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Evolution from BCS to BEC Superfluidity in p-Wave Fermi Gases
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We consider the evolution of superfluid properties of a three-dimensional p-wave Fermi gas from a
weak coupling Bardeen-Cooper-Schrieffer (BCS) to strong coupling Bose-Einstein condensation (BEC)
limit as a function of scattering volume. At zero temperature, we show that a quantum phase transition
occurs for p-wave systems, unlike the s-wave case where the BCS to BEC evolution is just a crossover.
Near the critical temperature, we derive a time-dependent Ginzburg-Landau (GL) theory and show that the
GL coherence length is generally anisotropic due to the p-wave nature of the order parameter, and
becomes isotropic only in the BEC limit.
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Arguably the next frontier of research in ultracold Fermi
systems is the search for superfluidity in higher angular
momentum states. Substantial experimental progress has
been made recently [1–5] in connection to p-wave cold
Fermi gases, making them ideal candidates for the obser-
vation of novel triplet superfluid phases. These phases may
be present not only in atomic but also in nuclear (pairing in
nuclei), astrophysics (neutron stars), and condensed matter
(organic superconductors) systems.

The tuning of p-wave interactions in ultracold Fermi
gases was initially explored via p-wave Feshbach reso-
nances in trap geometries for 40K [1,2] and 6Li [3,4].
Finding and sweeping through these resonances is difficult
since they are much narrower than the s-wave (‘ � 0)
case, because atoms interacting via higher angular momen-
tum channels (‘ � 0) have to tunnel through a centrifugal
barrier to couple to the bound state [2]. Furthermore, while
losses due to two-body dipolar [3,6] or three-body [1,2]
processes challenged earlier p-wave experiments, these
losses were still present but were less dramatic in the
very recent optical lattice experiment involving 40K and
p-wave Feshbach resonances [5].

For a dilute 40K Fermi gas, the magnetic dipole-dipole
interactions between valence electrons split p-wave (‘ �
1) Feshbach resonances that belong to different m‘ states
[2]. Therefore, the ground state is highly dependent on the
detuning and separation of these resonances, and possible
p-wave superfluid phases can be studied from the Bardeen-
Cooper-Schrieffer (BCS) to the Bose-Einstein condensa-
tion (BEC) regime. For instance, it has been proposed [7,8]
for sufficiently large splittings that pairing occurs only in
m‘ � 0 and does not occur in them‘ � �1 state, while for
small splittings, pairing occurs via a linear combination of
the m‘ � 0 and m‘ � �1 states. Thus, these resonances
may be tuned and studied independently if the splitting is
large enough in comparison to the experimental resolution.

The BCS to BEC evolution in p-wave systems was
recently discussed at T � 0 for a two-hyperfine state
(THS) [9] in three dimensions (3D), and for a single-
hyperfine state (SHS) [10,11] in two dimensions, using
fermion-only models. Furthermore, fermion-boson models
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were proposed to describe p-wave superfluidity at zero
[7,8] and finite temperature [12] in three dimensions.
Unlike the previous models, we present a zero and finite
temperature analysis of a SHS Fermi gas in 3D within a
fermion-only description, where molecules naturally ap-
pear as bound states of two-fermions. The main results of
our Letter are as follows: (a) the BCS to BEC evolution in
p-wave systems requires a new length scale in addition to
the scattering volume, while in s-wave systems only the
scattering length is sufficient; (b) a quantum phase tran-
sition occurs as a function of scattering volume in contrast
with the s-wave case, where the BCS to BEC evolution is
a crossover; (c) the time-dependent Ginzburg-Landau
(TDGL) theory has anisotropic coherence lengths which
become isotropic only in the BEC limit, in sharp contrast to
the s-wave case, where the coherence length is isotropic
for all couplings.

We start with the Hamiltonian (@ � 1)

H �
X
k

��k�ayk;"ak;" �
1

2

X
k;k0;q

Vp�k;k0�b
y
k;qbk0;q; (1)

for a dilute SHS p-wave Fermi gas in 3D, where the
pseudospin " labels the hyperfine state represented by the
creation operator ayk;", and byk;q � ayk�q=2;"a

y
�k�q=2;". Here,

��k� � ��k� ��, where ��k� � k2=�2M� is the energy of
the fermions and� is the chemical potential. The attractive
interaction can be written in a separable form as
Vp�k;k0� � �4�g���k���k0� where g > 0, and ��k� �
�kk0�=�k2 � k2

0�Y1;0�k̂� is a symmetry factor for them‘ � 0
(pz) state. In addition, k0 � R

�1
0 sets the momentum scale,

where R0 is the interaction range in real space.
Furthermore, the diluteness condition (nR3

0 	 1) requires
�k0=kF�

3 
 1, where n is the density of atoms and kF is the
Fermi momentum.

The Gaussian effective action for H is

SGauss � S0 �
�
2

X
q

��y�q�F�1�q� ���q�; (2)

where q � �q; v‘� with bosonic Matsubara frequency
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FIG. 1. Plots of reduced (a) order parameter amplitude �r �
�0=�F and chemical potential �r � �=�F, and (b) average
Cooper pair size kF�pair at T � 0 and GL coherence length
kF�

zz
GL at T � Tc in a logarithmic scale versus 1=�k3

Fap�.

FIG. 2 (color online). Contour plots of momentum distribution
n0�kx � 0; ky; kz� in (a) BCS side ��> 0� for 1=�k3

Fap� � �1
and (b) BEC side ��< 0� for 1=�k3

Fap� � 1 versus momentum
ky=kF and kz=kF.
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v‘ � 2‘�=�. Here, the vector ��y�q� � ��y�q�;���q��
is the order parameter fluctuation field, and the matrix
F�1�q� is the inverse fluctuation propagator. The saddle
point action is S0 � �j�0j

2=�8�g� �
P
p����k�=2�

Tr ln��G�1
0 =2��, where � � 1=T and the inverse Nambu

propagator is G�1
0 � iw‘�0���k��3���0��k��� �

���k��0��. The fluctuation term in the action leads to a
correction to the thermodynamic potential, which can be
written as �Gauss � �0 ��fluct with �0 � S0=� and
�fluct � ��1P

q ln det�F�1�q�=�2���.
The saddle point condition �S0=���0 � 0 leads to an

equation for the order parameter

1

4�g
�
X
k

j��k�j2

2E�k�
tanh

�E�k�
2

; (3)

where E�k� � ��2�k� � j��k�j2�1=2 is the quasiparticle
energy, and ��k� � �0��k� is the order parameter. For
the p-wave channel, the scattering amplitude [9] f�k� �
k2=��1=ap � rpk

2 � ik3� depends on two parameters (ap
is the scattering volume, and rp has dimensions of inverse
length), instead of only one parameter as in the s-wave case
[13]. Using f�k�, we can eliminate g in favor of ap via the
relation

1

4�g
� �

MV

16�2apk
2
0

�
X
k

j��k�j2

2��k�
; (4)

where V is the volume. Thus, all superfluid properties
depend on ap and rp (or k0) as discussed next.

The order parameter equation has to be solved self-
consistently with the number equation N � �@�=@�
which leads to two contributions N � N0 � Nfluct. N0 �
�@�0=@� is the saddle point number equation given by

N0 �
X
k

n0�k�; n0�k� �
1

2
�

��k�
2E�k�

tanh
�E�k�

2
;

(5)

where n0�k� is the momentum distribution. Similarly,
Nfluct � �@�fluct=@� is the fluctuation contribution
to N given by Nfluct � ���1P

qf@�detF�1�q��=@�g=
detF�1�q�.

For T 
 0, Nfluct is small ( / T4) compared to N0 [13]
for any interaction strength leading toN 
 N0. In Fig. 1(a),
we plot �r � �0=�F and �r � �=�F at T � 0 as a func-
tion of 1=�k3

Fap�, where �F � k2
F=�2M� is the Fermi en-

ergy. Here, we choose k0 
 200kF. Notice that the BCS to
BEC evolution range in 1=�k3

Fap� is �k0=kF. The weak
coupling � � �F changes continuously to the strong cou-
pling � � �1=�Mk0ap� when k3

0ap 
 1. In strong cou-
pling, ap has to be larger than ap > 2=k3

0 for the order
parameter equation to have a solution with �< 0, which
reflects the Pauli exclusion principle. In addition, the weak
coupling �0 � 24�k0=kF��F exp��8=3� �k0=�4kF� �
�=�2k3

Fjapj�� evolves continuously to a constant �0 �
04040
8�F��0=�9�F��
1=4 in strong coupling, where �0 �

k2
0=�2M�. The evolution of �0 and � are qualitatively

similar to recent T � 0 results for THS fermion [9] and
SHS fermion-boson [8] models. Because of the angular
dependence of ��k�, the quasiparticle spectrum E�k� is
gapless [minE�k� � 0] for �> 0, and fully gapped
[ minE�k� � j�j] for �< 0. Furthermore, both �0 and
� are nonanalytic exactly when � crosses the bottom of
the fermion energy band � � 0 at 1=�k3

Fap� 
 0:5. The
nonanalyticity does not occur in the first derivative of �0 or
� as it is the case in two dimensions [10], but occurs in the
second and higher derivatives. Therefore, the evolution
from BCS to BEC is not a crossover as in the s-wave
case [13]; instead a topological gapless to gapped quantum
phase transition [7,10] occurs when � � 0.

In Fig. 2, we show the momentum distribution n0�kx �
0; ky; kz� in the BCS side (�> 0) for 1=k3

Fap � �1 and in
the BEC side (�< 0) for 1=k3

Fap � 1. When kz=kF � 0,
n0�kx � 0; ky; kz� is largest in the BCS side, but it vanishes
along kz=kF � 0 in the BEC side. As the interaction in-
creases the Fermi sea with locus ��k� � 0 is suppressed,
and pairs of atoms with opposite momenta become more
tightly bound. As a result, the large momentum distribution
in the vicinity of k � 0 splits into two peaks around finite
k, reflecting the p-wave symmetry of these tightly bound
states. Thus, n0�k� for the p-wave case has a major re-
2-2
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FIG. 3. Plots of reduced (a) critical temperature Tr � Tc=�F
and chemical potential �r � �=�F (inset), and (b) fraction of
unbound F0 � N0=N, scattering Fsc � Nsc=N, and bound Fbs �
Nbs=N fermions at T � Tc versus 1=�k3

Fap�.
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arrangement in k space with increasing interaction, in
sharp contrast to the s-wave case, where n0�k� broadens
without qualitative changes [13]. This qualitative differ-
ence between p-wave and s-wave symmetries around
k � 0 explicitly shows a direct measurable consequence
of the gapless to gapped quantum phase transition when
� � 0, since n0�k� depends explicitly on E�k�. Notice that
n0�kx; ky; kz � 0� � f1� sgn���k��g=2 for any�, and that
n0�kx; ky � 0; kz� is trivially obtained from n0�kx �
0; ky; kz�, since n0�k� is symmetric in kx; ky.

Next we discuss p-wave superfluidity near Tc. For T �
Tc (�0 � 0), N0 �

P
knF���k�� corresponds to the num-

ber of unbound fermions. Here, nF�w� � 1=�exp��w� � 1�
is the Fermi distribution. The fluctuation contributionNfluct

is obtained as follows. The matrix F�1�q� can be simplified
to yield

L�1�q� �
1

4�g
�
X
k

1� nF���� � nF����
�� � �� � iv‘

j��k�j2; (6)

which is the generalization of the s-wave case [13]. Here,
L�1�q� � F�1

11 �q�, and �� � ��k� q=2�. The resulting
action then leads to the thermodynamic potential �Gauss �
�0 ��fluct, where �fluct � ���1P

q ln��L�q��.
The branch cut (scattering) contribution �sc to �fluct is

obtained by writing �L�q� in terms of the phase shift
��q; w� � arg��L�q; w� i0���, leading to �sc �

���1P
q
R
1
w�q
nB�w�~��q; w�dw, where w�q � jqj2=�4M� �

2� and ~��q; w� � ��q; w� � ��q; 0�. Here, nB�w� �
1=�exp��w� � 1� is the Bose distribution. For each q, the
integral contributes only for w> w�q, since ��q; w� � 0
otherwise. Thus, the branch cut contribution to the number
equation Nsc � �@�sc=@� is given by

Nsc �
1

�

X
q

Z 1
0

�
@nB� ~w�
@�

� nB� ~w�
@
@�

�
~��q; ~w�dw; (7)

where ~w � w� w�q.
When ap < 0, there are no bound states above Tc and

Nsc represents the correction due to scattering states. On
the other hand, when ap > 0, there may also be bound
states in the two-fermion spectrum, represented by poles
with w<w�q. For arbitrary 1=�k3

Fap�, the evaluation of the
pole (bound state) contribution Nbs requires heavy nu-
merics. However, in strong coupling,

Nbs � 2
X

q
nB�wq ��B�; (8)

where wq � jqj2=�4M� and �B � �Eb � 2�. Here, we
use 1=�4�g� �

P
kj��k�j

2=�2��k� � Eb� to express
Eq. (8) in terms of binding energy Eb < 0. Notice
that the expression for Nbs given above is good only
for couplings where �B < 0. Thus, our results for
k0 
 200kF are not strictly valid when 0< 1=�k3

Fap�<
1=�k3

Fa
�
p� � 5, where a�p corresponds to �B � 0.
04040
Therefore, in this region we interpolate. The binding en-
ergy in the BEC regime is Eb � �2=�Mk0ap� (when
k3

0ap 
 1). This result is consistent with a T-matrix
calculation [9], where Eb � 1=�Maprp� with rp �
�2=�k2

0ap� � �k
2
0=�4M

2V�
P

kj��k�j2=�2�k�. This leads
to rp � �k0=2 (when k3

0ap 
 1), indicating that both
approaches produce the same result.

To obtain the evolution from BCS to BEC, we solve
numerically the number N � N0 � Nsc � Nbs and order
parameter equations. In Fig. 3(a), we plot Tr � Tc=�F
and �r � �=�F as a function of 1=�k3

Fap�. The weak
coupling Tc � �8=���F exp��� 8=3� �k0=�4kF� �
�=�2k3

Fjapj�� evolves continuously to the dilute Bose gas
Tc � 2��2nB=	�3=2��2=3=MB � 0:137�F in the BEC re-
gime, where � 
 0:577 is the Euler’s constant and
nB � n=2 � k3

F=�12�2� is the density and MB � 2M is
the mass of the bosons. However, the saddle point T0 


Eb=�2 ln�Eb=�F�
3=2� increases with 1=�k3

Fap�, and is a
measure of the pair dissociation temperature [13]. Notice
that the ratio of ~��kF�=Tc � �0�k�kF�=Tc in the BCS limit
is 3�=e�. The hump in the intermediate regime is similar
to the one observed in a fermion-boson model [12].
Furthermore, similar humps were also calculated in the
s-wave case [13]; however, a fully self-consistent numeri-
cal approach may be required to determine whether these
humps are physical.

The weak coupling � � �F evolves continuously to the
strong coupling� � �1=�Mk0ap� (when k3

0ap 
 1) lead-
ing to � � Eb=2. Notice that � crosses the bottom of the
band at 1=�k3

Fap� 
 0:5, i.e., after the two-body bound
state threshold 1=�k3

Fap� � 0 is reached. The evolution of
� at T � 0 (Fig. 1) and T � Tc (Fig. 3) is similar, but very
different from the s-wave case [13]. However, another
result for � versus 1=�k3

Fap� at T � Tc (much like the
s-wave case) was obtained in Ref. [12] using a fermion-
boson model. In Fig. 3(b), we also plot the fractions
of unbound (F0 � N0=N), scattering (Fsc � Nsc=N), and
bound (Fbs � Nbs=N) fermions as a function of 1=�k3

Fap�.
2-3
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While N0 (Nbs) dominates in weak (strong) coupling, Nsc is
dominant at the intermediate regime.

Next, for the SHS with pz symmetry near Tc, we obtain
the TDGL equation [13]�

a� bj��x�j2 �
X
i;j

cij
2M
rirj � id

@
@t

�
��x� � 0 (9)

in the real space x � �x; t� representation. For gen-
eral p-wave THS states, additional gradient terms may
exist [14]. The time-independent expansion coefficients
are given by a � 1=�4�g� �

P
kXj��k�j2=�2��k��, and

cij �
P

kfX�ij=�8�
2�k�� ��Y�ij=�16��k�� ��2XYkikj=

�16M��k��gj��k�j2, where �ij is the Kronecker delta,
X � tanh����k�=2�, and Y � sech2����k�=2�. Notice
that cij is a tensor due to the anisotropy of the
order parameter, which is in sharp contrast to the s-wave
case [13]. The coefficient of the nonlinear term is
b �

P
kfX=�4�

3�k�� � �Y=�8�2�k��gj��k�j4. The time-
dependent coefficient has real and imaginary parts and is
given by d�

P
kXj��k�j

2=�4�2�k��� i�N��F��3=2����=
�32�0�

1=2
F �, where ���� is the Heaviside function. As the

coupling grows, the coefficient of the propagating term
(Re�d�) increases, while the damping term (Im�d�) de-
creases until it vanishes for � � 0, indicating an un-
damped dynamics for ��x�.

In weak coupling (� � �F), we find a � 
w ln�T=Tc�,
b � 2
w�F	�3�=�5�T

2
c�0�, cxx � cyy � czz=3 �

7
w�F	�3�=�20�2T2
c �, ci�j � 0, and d � 
w�1=�4�F� �

i�=�8Tc��, where 
w � �FN��F�=�4��0� and 	�x� is
the zeta function. By rescaling the order parame-
ter �w�x� �

������������
b=
w

p
��x�, one obtains the anisotropic

TDGL equation ���w � j�wj
2�w �

P
i��

ii
GL�

2r2
i�w �

�GL@t�w � 0 with characteristic lengths �2
ii �

cii=�2Ma� � ��iiGL�
2=� and time � � �id=a � �GL=�

scale. Here, � � �Tc � T�=Tc with j�j 	 1, kF�xxGL �

kF�
yy
GL � kF�

zz
GL=3 �

����������������������������
7	�3�=�20�2�

p
��F=Tc�, and �GL �

�i=�4�F� � �=�8Tc� are typical BCS results [14]. The
system is overdamped since Tc 	 �F reflecting the pres-
ence of two-fermion continuum states into which Cooper
pairs can decay.

In strong coupling (�0 
 j�j 
 Tc), we find a �

s�2j�j � jEbj�=8, b � 9
s=�256��0�, cij � 
s�ij=16,
and d � 
s=8, where 
s � N��F�=�4

����������
�F�0
p

�. By rescaling
the order parameter �s�x� �

���
d
p

��x�, one obtains the
conventional Gross-Pitaevskii equation for a dilute gas of
bosons �B�s �UBj�sj

2�s �r
2�s=�2MB� � i@t�s �

0 with bosonic chemical potential �B � �a=d � 2��
Eb, mass MB � Md=cii � 2M, and repulsive interactions
UB � b=d2 � 18�=�Mk0�. In this regime, kF�

ii
GL �

��k0=�36kF��
1=2 is independent of ap and is infinitely large

when k0=kF ! 1.
The evolution of �iiGL follows from ��iiGL�

2 �
cii=�2MTc�@a=@T��, where @a=@T �

P
k�Y=�4T

2� �
04040
�@�=@T�fY=�4T��k�� � X=�2�2�k��g�j��k�j2. Notice
that @�=@T vanishes in weak coupling, while it plays
an important role in strong coupling. The evaluation
of @�=@T for intermediate coupling is very difficult,
thus an interpolation for �zzGL connecting the weak
and strong coupling regimes is shown in Fig. 1(b). While
�iiGL representing the phase coherence length is large
compared to interparticle spacing in both BCS and BEC
limits, it has a minimum in the unitarity region 1=�k3

Fap� 

0. In contrast, the average Cooper pair size �2

pair �

�h �k�jr2
kj �k�i=h �k�j �k�i, is a decreasing function

of interaction, where  �k� � ��k�=�2E�k�� is the T � 0
pair wave function. The limiting value of �pair in strong
coupling is controlled by kF=k0. Furthermore, �pair is non-
analytic when � � 0, which is associated with the change
in E�k� from gapless (with line nodes) in the BCS to fully
gapped in the BEC side.

In summary, we presented a zero and finite temperature
analysis of a single-hyperfine state p-wave Fermi gas in 3D
within a fermion-only description, where molecules natu-
rally appear as bound states of two-fermions. Our main
conclusions are as follows. First, the BCS to BEC evolu-
tion in p-wave systems requires another length scale in
addition to the scattering volume, while in s-wave systems
just the scattering length is sufficient. Second, a quantum
phase transition occurs as a function of scattering volume,
in contrast with the s-wave case, where the BCS to BEC
evolution is a crossover. Third, the p-wave Ginzburg-
Landau theory contains anisotropic coherence lengths be-
coming isotropic only in the BEC limit, in sharp contrast to
the s-wave case, where the coherence length is isotropic
for all couplings.
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