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Time-of-flight images of Mott insulators in the Hofstadter-Bose-Hubbard model
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We analyze the momentum distribution function and its artificial-gauge-field dependence for the Mott insulator
phases of the Hofstadter-Bose-Hubbard model. By benchmarking the results of the random-phase approximation
approach against those of the strong-coupling expansion for the Landau and symmetric gauges, we find
pronounced corrections to the former results, which is a clear manifestation of the critical role played by
quantum fluctuations in two dimensions.

DOI: 10.1103/PhysRevA.92.023636 PACS number(s): 03.75.Hh, 67.85.Hj

I. INTRODUCTION

The momentum distribution function n(k) of atoms, which
is defined as the Fourier transform of the one-body density
matrix, can be directly measured in cold-atom systems by
time-of-flight absorption imaging of freely expanding gas
[1–3]. Since these systems are extremely dilute, the atom-atom
interactions are negligible during such an expansion, and the
position of atoms at time τ are strongly correlated with their
velocity distribution at the moment of release from the trap,
i.e., r = �kτ/m, with � the Planck constant and m the atomic
mass. Therefore, the n(k) of atoms has not only been the easiest
observable to measure but also been routinely used for probing
distinct phases of matter in atomic systems.

In addition, followed by the recent advances in creating
artificial gauge fields in atomic systems [4,5], there has been
growing interest in first the realization of the Hofstadter-type
lattice Hamiltonians and then the detection of the resultant
many-body phases [6–10]. For instance, the MIT group has in
their latest report measured the n(k) of atoms in the superfluid
(SF) phase [10], revealing both the reduced symmetry of their
specific gauge field and the resultant degeneracy of the ground
state [11]. There is no doubt that such a capacity to tune strong
gauge fields together with strong interactions paves ultimately
the way for creating and observing uncharted many-body
phases and transitions in between, one of the immediate
candidates of which is the renowned SF-MI transition [1,2].

Motivated by these recent works, in this paper, we study
n(k) of atoms for the MI phases of the Hofstadter-Bose-
Hubbard model on a square lattice. For this purpose, we
compare the results of RPA and SCE approaches for the
Landau and symmetric gauges, and find substantial corrections
to the former results depending strongly on the specified
gauge.

II. HAMILTONIAN AND PHASE DIAGRAM

These results are obtained for the following Hamiltonian

H = −
∑
ij

tij c
†
i cj + U

2

∑
i

n̂i (̂ni − 1) − μ
∑

i

n̂i , (1)

where the hopping parameter tij = t eiθij connects nearest-
neighbor sites with phase factor θij taking the gauge fields
into account, c

†
i (ci) creates (annihilates) a boson on site i,

the boson-boson interaction is on-site and repulsive U � 0,

n̂i = c
†
i ci is the number operator, and μ � 0 is the chemical

potential. In this paper, we compare the results of the usual (1)
no-gauge limit, where θij = 0 for all hoppings, with those of
(2) Landau gauge, where θij = 2πφu for (u,v) to (u,v + 1)
and 0 for (u,v) to (u + 1,v) hoppings, (3) symmetric gauge,
where θij = πφu for (u,v) to (u,v + 1) and −πφv for (u,v)
to (u + 1,v) hoppings, and (4) MIT gauge [10], where θij =
2πφ(u + v) for (u,v) to (u,v + 1) and 0 for (u,v) to (u + 1,v)
hoppings. Here, (u,v) corresponds to the Cartesian coordinates
of site i, and θij are chosen such that the magnetic flux φ = p/q

is the same for all gauges, where p and q are coprime numbers
with p � q.

In the atomic (t = 0) limit, since H commutes with n̂i , the
thermal average ni = 〈̂ni〉 is such that the ground-state energy
is minimized for a given μ, leading to a uniform occupation
(ni = n) of bosons thanks to the translational invariance of H .
When U = 0 and μ = 0, the spectrum of H corresponds to
the celebrated Hofstadter butterfly [12,13]. It is also very well
known that the range of μ about which the ground state is a
MI with an integer occupation n decreases as a function of
increasing t/U , and depending on n and φ, the MIs disappear
at a critical value of t/U , beyond which the system becomes
a SF [14]. For instance, the qualitative phase diagram of H

can be obtained within the mean-field approximation, e.g.,
the decoupling or variational Gutzwiller techniques, leading
to [15–17]

1

εpq
= n + 1

Un − μ
− n

U (n − 1) − μ
(2)

at zero temperature for the MI-SF phase transition boundary,
where n � 0 is an integer number. Here, εpq is the minimal
eigenvalue of the hopping matrix

∑
j (−tij )fj = εpqfi and it

corresponds to the maximal single-particle kinetic energy of
the Hofstadter butterfly, e.g., ε0 = 4t when φ = 0. Since the
effects of θij enter Eq. (2) through its dependence on εpq , the
mean-field phase boundary is clearly independent of the gauge,
which is simply because only the position in the magnetic
Brillouin zone but not the value of εpq depends on the gauge.
However, this is not the case for the SF properties which are
gauge dependent within the mean-field approaches.

In Fig. 1, we show the ground-state phase diagram as a
function of μ, φ = p/q and 4t , which is obtained by solving
Eq. (2) together with the Harper’s equation. Both the symmetry
around p/q = 1/2 and the intriguing structure of the MI-SF
phase transition boundary are due to the dependence of εpq
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FIG. 1. (Color online) Ground-state phase diagram is shown as
a function of chemical potential μ, magnetic flux φ = p/q, and
hopping strength 4t .

on φ [12,13]. In addition, the incompressible (compressible)
MI (SF) phase grows (shrinks) when φ increases from 0,
a consequence of which is due to the localizing effects of
magnetic flux on particles, and all of these results are in
agreement with earlier findings [14–17]. Having introduced
the model Hamiltonian and reviewed its phase diagram, next
we are ready to discuss the momentum distribution of bosons
for the MIs.

III. MOMENTUM DISTRIBUTION

As discussed in the Introduction, the n(k) of atoms
corresponds to the Fourier transform of the one-body density
matrix, and it is given by [18–21]

n(k) = |w(k)|2
M

∑
jj ′

〈c†j ′cj 〉eik·(rj′ −rj), (3)

where M is the number of sites and rj = (ua,va) is the position
of site j with a the lattice spacing. In the following, we set
the Fourier transform of the Wannier function w(k) to 1, since
it depends on the particular optical lattice potential and has
nothing to do with our H .

In this paper, we calculate n(k) for the MIs using two
approaches: (A) RPA [19,20] and (B) SCE in t/U [18,19].
We emphasize that while the result of the RPA approach
corresponds to the exact n(k) only in the limit of infinite
dimensions and zero magnetic flux, the results of the SCE
approach are exact in two dimensions for the specified gauges
up to the given order in t/U .

A. Random-phase approximation

In the RPA approach [19,20], since the thermal averages
of products of operators are replaced by the product of their
thermal averages, the fluctuations are not fully taken into

account. After a lengthy but straightforward algebra, one finds

n
pq

RPA(k) = 1

2q

q−1∑
�=0

ε
pq

� (k) + Ũ√[
ε

pq

� (k)
]2 + 2Ũε

pq

� (k) + U 2
− 1

2
(4)

for a MI with n bosons per site at zero temperature, where
Ũ = U (2n + 1) and ε

pq

� (k) is the energy dispersion of a single
particle in the �th Hofstadter band. Note that the form of
Eq. (4) is exactly the same as the usual Bose-Hubbard model,
i.e., the main difference is a sum over the Hofstadter bands,
and that it has an overall factor of 1/q in comparison to
the one given in Ref. [20]. While the set of ε

pq

� (k) values
depends only on φ and lattice geometry, their corresponding
positions in the first magnetic Brillouin zone, and therefore
n(k), are gauge dependent [20,21]. For instance, n(k) exhibits
q peaks as a function of k, and only the number q but not the
positions are controlled by φ. Note that εpq ≡ max{εpq

� (k)}
in Eq. (2) which is also a gauge-independent quantity as
remarked above. In particular, when φ = 0, a d-dimensional
hypercubic lattice gives rise to a single band with dispersion
ε0(k) = −2t

∑d
ki ,i=1 cos(kia), and it is already established

that n0
RPA(k) becomes exact as d → ∞ while keeping dt

fixed [18,19].
To compare Eq. (4) with our exact results of the SCE

approach derived below, let us expand n
pq

RPA(k) in a power
series up to third order in t/U , leading to

n
pq

RPA(k) = n − 2n(n + 1)

qU

q−1∑
�=0

ε
pq

� (k)

+ 3n(n + 1)(2n + 1)

qU 2

q−1∑
�=0

[
ε

pq

� (k)
]2

− 4n(n + 1)(5n2 + 5n + 1)

qU 3

q−1∑
�=0

[
ε

pq

� (k)
]3

. (5)

For a given φ, the sums over Hofstadter bands can be easily
evaluated for a given gauge by noting

∑q−1
�=0 [εpq

� (k)]s =
Tr{[T pq(k)]s}, where T pq(k) describes the kinetic energy of a
single particle in the first magnetic Brillouin zone.

For instance, T pq(k) is a q × q matrix in the Landau
gauge [12,13]
⎡
⎢⎢⎢⎢⎣

h0 −t eikxa 0 −t e−ikxa

−t e−ikxa h1 −t eikxa 0
0 −t e−ikxa h2

−t eikxa

−t eikxa 0 −t e−ikxa hq−1

⎤
⎥⎥⎥⎥⎦,

(6)

with h� = −2t cos(kya + 2πφ�), for which the
s = 1 trace equals −2t[cos(kxa) + cos(kya)] when
(p,q) = (1,1) and it vanishes for q > 1; the s = 2 trace
equals 4t2[cos(kxa) + cos(kya)]2 when (p,q) = (1,1),
8t2[cos2(kxa) + cos2(kya)] when (p,q) = (1,2) and
4qt2 for q > 2; and lastly the s = 3 trace equals
−8t3[cos(kxa) + cos(kya)]3 when (p,q) = (1,1) and
−6t3[cos(3kxa) + cos(3kya)] when q = 3, but it vanishes for
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q > 3. Thus Eq. (5) reduces to

n11
RPA(k) = n + 4n(n + 1)

(U/t)
[cos(kxa) + cos(kya)] + 12n(n + 1)(2n + 1)

(U/t)2
[cos(kxa) + cos(kya)]2

+ 32n(n + 1)(5n2 + 5n + 1)

(U/t)3
[cos(kxa) + cos(kya)]3, (7)

n12
RPA(k) = n + 6n(n + 1)(2n + 1)

(U/t)2
[cos(2kxa) + cos(2kya) + 2] + O(t/U )4, (8)

n
p3
RPA(k) = n + 12n(n + 1)(2n + 1)

(U/t)2
+ 8n(n + 1)(5n2 + 5n + 1)

(U/t)3
[cos(3kxa) + cos(3kya)], (9)

n
p,q>3
RPA (k) = n + 12n(n + 1)(2n + 1)

(U/t)2
+ O(t/U )4. (10)

Equations (7)–(10) clearly show that the first k dependence of
n

pq

RPA(k) arises at the qth order in t/U . More importantly, we
note that Eqs. (7)–(10) are symmetric in kx and ky even though
the spatial symmetry between x and y directions is explicitly
broken by the Landau gauge. Note also that Eq. (7) coincides
with that of the φ = 0 result since ε

pq

� (k) is a periodic function
of φ with a period of 1 [12,13]. Unlike the φ = 0 case for which
the RPA approach captures the essential features of n0(k) even
in finite dimensions [18,19], next we use the SCE approach
and show that the corrections to n

pq

RPA(k) are quite dramatic in
the presence of gauge fields in two dimensions.

B. Strong-coupling expansion

In the SCE approach [18,19], the wave function of MIs is
achieved via a many-body perturbation theory in the kinetic
energy term up to third order in t/U . In principle, one can apply
the perturbation theory on the zeroth-order wave function
|	(0)

MI〉 = ∏M
j=1 (c†j )

n|0〉/√n!, where |0〉 is the vacuum state,
and calculate |	MI〉 up to any desired order. However, since
the number of intermediate states increases dramatically, here
we perform this expansion only up to third order in t/U , and
obtain |	MI〉 = |ψMI〉/A where

|ψMI〉 = ∣∣	(0)
MI

〉 + ∑
m′

Vm′0

E0m′
|m′〉 +

∑
m′m′′

Vm′′m′Vm′0

E0m′′E0m′
|m′′〉

+
∑

m′m′′m′′′

Vm′′′m′′Vm′′m′Vm′0

E0m′′′E0m′′E0m′
|m′′′〉 + · · · (11)

is the unnormalized wave function which needs to be
divided by a proper normalization coefficient A in order
to get the correct order of perturbation. Here, Vm′0 =
−∑

jj ′ tjj ′ 〈m′|c†j cj ′ |	(0)
MI〉 connects the first-order intermediate

states |m′〉 to |	(0)
MI〉, E0m′ = E

(0)
MI − E

(0)
m′ is their zeroth-order

energy difference, and |m′′〉 and |m′′′〉 are respectively the
second- and third-order intermediate states. Note that while
|	(0)

MI〉 and |m′〉, |m′〉 and |m′′〉, and |m′′〉 and |m′′′〉 states
are connected to each other with a single hopping, |m′′〉 and
|m′′′〉 states must be different from the |	(0)

MI〉 state. Therefore,
the normalization condition 〈	MI|	MI〉 = 1 gives A2 = 1 +
4n(n + 1)Mt2/U 2 + O(t/U )4, which has vanishing first- and
third-order terms.

After a very lengthy and tedious algebra, one finds

〈	MI|a†
j ′aj |	MI〉

= nδjj ′ + 2n(n + 1)

U
tjj ′

+ 3n(n + 1)(2n + 1)

U 2

⎛
⎝∑

j1

tjj1 tj1j ′ − 4t2δjj ′

⎞
⎠

+ 4n(n + 1)(5n2 + 5n + 1)

U 3

∑
j1j2

tjj2 tj2j1 tj1j ′

− n(n + 1)(131n2 + 131n + 26)

U 3
t2tjj ′ (12)

for a square lattice with nearest-neighbor hopping at zero
temperature. We note in Eq. (12) that the two terms that are
explicitly proportional to t2 are finite-d corrections, including
the second term in the second line and the fourth line, as
they vanish in the d → ∞ limit while keeping dt fixed. Since
Eq. (12) is derived exactly using a generic hopping matrix
tij , we are ready to benchmark it against the results of the
RPA approach for a number of specified gauges. For this
purpose, we make use of the following identities: the sum∑q−1

�=0 cos(α − 2nπφ�) equals q cos(α) when q = n and it
vanishes for q > n, the sum

∑q−1
�=0 cos2(α − 2πφ�) equals

q cos2(α) when (p,q) = {(1,1),(1,2)} and q/2 for q > 2,
and the sum

∑q−1
�=0 cos3(α − 2πφ�) equals cos3(α) when

(p,q) = (1,1) and 3 cos(3α)/4 when q = 3, but it vanishes
for (p,q) = (1,2) or q > 3.

1. No-gauge limit

Setting θij = 0 for all hoppings in Eq. (12), we obtain

n0(k) = n − 2n(n + 1)

U
ε0(k) + 3n(n + 1)(2n + 1)

U 2

×{[ε0(k)]2 − 4t2} − 4n(n + 1)(5n2 + 5n + 1)

U 3

× [ε0(k)]3 + n(n + 1)(131n2 + 131n + 26)

U 3
t2ε0(k),

(13)

where ε0(k) = −2t[cos(kxa) + cos(kya)] is the usual disper-
sion relation for a square lattice. Since the two terms that are
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explicitly proportional to t2 are finite-d corrections, they are not captured by the result of the RPA approach that is given in
Eq. (7).

2. Landau gauge

On the other hand, setting θij = 2πφu for (u,v) to (u,v + 1) and 0 for (u,v) to (u + 1,v) hoppings in Eq. (12), we obtain

n11
L (k) = n + 4n(n + 1)

(U/t)
[cos(kxa) + cos(kya)] + 12n(n + 1)(2n + 1)

(U/t)2
{[cos(kxa) + cos(kya)]2 − 1}

+ 32n(n + 1)(5n2 + 5n + 1)

(U/t)3
[cos(kxa) + cos(kya)]3 − 2n(n + 1)(131n2 + 131n + 26)

(U/t)3
[cos(kxa) + cos(kya)], (14)

n12
L (k) = n + 4n(n + 1)

(U/t)
cos(kxa) + 6n(n + 1)(2n + 1)

(U/t)2
[cos(2kxa) + cos(2kya)]

+ 32n(n + 1)(5n2 + 5n + 1)

(U/t)3
cos(kxa)[cos2(kxa) + cos2(kya)] − 2n(n + 1)(131n2 + 131n + 26)

(U/t)3
cos(kxa), (15)

n
p3
L (k) = n + 4n(n + 1)

(U/t)
cos(kxa) + 6n(n + 1)(2n + 1)

(U/t)2
cos(2kxa)

+ 8n(n + 1)(5n2 + 5n + 1)

(U/t)3
[cos(3kxa) + cos(3kya) + 6 cos(kxa)] − 2n(n + 1)(131n2 + 131n + 26)

(U/t)3
cos(kxa), (16)

n
p,q>3
L (k) = n + 4n(n + 1)

(U/t)
cos(kxa) + 6n(n + 1)(2n + 1)

(U/t)2
cos(2kxa) + 8n(n + 1)(5n2 + 5n + 1)

(U/t)3

×{cos(3kxa) + [7 + 2 cos(2πp/q)] cos(kxa)} − 2n(n + 1)(131n2 + 131n + 26)

(U/t)3
cos(kxa). (17)

Note that Eq. (14) exactly coincides with Eq. (13) since φ = 1
and 0 are equivalent in this gauge. We also note that, unlike
the results of the RPA approach that are given in Eqs. (7)–(10),
these exact results are not symmetric in kx and ky , showing that
it is only the first ky dependence that arises at the qth order
in t/U . This is not surprising because, while the one-body
correlation operator c

†
j ′cj connects |	MI〉 to itself at the first

order in x direction, the connection is established at the qth
order in y direction due to the presence of 2πφu. In addition,
on top of the RPA contributions, Eqs. (14)–(17) contain
various other terms, showing that the finite-d corrections
are quite substantial in the presence of gauge fields in two
dimensions [22]. Thus one of our main conclusions in this
paper is that the mismatch between the results of RPA and
SCE approaches grows so dramatically as q increases from 1
that the former approach fails to reproduce any of the exact
terms up to third order in t/U for q > 3.

3. Symmetric gauge

Similarly, setting θij = πφu for (u,v) to (u,v + 1) and
−πφv for (u,v) to (u + 1,v) hoppings in Eq. (12), we obtain

n11
S (k) = n + 12n(n + 1)(2n + 1)

(U/t)2
{[cos(kxa)

+ cos(kya)]2 − 1} + O(t/U )4, (18)

n
p,q>1
S (k) = n + O(t/U )4. (19)

Note that Eq. (18) does not reproduce Eq. (13) since φ = 1 and
0 are not equivalent in this gauge. We also note that, unlike
the results of the SCE approach for the Landau gauge that
are given in Eqs. (14)–(17), here the k dependence is not only

symmetric in kx and ky , thanks to the spatial symmetry between
x and y directions, but also the first k dependence arises at the
2qth order in t/U . This is also not surprising because the
one-body correlation operator c

†
j ′cj connects |	MI〉 to itself at

the 2qth order in both directions due to the presence of πφu.
In addition, the k-independent second-order term in Eq. (18)
is a finite-d correction to the result of the RPA approach in this
gauge. Therefore, npq

S (k) becomes a more and more featureless
function of k as q increases from 1, especially deep in the MIs
when t/U is very small.

4. MIT gauge

Lastly, setting θij = 2πφ(u + v) for (u,v) to (u,v + 1) and
0 for (u,v) to (u + 1,v) hoppings in Eq. (12) leads exactly
to Eqs. (14)–(17), and, therefore, the MIT [10] and Landau
gauges have exactly the same n(k).

IV. CONCLUSIONS

To summarize, we studied the expansion images of atoms
for the MI phases of the Hofstadter-Bose-Hubbard model on
a square lattice. In particular, we explicitly calculated the
momentum distribution function for the Landau and symmetric
gauges with both RPA and SCE approaches, and found marked
corrections to the former results depending strongly on the
specified gauge. Such a comparison clearly manifests the
importance of the critical role played by quantum fluctuations
in two dimensions.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from TÜBİTAK Grant
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