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Stripe-ordered superfluid and supersolid phases in the attractive Hofstadter-Hubbard model
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We use microscopic Bogoliubov–de Gennes formalism to explore the ground-state phase diagram of the
single-band attractive Hofstadter-Hubbard model on a square lattice. We show that the interplay between the
Hofstadter butterfly and superfluidity breaks spatial symmetry, and gives rise to stripe-ordered superfluid and
supersolid phases in large parameter spaces. We also discuss the effects of a trapping potential and comment on
the viability of observing stripe-ordered phases with cold Fermi gases.
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Introduction. The so-called Hofstadter butterfly (HB) refers
to the fractal energy spectrum of a quantum particle that is
confined to move on a two-dimensional tight-binding periodic
lattice under the influence of a uniform magnetic flux [1].
There are only two length scales in this simple problem, i.e., the
lattice spacing � and cyclotron radius �B , and their competition
produce one of the first quantum fractals discovered in physics.
This self-similar spectrum exhibits a complex pattern of
subbands and minigaps as a function of �/�B , but despite all
efforts since its prediction, the limited experimental control
over this ratio (�/�B � 1 even for the largest attainable
magnetic fields) has hampered the development of techniques
that could probe its effects in natural solid-state crystals. It was
only last year that it became possible to observe signatures
of this spectrum in graphene-based materials with artificially
engineered superlattices under real magnetic fields, however,
its full structure largely remains uncharted territory [2–4].

In addition, inspired by the recent realization of artificial
gauge fields [5–12], the quest for the Hofstadter spectrum
and related phenomena have been revitalized in the cold-atom
community [13–20]. For instance, by engineering spatially
dependent complex tunneling amplitudes with laser-assisted
tunneling and a potential energy gradient, two independent
research groups have recently reported compelling evidence
for the realization of the Hofstadter-Harper Hamiltonian with
neutral rubidium atoms that are loaded into laser-induced
periodic potentials [16–18]. Thanks to their greater promise
of engineering fully tunable many-body Hamiltonians on
demand, even though atomic systems are considered as one
of the top candidates for much-desired quantum simulators,
currently attainable temperatures in these works are not
low enough for resolving the fractal structure of the HB.
Nevertheless, captivated by these flourishing efforts, here we
study the interplay between the HB, strong interactions, and
Zeeman field, and explore ground-state phases of the attractive
Hofstadter-Hubbard model [21].

Our main results are highlighted as follows. We find that the
cooperation between the HB and superfluid (SF) order breaks
the spatial symmetry of the system. This is in accordance
with a recent work showing that superfluidity necessarily
breaks translation symmetry in a repulsive Hofstadter-Bose-
Hubbard model [22]. In addition, we show that the phase
diagrams are dominated by stripe-ordered SF and supersolid
(SS) phases which are characterized by their coexisting pair-
density (PDW), charge-density (CDW), and/or spin-density-
wave (SDW) orders [21,23–25]. While these phases share

some characteristic features of the long-sought Fulde-Ferrel-
Larkin-Ovchinnikov (FFLO or LOFF) phase [26,27], they are
not driven by the Zeeman field and have an entirely new
physical mechanism. Given that FFLO-like phases are of high
demand in condensed-matter, nuclear, and elementary-particle
physics [28–32], our findings allude to a new route towards
creating them by loading neutral atomic Fermi gases on
laser-induced optical lattices under laser-induced gauge fields.

Bogoliubov–de Gennes (BdG) formalism. To achieve
these results, we solve the single-band attractive
Hofstadter-Hubbard Hamiltonian on a square lattice within the
mean-field approximation for the on-site interaction term, i.e.,
H = −∑

ijσ tij a
†
iσ ajσ − ∑

iσ μiσ a
†
iσ aiσ + ∑

i(�ia
†
i↑a

†
i↓ +

�∗
i ai↓ai↑ + |�i |2

g
), where a

†
iσ (aiσ ) creates (annihilates) a σ

fermion on site i, tij is the tunneling (hopping) matrix element,
and μi↑ = μ − gni↓ − Vi + h and μi↓ = μ − gni↑ − Vi − h

are effectively the local chemical potentials in the presence
of Hartree shifts, confining potential Vi and an out-of-plane
Zeeman field h � 0. The complex hopping matrix tij is
assumed to connect only the nearest-neighbor sites, i.e.,
tij = teiθij with t � 0 for i and j nearest neighbors and 0
otherwise, and the phase θij = (1/φ0)

∫ rj

ri
A(r) · dr takes the

effects of real external magnetic fields (or artificial gauge
fields) into account via the Peierls substitution. Here, A(r)
is the corresponding vector potential and φ0 = 2π�/e is the
magnetic flux quantum. The remaining terms involve the
complex SF order parameter �i = g〈ai↑ai↓〉, where g � 0
is the strength of the on-site density-density interaction and
〈· · · 〉 is a thermal average.

This microscopic Hamiltonian can be diagonalized
via the Bogoliubov-Valatin transformation, i.e., aiσ =∑

m(umiσ γmσ − sσ v∗
miσ γ

†
m,−σ ), where γ

†
mσ (γmσ ) creates (anni-

hilates) a pseudospin σ quasiparticle with energy εσ
m and wave

functions umiσ and vmiσ , and the resultant BdG equations can
be compactly written as

∑
j

(
−tij − μi↑δij �iδij

�∗
i δij t∗ij + μi↓δij

)
ϕσ

mj = sσ εσ
mϕσ

mi. (1)

Here, δij is the Kronecker delta, ϕ
↑
mi = (u∗

mi↑,v∗
mi↓)† and

ϕ
↓
mi = (vmi↑, − umi↓)† are the corresponding eigenfunctions

for εσ
m � 0 eigenvalue, and s↑ = +1 and s↓ = −1. Note

that the BdG equations are invariant under the transforma-
tions vmi↑ → u∗

mi↑, umi↓ → −v∗
mi↓, and εm↓ → −εm↑, and
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therefore, it is sufficient to solve only for umi ≡ umi↑, vmi ≡
vmi↓, and εm ≡ ε

↑
m as long as all solutions with positive

and negative εm are kept. For instance, �i is given by
�i = −g

∑
m umiv

∗
mif (εm), where f (x) = 1/[ex/(kBT ) + 1] is

the Fermi function with kB the Boltzmann constant and T the
temperature, and it has to be determined self-consistently with
μ and h such that the total number of σ fermions satisfies
Nσ = ∑

i niσ . Here, 0 � niσ = 〈a†
iσ aiσ 〉 � 1 is the number

of σ fermions on site i given by ni↑ = ∑
m |umi |2f (εm)

and ni↓ = ∑
m |vmi |2f (−εm). When θij = 0, it is generally

accepted that the mean-field description provides a qualitative
understanding of the ground state [33,34], and here we include
both θij and Vi exactly into the mean-field formalism without
relying on further approximations.

Without losing generality, we choose Landau gauge for the
vector potential, i.e., A(r) ≡ (0,Bx,0), leading to a uniform
magnetic flux � = B�2 (per unit cell), where � is the lattice
spacing. Denoting (x,y) coordinates of site i by (n�,m�), this
gauge simply implies θij = 0 and θij = ±2πnφ for links along
the x and y directions, respectively, where φ = �/(2πφ0)
characterizes the competition between the lattice spacing
� and magnetic length scale �B = √

�/(eB). In this Rapid
Communication, we only consider φ = p/q ratios, where
p and q are coprimes, for which the exact noninteracting
single-particle excitation spectrum ε(φ) vs φ is known as the
HB [1]. While φ remains � 1 for typical electronic crystals,
even for the largest B field that is attainable in a laboratory, it
can in principle be tuned at will for atomic systems via artificial
gauge fields. The fractal structure of the spectrum is expected
to have drastic effects on the many-body problem which is our
main motivation.

Ground-state phases. In order to explore the possible
phases, let us set Vi = 0 and consider a uniform 45� × 45�

square lattice, which is large enough to construct the thermo-
dynamic phase diagrams for φ = {0,1/6,1/4}. The Hartree
shifts are neglected for simplicity [35]. It turns out that the
BdG equations allow for multiple solutions, especially for the
polarized many-body phases, and therefore, it is essential to
verify the (meta)stability of the solutions [36].

Depending on the spatial profiles of |�i |, ni↑, and ni↓, we
distinguish the single-particle phases from the many-body ones
using the following scheme. When h/g is sufficiently high that
�i → 0 (|�i | < 10−3t in numerics), the ground state can be a
σ -vac phase which is a vacuum of σ component, a σ -I (m/n)
phase which is a band insulator of σ component with uniform
niσ = m/n, a σ -N phase which is a normal σ component, or
an ↑↓ -PN phase which is a polarized normal mixture of ↑
and ↓ components. On the other hand, when h/g is sufficiently
low, the ground state can be characterized according to Table I,

TABLE I. The uniform-SF (U-SF), striped-SF (S-SF), and
striped-SS (S-SS) phases can be distinguished by their coexisting
order parameters.

Phase |�i | ni↑ + ni↓ ni↑ − ni↓

U-SF Uniform Uniform 0
S-SF PDW 1 0
S-SS PDW CDW 0
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FIG. 1. (Color online) (a) Typical |�i |/t profiles are shown for
the U-SF (left) and S-SF phases (right), where φ↑ = φ↓ = 0 and φ↑ =
φ↓ = 1/4, respectively, and μ = 0 corresponding to a uniformly half-
filled lattice. (b) Typical |�i |/t (left) and ni↑ + ni↓ (right) profiles are
shown for the S-SS phase, where φ↑ = φ↓ = 1/4 and μ = −t . Here,
(x,y) are in units of �, and we set h = 0 and g = 7t in all figures.

and typical |�i | and ni↑ + ni↓ profiles are illustrated in Fig. 1
for the uniform-SF, striped-SF, and striped-SS phases.

Thermodynamic phase diagrams. In Fig. 2, we present the
φ = 1/4 phase diagrams for μ = 0 in Fig. 2(a) and μ = −t in
Fig. 2(b). The μ = 0 case is very special since it corresponds
to a half-filled lattice with particle-hole symmetry, where
ni↑ + ni↓ = 1 independently of i, no matter what the rest
of the parameters are. In comparison to the φ = 0 diagrams
which consist only of ↑↓ -PN , uniform-SF, and polarized-SF
regions, we find that the φ = 1/4 diagrams have much richer
structure involving large regions of stripe-ordered phases. To
understand the physical origin of the resultant phase diagrams
and stripe order, next we discuss the analytically tractable high-
and low-h/g limits.

When h/g is sufficiently high, we can directly read off the
ground state of the σ component from the HB for any given
φ. For φ = 1/4, the energy spectrum consists of four bands:
the σ component is a σ -vac for μσ � −2.83t , a σ -N for
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FIG. 2. The ground-state phase diagrams are shown for μ = 0 in
(a) and μ = −t in (b), when φ = p/q = 1/4, and the solid lines are
guides to the eye.

−2.83t � μσ � −2.61t , a σ -I (1/4) for −2.61t � μσ �
−1.082t , a σ -N for −1.082t � μσ � 1.082t , a σ -I (3/4) for
1.082t � μσ � 2.61t , a σ -N for 2.61t � μσ � 2.83t , and a
σ -I (1/1) for 2.83t � μσ . Using μ↑ = μ + h and μ↓=μ−h,
the high-h/g structure of Fig. 2 immediately follows. As h/g

gets smaller, the I and N phases must pave the way to ordered
many-body ones, as increasing the strength of the pairing
energy eventually makes them energetically less favourable.
For φ = 0, we confirmed that the ↑↓ -PN to polarized-SF
phase transition boundary g(hc) is a monotonic function of h,
which is simply because the noninteracting system has a very
simple band structure with cosine dispersions. However, since
the density of single-particle states is dramatically affected
by the fractal band structure, the transition boundary g(hc)
becomes a complicated function of h for finite φ. For instance,
we find a sizable hump in Fig. 2(a) around h ≈ 2.7t and
another one in Fig. 2(b) around h ≈ 1.7t , the peak locations of
which coincide intuitively with the ↑↓ -PN regions that are
sandwiched between vac and/or I .

On the other hand, when h/g is sufficiently small, the
ground state is expected to be an ordered many-body phase
with no polarization. In sharp contrast to the φ = 0 case
where uniform-SF is stable for any μ, we show in Fig. 2
that striped-SF and striped-SS are, respectively, stable for
μ = 0 and μ = −t when φ = 1/4. Note that since μ = 0
corresponds to half filling for any φ, the unpolarized ground
states necessarily have uniform fillings, i.e., ni↑ = ni↓ = 1/2.
Therefore, in the low-h/g limit, while only |�i | is allowed
to have spatial modulations in Fig. 2(a), both |�i | and niσ

modulates in Fig. 2(b).
The stripe order is a result of the HB: for a given φ, the

spectrum consists of q bands in the first magnetic Brillouin
zone within which each k state is q-fold degenerate. Therefore,
not only intra- and interband pairings but also pairings with
both zero and a set of nonzero center-of-mass momenta
are allowed [21,24], leading to a nonuniform |�i | with
spatially periodic modulations, e.g., a PDW order [25]. The
directions of center-of-mass momenta determine the direction
of modulations, making it gauge dependent, e.g., y direction
in Fig. 1. When the striped-PDW order is sufficiently large,
it drives an additional striped-CDW order in the total fermion
filling, giving rise to striped-SS phases. We emphasize that
the instability towards striped-PDW phases discussed in this
Rapid Communication is driven by φ �= 0 even when h = 0,
and they cannot formally be identified with the FFLO-like
nonstriped PDW phases which are driven by h �= 0 and are
characterized by cosinelike sign-changing |�i | oscillations
along a spontaneously chosen direction.

It is clearly the cooperation between φ and g that is
responsible for the broken spatial symmetry and appearance
of stripe order, causing much more prominent stripes for
intermediate g at a given h. Depending on whether q is odd or
even, |�i | modulation has a spatial period of q or q/2 lattice
sites, respectively. The stripe order gradually fades away with
increasing g, however, it survives even in the g 
 W limit with
W the single-particle energy bandwidth, as long as g/t is finite.
Note in this limit that the physics is eventually determined by
the two-body bound states, i.e., Cooper pairs become bosonic
dimers, and unless g/t → ∞, the dimer-dimer interaction
(gdd ∼ t2/g) is finite. Such weakly repulsive dimers can
effectively be described by the Hofstadter-Bose-Hubbard
model, where superfluidity has recently been shown to break
translation symmetry in the weakly interacting limit [22].

In fact, all of our numerical results fit quite well with

|�i | = |�0| + |�1| cos(4πφiy/� + ϕ), (2)

in the entire unpolarized region (U-SF, S-SF, and S-SS). Here,
|�0| ≈ (g/2 − 4t2/g)

√
n(2 − n) for any μ determined by the

total average filling n, |�1| ≈ t2/g for μ ≈ 0 (which becomes
exact only for μ = 0 in the g/t → ∞ limit), iy is the y

coordinate of site i, and ϕ is a constant phase shift set by
the origin. The microscopic origin of this expression can be
best understood in the ideal-dimer limit, where td ≈ 2t2/g

and φd = pd/qd , respectively, are their effective hopping and
gauge field. Here, pd = 2p (p) and qd = q (q/2) for odd
(even) q. Since the HB for dimers is qd -fold degenerate,
their ground state has contributions from all degenerate kyd =
{0, ± 2πφdf/�} momenta where f = 1, . . . ,qd − 1, such that
�id = c0 + ∑

f cf cos(2πφdf iy/�), where cf are complex
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variational parameters. However, unlike atomic bosons where
all of the degenerate states have equal weight, dimer bosons
are fermion pairs and the number of ways of creating them
with kyd = ky↑ + ky↓ momentum depends on f and φ, e.g.,
there are 2(q − f − 1) + 1 ways of intraband pairing when
q is even. Thus, this analysis shows that higher |kyd | states
contribute less and less, forming a perturbative series. In
addition, our fit, Eq. (2), suggests that the first-order (f = 1)
correction is already much smaller than the zeroth-order
(f = 0) one, and that the f � 2 terms are negligible.

When φ is increased from 0, we find that the transition
from an unpolarized to a polarized ordered phase occurs at a
lower h for any given g. This is a consequence of smaller W :
As φ increases from 0 to 1/6 to 1/4, then W shrinks from 8t

to 6.15t to 5.65t , making it possible to polarize the ground
state with a smaller and smaller h. In Fig. 2, the polarized
region is dominated mainly by what we call the polarized-
SF phase which is characterized by striped and/or nonstriped
PDW and/or SDW orders.

Trapped systems. Next, we assume a harmonic confinement
and choose Vi = α|ri|2 with strength α = 0.01t/�2. For
illustration purposes, in Fig. 3 we show typical trap profiles
for a cut along the y direction when x = 0, φ = 1/4, μ = 0,
and h = t . Note that the system is completely unpolarized for
g = 7t with no SDW order, which is consistent with the phase
diagrams shown in Fig. 2. When g/t is sufficiently small, the
minigaps of the HB give rise to a wedding-cake structure with
spatially flat niσ regions at integer multiples of 1/4 fillings,
but only the ni↑ ≈ 0.25 and ni↓ ≈ 0 region clearly survives
in these figures. In addition, while the CDW order is mostly
washed out and barely visible for g = 6t and g = 7t , the PDW
and SDW orders are large and conspicuous in these figures (and
can be much larger depending on the parameters, especially
for large q), suggesting that PDW and/or SDW features may
furnish clearest and direct evidence in trapped systems. It is
also pleasing to see that the valleys of the PDW and CDW
orders and peaks of the SDW order coincide when they coexist.
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(a) |Δi|/t
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(b) ni↑+ni↓g = 4t
 5t
 6t
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0

 0.4
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FIG. 3. (Color online) The trap profiles are shown for a cut along
the y direction (in units of �) when x = 0, p/q = 1/4, μ = 0, and
h = t .

Conclusions. To summarize, motivated by the thrive of
cold-atom experiments with artificial gauge fields, we ana-
lyzed ground-state phases of the attractive Hofstadter-Hubbard
model for both thermodynamic and trapped systems. Our
main finding is that the interplay between the HB and SF
order breaks spatial symmetry, and that the phase diagrams
are dominated by stripe-ordered SF and SS phases which can
be distinguished by their coexisting PDW, CDW, and/or SDW
orders. Such PDW superconductivity is relevant in a diverse
range of systems [25,28,30], and given our promising results
for atomic Fermi gases, we encourage further research in this
direction with different lattice geometries, gauge fields, etc.,
in particular, the beyond mean-field ones.
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