offset in between and are coupled by an
attractive interband pair scattering, the intraband interactions
have exactly the same strength. In a broader context, since
the two-band Hamiltonian also resembles that of Josephson
junctions between two condensates, the physics across an
orbital Feshbach resonance can also be thought of as an
intrinsic Josephson effect [22–24]. The key role played by
the interband Josephson coupling between two intrapaired
bands is played in atomic systems by the intraorbital scattering
lengths between the open- and closed-channel atoms. Thus,
motivated by the recent theoretical and experimental proposals
[9–13], here we introduce two intraband order parameters
within the BCS mean-field approximation and investigate the
competition between their in-phase and out-of-phase solutions
in the entire BCS-BEC evolution at zero temperature.

Effective two-band model. To describe alkaline-earth-metal
Fermi gases across an orbital Feshbach resonance, we start
with the momentum-space Hamiltonian [25]

H =
∑
iσk

ξikc
†
iσkciσk −

∑
ijq

Vijb
†
iqbjq, (1)

where the band index i ≡ {1,2} and pseudospin index σ ≡
{↑ , ↓} correspond, respectively, to four-way superpositions
of atoms in two different orbital states {g,e} with two possible
nuclear-spin projections {⇑ , ⇓}. As summarized in Fig. 1,
the i = 1 and 2 bands refer, respectively, to the atoms in the
open and closed channels. The operator c

†
iσk creates a single

σ particle in band i with momentum k and dispersion ξik =
εk − μi, where εk = k2/(2m) is the energy of a free particle
(in units of � = 1) and the energy shift (i.e., the detuning
parameter δ � 0) is incorporated into the effective chemical
potentials as μ1 = μ and μ2 = μ − δ/2.

Since the density-density interactions are typically short-
ranged in atomic systems, the zero-ranged interactions ac-
counted for by the second term in Eq. (1) may be sufficient for
our purposes, where the operator b

†
iq = ∑

k c
†
i↑,k+q/2c

†
i↓,−k+q/2
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FIG. 1. Coupling between 173Yb atoms in two orbital states (g
and e) with two nuclear-spin projections (⇑ and ⇓) can effectively
be described as a pseudo-spin-1/2 (↑ and ↓) Fermi gas with two
nondegenerate bands (1 and 2). Here, the band offset δ/2 is a tunable
parameter, and the Fermi energy εF is the energy scale used in
numerics.

creates pairs of ↑ and ↓ particles in band i with center-of-mass
momentum q. While the intraband interactions turned out to
be attractive with equal amplitudes V11=V22 = (g− + g+)/2
� 0, the interband interaction V12 = V21 = (g− − g+)/2 may
be attractive (positive) or repulsive (negative) depending on
the particular species of atom at hand. Here, g± � 0 are the
amplitudes for the bare atom-atom attractions in the singlet-
triplet (antisymmetric-symmetric) superpositions of the orbital
degrees of freedom, and they are related to the corresponding
scattering lengths as± via the usual renormalization relations
1/g± = −m�/(4πas±) + ∑

k m/k2. Here, � is the volume,
and even though both g± and Vij depend explicitly on the
particular value of cutoff (k0) used in k-space integrals, our
many-body results given below are independent of k0 as long as
k0 → ∞ is chosen sufficiently high. Therefore, since V12 ≷ 0
for 1/as− ≷ 1/as+, we note that V12 is positive for a 173Yb
Fermi gas where as+ ≈ 1900a0 and as− ≈ 200a0 with a0 the
Bohr radius [10,11].

Two-body bound states in vacuum. It has recently been
shown that the two-body s-wave scattering length between
two open-channel alkaline-earth atoms is given by [9], as =
as2 + √

mδa2
s1/(1 − as2

√
mδ), where as2(1) = (as− ± as+)/2.

This shows that as changes from as2 to as+as−/as2 as δ

increases from 0 to ∞, with an intermediate divergence
at δres = 1/(ma2

s2) when the conditions as2 > 0 and as1 �=
0 are both satisfied, and an intermediate zero crossing at
δ0 = 1/[m(as2 − a2

s1/as2)2] when the condition as2 > |as1| is
satisfied. Note that since as = a2

s1/(as20±) as δ → δ∓
res, there

are two possible scenarios when as2 > 0 and as1 �= 0. In the
first-case scenario, if both as+ and as− are positive, then
increasing δ first increases as from as2 to +∞ and then from
−∞ to as+as−/as2 > 0 with an intermediate zero crossing
at δ0 > δres. This is the case for a 173Yb Fermi gas for which
as2 > |as1| > 0. In the second-case scenario, if only one of as±
is negative in such a way that 0 < as2 < |as1| then increasing
δ first increases as from as2 to +∞ and then from −∞ to
as+as−/as2 < 0 without an intermediate zero crossing.

It is well-known that a two-body bound state in vacuum
is characterized by as > 0 with binding energy εb = 1/(ma2

s ).

This suggests that increasing δ from 0 to δ−
res gradually weakens

the binding of atoms as as increases from as2 to +∞, beyond
which the divergence of as → −∞ as δ → δ+

res signifies the
complete unbinding of atoms, i.e., the disappearance of the
two-body bound state. In addition, since as → as2 not only
in the δ → 0 but also in the as1 → 0 limit, the conditions
δ > 0, as1 �= 0, and as2 > 0 are all essential requirements for
realizing an orbital Feshbach resonance. For instance, it turns
out that a 173Yb Fermi gas with as+ 
 as− 
 a0 requires such
a low δres threshold that it has recently allowed for the very
first creation of such a resonance shortly after its theoretical
prediction [9–12]. Even though two-body bound states are not
allowed in the open channel when as � 0 (or equivalently δ �
δres), many-body bound states may still prevail in the ground
state as Cooper pairs, which is discussed next.

Mean-field theory. Motivated by the well-documented
success of the simplest BCS-BEC crossover approach
developed for one-band Fermi gases across a magnetic
Feshbach resonance [3], here we introduce a BCS-like
intraband order parameter �i = −∑

j Vij 〈bj0〉 for each band,
where 〈· · · 〉 is a thermal average within the mean-field pairing
approximation. Therefore, the complex parameters �1 and �2

are uniform in space since we set q = 0, and they in general
need to be determined together with the corresponding
number equations Ni = ∑

σk〈c†iσkciσk〉. After some
straightforward algebra, the grand potential becomes [26]
�mf = ∑

ik[ξik − Eik − 2T ln(1 + e−Eik/T )] + (V22|�1|2 +
V11|�2|2 − V12�

∗
1�2 − V21�

∗
2�1)/(V11V22 − V12V21), and

the resultant self-consistency equations can be compactly
written as

�i =
∑
jk

Vij

�j

2Ejk
tanh

(
Ejk

2T

)
, (2)

Ni =
∑

k

[
1 − ξik

Eik
tanh

(
Eik

2T

)]
, (3)

where Eik =
√

ξ 2
ik + |�i |2 is the energy of the quasiparticle

excitations in the ith band, T is the temperature, and the
Boltzmann constant kB is set to unity. The set of coupled
equations given above is the generalization of the usual
one-band crossover approach to the case of multiband sys-
tems, and we hope that this description remain sufficient
in understanding (at least qualitatively) some of the low-
T properties of alkaline-earth-metal Fermi gases across an
orbital Feshbach resonance in the entire parameter regime of
interest.

In addition to the trivial (�1 = �2 = 0) one, Eq. (2) allows
for two nontrivial solutions with �i = |�i |eiϕi , such that
the grand potential is minimized or maximized either by the
in-phase (ϕ1 = ϕ2) or the out-of-phase (ϕ1=ϕ2 + π ) one de-
pending on whether the Josephson-type coupling V12 = V21 is
positive or negative as long as the stability condition V11V22 >

V12V21 manifests. As discussed below, the so-called π -phase
solution is directly associated with the recently realized orbital
Feshbach resonance in a 173Yb Fermi gas [10,11]. Thus, the
sign of the interband coupling determines the relative phases of
the stable (ground state) and unstable (excited state) solutions
for a generic two-band model. In contrast to the relative phase,
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the overall phase ϕ1 + ϕ2 is not a physical observable, and its
random value is chosen spontaneously at a given realization.
Note that the V12 = V21 = 0 limit is not entirely trivial because
while ϕ1 and ϕ2 are completely uncoupled, i.e., they are not
physical observables, |�1| and |�2| are still coupled when
δ �= 0 even in the V11 = V22 case considered in this Rapid
Communication. In addition, while μ is varied in such a way to
fix the overall number of particles N = N1 + N2 at a particular
value (see the section on numerical results), the relative band
population is determined self-consistently for a given δ.

Analytical limits. It is desirable to gain intuitive understand-
ing of the analytically tractable limits as much as possible
before going through the cumbersome details of the fully
numerical calculations. For instance, we reach the following
conclusions by simply analyzing the general structure of
Eq. (2).

(1) g± → 0 or equivalently 1/as± → −∞ limit. This
leads to a unique in-phase/out-of-phase solution with |�1| =
|�2| determined by 1 = g∓

∑
ik tanh [Eik/(2T )]/(4Eik).

(2) g+ → g− = g or equivalently as+ = as− limit. Since
V12 = V21 = 0 in this limit, ϕ1 and ϕ2 are not physical
observables, and the nontrivial values for |�1| and |�2|
are determined by 1 = g

∑
k tanh [Eik/(2T )]/(2Eik). This

suggests that either |�2| (ground state) or |�1| (excited state)
vanishes unless δ ≈ 0, in such a way that the particles gradually
transfer from the upper (lower) to the lower (upper) band with
increasing g in the ground (excited) state.

(3) δ → 0 limit. Since V11 = V22 in this Rapid Communi-
cation, the degenerate bands become completely symmetric
in this limit, giving rise to |�1| = |�2| and E1k = E2k =
Ek. This leads to a unique in-phase/out-of-phase solution
for g∓ > g± (or equivalently 1/as∓ > 1/as±), where 1 =
g∓

∑
k tanh [Ek/(2T )]/(2Ek).

(4) δ → ∞ limit. If |�1(2)| 
 |�2(1)| then we obtain
�2(1)/�1(2) = (g∓ − g±)/(g− + g+). This leads to a unique
in-phase (out-of-phase) / out-of-phase (in-phase) solution for
g∓ > g±. It is clear that these limits are relevant in the
neighborhood of g+ ≈ g− (or equivalently as+ ≈ as−).

(5) �1(2) �= 0 but �2(1) = 0 limit. This requires g+ = g− =
g with 1 = g

∑
k tanh [E1(2)k/(2T )]/(2E1(2)k), in agreement

with the previous limits discussed above.
These analyses clearly show that the allowed nontrivial

solutions are unique only in some special limits, and we
rely heavily on these analytical limits while characterizing
the numerically obtained results in general, as thoroughly
discussed next.

Numerical results. In order to obtain cutoff-independent
results for |�1|, |�2|, and μ, we solve the self-consistency
Eqs. (2) and (3) with a large k-space cutoff k0 = 100kF ,
where the Fermi momentum kF determines the overall density
of particles via the usual free-particle relation n = N/� =
k3
F /(3π2), written for the lowest band. The corresponding

Fermi energy εF = k2
F /(2m) is assumed to be less than δ/2

as illustrated in Fig. 1. Since we iterate μ to keep N fixed at
this value in all of our numerical calculations, here we present
only the relative population |N1 − N2|/N .

In Fig. 2, we show |�1|, |�2|, and |N1 − N2|/N for
the scattering parameters as± of a 173Yb Fermi gas [10,11].
Depending on the local density of a given experimental
setup, one can easily extract the relevant local parameters

FIG. 2. 173Yb Fermi gas. The colored maps of the magnitudes of
the intraband order parameters |�1|/εF (top) and |�2|/εF (middle)
as well as the relative band population |N1 − N2|/N (bottom) are
shown for as+ ≈ 1900a0 and as− ≈ 200a0. The left and right panels
correspond, respectively, to the in-phase and out-of-phase solutions
discussed in the text. In addition, δ = δres (purple), δ = 2δres (green),
and δ = δ0 (light blue) contours are explicitly shown.

from this figure. For instance, typical atomic systems have
densities of order n ≈ 1014 cm−3, corresponding to the dimen-
sionless parameters 1/(kF as+) ≈ 0.69, 1/(kF as−) ≈ 6.58, and
δres/εF ≈ 3.14. At resonance, we find �1 ≈ 2.55εF , �2 ≈
2.51εF , μ ≈ −46εF , and N1 − N2 = 0.027N for the in-phase
(ground-state) solution, and �1 ≈ 0.65εF , �2 ≈ −0.76εF ,
μ ≈ 0.34εF , and N1 − N2 = 0.41N for the out-of-phase
(excited-state) solution. Away from the resonance, Fig. 2
clearly shows that while the latter solution depends strongly
on δ, the former solution does not. For instance, when
δ = 2δres, we find �1 ≈ 2.57εF , �2 ≈ 2.48εF , μ ≈ −46εF ,
and N1 − N2 = 0.053N for the in-phase solution, and �1 ≈
0.38εF , �2 ≈ −0.53εF , μ ≈ 0.79εF , and N1 − N2 = 0.79N

for the out-of-phase solution. This suggests that the excited-
state solution is driven mainly by the orbital Feshbach
resonance.

To further support this inference, we note that if as± >

as∓ > 0 then the antisymmetric and symmetric superpositions
of the order parameters �± = (�2 ∓ �1)/2 are associated,
respectively, with the shallow (as±) and deep (as∓) two-body
bound states. In addition, since the shallow one is solely
responsible for the orbital Feshbach resonance, these bound
states correspond, respectively, to the excited- and ground-state
solutions discussed above. In contrast, if only one of as± is
positive then the corresponding bound state as±, and hence
the combination �±, is associated with the orbital Feshbach
resonance as long as as2 > 0. Thus, as a rule of thumb,
we conclude that the formation of bound states across an
orbital Feshbach resonance is associated with the max |�±|
superposition whenever as± > |as∓|, i.e., the out-of-phase/in-
phase solution. This analysis again suggests that it is the
excited-state (out-of-phase) solution that is predominantly
characterized by the orbital Feshbach resonance in a 173Yb
Fermi gas.

011604-3



RAPID COMMUNICATIONS

M. ISKIN PHYSICAL REVIEW A 94, 011604(R) (2016)

FIG. 3. Resonant Fermi gas. The colored maps of the magnitudes
|�1|/εF (top), |�2|/εF (middle) and |N1 − N2|/N (bottom) are
shown for δ = 1/(ma2

s2), so that the gas is at resonance in the
regions with as+ + as− > 0. The left (right) panel corresponds to the
in-phase/out-of-phase (out-of-phase/in-phase) solution depending on
1/as− ≷ 1/as+.

In Fig. 3, we show |�1|, |�2|, and |N1 − N2|/N for
a generic Fermi gas with arbitrary as± values when δ =
1/(ma2

s2). Since a wide range of parameter regions satisfying
the condition as2 > 0 correspond to a resonant Fermi gas in

general, this figure may serve as a first-hand guide for future
experiments with other species of alkaline-earth-metal atoms.
In particular, we find that the excited-state (ground-state) so-
lution strengthens (weakens) as as+ → as− > 0, in agreement
with our analytical analyses given above, suggesting that the
alkaline-earth-metal Fermi gases with as+ ≈ as− > 0 are best
candidates for investigating many-body phenomena across an
orbital Feshbach resonance [27].

Conclusions. To conclude, there is arguably no doubt
that the exact analogy between the Hamiltonian of alkaline-
earth-metal Fermi gases across an orbital Feshbach resonance
[9,13] and of two-band s-wave superconductors with contact
interactions [18] opens yet a new frontier for studying exotic
condensed-matter phenomena in atomic systems. In particular,
the key role played by the interband pair scattering between
two intrapaired bands is played in atomic systems by the
intraorbital scattering lengths between the open and closed
channels, and the physics is similar in many ways to intrinsic
Josephson effect between two condensates [26,28]. This
makes atomic settings an ideal test bed for studying the
competition between the in-phase and out-of-phase solutions
of the superfluid order parameters and their fluctuations. For
instance, in addition to the familiar phonon-like in-phase
fluctuations of the relative phase, i.e., the massless Goldstone
mode, it may be possible to study the long-sought exciton-like
out-of-phase fluctuations of the relative phase, i.e., the massive
Leggett mode [19,22,29,30].
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