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We consider a square optical lattice in two dimensions and study the effects of both the strength and symmetry
of spin-orbit coupling and Zeeman field on the ground-state, i.e., Mott-insulator (MI) and superfluid (SF), phases
and phase diagram, i.e., MI-SF phase-transition boundary, of the two-component Bose-Hubbard model. In
particular, based on a variational Gutzwiller ansatz, our numerical calculations show that the spin-orbit-coupled
SF phase is a nonuniform (twisted) one, with its phase (but not the magnitude) of the order parameter modulating
from site to site. Fully analytical insights into the numerical results are also given.
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I. INTRODUCTION

Ultracold atoms have proved to be exceptional many-
body quantum systems, thanks especially to their tunable
single-particle potentials and multiparticle interactions. The
experimental ability to control the parameters of the atomic
Hamiltonian allow one to simulate and study some of the
fundamental aspects of condensed-matter systems, including
Bose-Einstein condensation (BEC), bosonic superfluidity,
quantum magnetism, many-body spin dynamics, Bardeen-
Cooper-Schrieffer (BCS) superfluidity, BEC-BCS crossover,
etc. [1–3]. In addition, by loading cold atoms into the periodic
optical lattice potentials, which are formed by interfering
counterpropagating laser beams, it has also been possible
to realize Hubbard-type lattice models and study strongly
correlated quantum phenomena [1,2]. In particular, bosonic
atoms in an optical lattice, whose low-energy dynamics is
well captured by the Bose-Hubbard model [4], provide an
ideal platform for the observation of Mott-insulator (MI) and
superfluid (SF) phases as well as the MI-SF phase transition
between the two [1,2].

Meanwhile, recent discoveries of topological insulators [5],
topological superconductors [6], and quantum spin-Hall ef-
fect [7] have put topological phases of matter in the spotlight.
It turns out that the interaction between the quantum particle’s
spin and its center-of-mass motion (momentum), i.e., spin-
orbit coupling (SOC), is at the heart of all of these modern
condensed-matter phenomena, and creation and manipulation
of a similar (if not identical) effect has been an intriguing
possibility for the cold-atom community. However, since
quantum gases are charge neutral, they do not directly couple
to electromagnetic fields, and this prevented SOC studies in
atomic systems until the advent of artificial gauge fields [8–10].
By coupling the internal states of atoms to their momentum via
Raman dressing of atomic hyperfine states with near-resonant
laser beams, it has recently been possible to engineer atomic
systems with Abelian gauge fields. For instance, while there
are many proposals for implementing atomic gases with
various non-Abelian gauge fields that may give rise to Rashba,
Dresselhaus, and Weyl SOCs, several experimental groups
have so far achieved only a particular form of an Abelian
gauge field that may be characterized as an equal Rashba and
Dresselhaus (ERD) SOC [11–17]. Note that a very recent
proposal to realize SOC in optical lattices does not rely

on laser light to couple different spin states [18]. These
experiments naturally lead the way to numerous other works on
spin-orbit-coupled atomic systems, e.g., topological superfluid
phases of matter, bringing once again the condensed-matter
and atomic-physics communities together.

Motivated by these developments, here we consider a
square lattice in two dimensions and study the effects of both
the strength and symmetry of SOC and Zeeman field on the
ground-state phases and phase diagram of the two-component
Bose-Hubbard model. In particular, based on a variational
Gutzwiller ansatz, we analyze the competition between the
interaction, tunneling, Rashba and ERD SOCs, and out-of-
and in-plane Zeeman fields on the MI-SF phase-transition
boundary and the nature of the SF phase nearby. In addition
to the phase diagrams, one of our main results is as follows:
Gutzwiller calculations show that while the magnitudes of the
order parameters are uniform across the entire lattice, their
phases may vary from site to site due to SOC, and, therefore,
the SF phase is a nonuniform one. We give a complete account
and intuitive understanding of this SOC-induced nonuniform-
SF phase and its resultant phase patterns by supporting our
numerical calculations with fully analytical insights.

The rest of the paper is organized as follows. In Sec. II,
we introduce the spin-orbit-coupled two-component Bose-
Hubbard model and derive the self-consistency (total average
number, polarization, and SF order parameter) equations using
a variational Gutzwiller ansatz. Our numerical results for the
ground-state MI, uniform-SF and nonuniform-SF phases, and
the MI-SF phase-transition boundary are presented in Sec. III
as functions of the strength and symmetry of the SOC and
Zeeman field. The paper is concluded with a brief summary of
our results and an outlook in Sec. IV.

II. TWO-COMPONENT BOSE-HUBBARD MODEL

It has long been established that the low-energy dynamics
of quantum gases loaded into the periodic optical lattice
potentials is well described by Hubbard-type tight-binding
lattice models [1,2]. In particular, the simplest Bose-Hubbard
model [4], which takes into account the chemical potential
and nearest-neighbor tunneling of atoms, and short-range
(on-site) repulsive interparticle interactions, has proved to
be quite successful in describing some of the cold-atom
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experiments where MI and uniform-SF phases as well as
the MI-SF phase transition were observed [2]. This success
generated an enormous interest in this topic, and many
extensions of Hubbard-type models have not only been
proposed but also realized in the recent literature, including
different lattice geometries, longer-ranged tunnelings and
interactions, multiple components, gauge fields, etc. A number
of theoretical methods have been developed to tackle these
lattice models, and among those the validity and limitations of
the variational Gutzwiller ansatz [19], decoupling mean-field
theory [20], strong-coupling expansion [21,22], and quantum
Monte Carlo [22,23] approaches are well understood.

In this context, the two-component Bose-Hubbard
model [24–31] was introduced about a decade ago to describe
cold-atom experiments involving two types of bosons, in which
the two components may correspond to different hyperfine
states of a particular atom or different species of atoms.
In addition to the phases that are similar in many ways to
the MI and SF phases of the single-component model, these
works proposed that paired-SF, counterflow-SF, density-wave
insulator, and supersolid phases may be created with the
experimental realization of the two-component model. These
possibilities already motivated a number of experimental
studies on two-component systems [32–35], opening up a new
frontier waiting to be explored in the near future.

In addition, excited by the recent realization of spin-orbit-
coupled atomic BEC [11,12,18], there has been growing
interest in studying the effects of SOC on the two-component
model [36–47]. For instance, it has been proposed that the SOC
gives rise to rich phase diagrams which exhibit spin textures
in the form of spin spirals and vortex and Skyrmion crystals
within the MI phase [36–40], and also a nonuniform twisted
SF phase [42]. Our main goal here is to provide a complete
analysis of this SOC-induced nonuniform-SF phase as well as
the MI-SF phase-transition boundary.

A. Hamiltonian: SOC and Zeeman fields

In this paper, we consider a square lattice in two dimensions
and study the effects of both the strength and symmetry of
SOC and Zeeman field on the ground-state phases and phase
diagram of the two-component Bose-Hubbard model. The
Hamiltonian of such systems may be written as

H =
∑
jα

[
Uαα

2
n̂jα(n̂jα − 1) − μαn̂jα

]
+ U↑↓

∑
j

n̂j↑n̂j↓

−
∑
〈j,k〉

(
�̂

†
j T

jk�̂k + H.c.
)

− hy

∑
j

�̂
†
j σy�̂j , (1)

where α ≡ (↑ , ↓) denotes the two types of bosons, Uαα � 0
is the intracomponent and U↑↓ � 0 is the intercomponent
interaction with U 2

↑↓ < U↑↑U↓↓ to prevent phase separation,

and the operator n̂jα = â
†
jαâjα counts the local number of

α bosons at site j . Here, the operator â
†
jα(âjα) creates

(annihilates) an α boson at site j . The chemical potential
μα already includes the out-of-plane hz component of the
Zeeman field such that μ↑ = μ + hz and μ↓ = μ − hz. In the
second line, 〈j,k〉 sums over the nearest-neighbor sites, where

the operator �̂j = (âj↑âj↓)T denotes the boson operators
collectively, H.c. is the Hermitian conjugate, hy is the in-plane
component of the Zeeman field, and σy is the Pauli spin matrix.
In Eq. (1), we set the in-plane hx component of the Zeeman
field to 0 without losing generality.

In Eq. (1), the spin matrices T include both the spin-
preserving and spin-flipping nearest-neighbor tunnelings, and
they can be compactly written as T j,j±x̂ = tσ0 ± iγxσy for
hoppings in the ±x direction and T j,j±ŷ = tσ0 ∓ iγyσx for
hoppings in the ±y direction, where t is the strength of the
usual single-particle tunneling with σ0 the identity matrix, and
the parameters γx � 0 and γy � 0 characterize the strength
and symmetry of the SOC. These spin matrices can be derived
from a non-Abelian gauge field �A = (βxσy,−βyσx,0), where
βx and βy are constants in space, using the Peierls substi-

tution. This leads to T jk = t0e
i
∫ k

j
�A·d�r , such that T j,j±x̂ =

t0 cos βxσ0 ± it0 sin βxσy for tunnelings in the ±x direction
and T j,j±ŷ = t0 cos βyσ0 ∓ it0 sin βyσx for tunnelings in the
±y direction. Thus, our model parameters in Eq. (1) are related
to the parameters of the gauge field �A via γx = t tan βx and
γy = t tan βy . Note that the ratio of γx and γy determines the
symmetry of the SOC, and we compare and discuss three
distinct limits throughout this paper: (i) Rashba SOC where
γx = γy = γR 	= 0, (ii) ERDx SOC where γx 	= 0 and γy = 0,
and (iii) ERDy SOC where γx = 0 and γy 	= 0.

It is very difficult to obtain the exact solutions for the model
Hamiltonian given in Eq. (1) even in the absence of inter-
component interaction, SOC, and Zeeman field. Therefore,
hoping to produce qualitatively accurate ground-state phases
and phase diagrams, next we propose a properly generalized
variational Gutzwiller ansatz for our model.

B. Variational Gutzwiller ansatz

The variational Gutzwiller ansatz for the approximate
many-body wave function |ψ〉 is a product state that is formed
by multiplying local ground states |ψj 〉 of the entire lattice, i.e.,
|ψ〉 = ∏

j |ψj 〉, and thus it neglects the off-site correlations
by construction. The simpler versions of this ansatz have been
frequently used in the literature to approximate the ground-
state wave functions of Bose-Hubbard-type Hamiltonians at
zero temperature. In the single-component case, since the
ansatz reproduces (by construction) the exact ground states of
the system in the extremely strong (i.e., deep in the MI phase)
and extremely weak (i.e., deep in the SF phase) interaction
limits, it naturally works qualitatively well in between for the
MI-SF phase-transition boundary. Earlier works also showed
that the results obtained from this ansatz precisely match
those of the mean-field decoupling approximation for the
MI-SF phase-transition boundary, and, therefore, the level of
approximation (i.e., negligence of the off-site correlations) is
considered to be exactly equivalent in both methods [4,19,20].

The generalized Gutzwiller wave function for the model
Hamiltonian given in Eq. (1) can be written as

|ψ〉 =
∏
j

⎛
⎝∑

l↑l↓

f
j

l↑l↓ |l↑,l↓〉j
⎞
⎠ , (2)
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where the complex variational parameter f
j

l↑l↓ determines the
probability amplitude of the occupation of the Fock state
|l↑,l↓〉j at site j . Here, the local Fock state is characterized
by the occupation of (l↑,l↓) bosons from each type, where
lα = 0,1, . . . ,lmax and lmax is the maximum number of α

bosons allowed in the numerics (to be specified in Sec. III).
The normalization of the wave function 〈ψ |ψ〉 = 1 requires∑

l↑l↓ |f j

l↑l↓ |2 = 1 for each site j .
Given the ground-state ansatz, it is a straightforward task

to calculate any of the desired observables. For instance, we
are interested in the average number of local α bosons Njα =
〈ψ |n̂jα|ψ〉 and the projections of average local polarizations
Pjq = 〈ψ |�̂†

j σq�̂j |ψ〉 along the q ≡ (x,y,z) direction. Using
Eq. (2), and after some algebra, we obtain

Nj =
∑
l↑l↓

(|f j

l↑l↓ |2l↑ + |f j

l↑l↓ |2l↓
)
, (3)

Pjz =
∑
l↑l↓

(|f j

l↑l↓ |2l↑ − |f j

l↑l↓ |2l↓
)
, (4)

Pjy = 2Im
∑
l↑l↓

f
j∗
l↑l↓f

j

l↑−1,l↓+1

√
l↑(l↓ + 1), (5)

where Nj = Nj↑ + Nj↓ is the total average number of bosons
on site j and Pjz = Nj↑ − Nj↓. Here, Im[·] is the imaginary
part of [·], and the real part of the same sum gives Pjx . Note
that while the overall x component of the average polarization∑

j Pjx = 0, since we already set hx = 0 in Eq. (1), SOC
may still induce local Pjx 	= 0, causing Skyrmion-like spin
textures [48]. As discussed in Sec. III, all of our numerical
calculations show that average particle numbers are uniform
across the entire lattice, and, hence, we also define N = Nj

and Nα = Njα for all j .
In order to distinguish the SF and non-SF (e.g., MI) ground

states of the system, the local average number and polarization
given by Eqs. (3)–(5) need to be solved self-consistently
with the local single-particle and/or single-hole SF order
parameters �jα = 〈ψ |âjα|ψ〉. Note that exotic SF phases
involving multiparticle and/or multihole excitations are not
accessible with this definition, and they are not our main
interest in this work (see also Sec. IV). Using Eq. (2), and
after some algebra, we obtain

�j↑ =
∑
l↑l↓

f
j∗
l↑l↓f

j

l↑+1,l↓

√
l↑ + 1, (6)

�j↓ =
∑
l↑l↓

f
j∗
l↑l↓f

j

l↑,l↓+1

√
l↓ + 1, (7)

which are complex numbers in general. As discussed in
Sec. III, all of our numerical results showed that while
the magnitudes of these parameters are uniform across the
entire lattice, their phases are nonuniform in general, i.e.,
θjα = arg(�jα) are not equal for all j . In this paper, we
set the phase of the ↑ order parameter on some reference
lattice site (which is labeled throughout this paper as j ≡ 0)
to 0, i.e., θ0↑ = 0, and define all of the remaining θjα with
respect to this reference site. Thus, in Sec. III, we define
�jα = �αeiθjα , and distinguish the SF phases from the MI
ones by looking at whether the minimum-energy configuration

has �α 	= 0 or 0. In addition, we distinguish the uniform-SF
phase from nonuniform-SF ones based on whether or not the
minimum-energy configuration has a uniform θjα = θα for all
j . Note that, depending on the model parameters, we may have
�α = 0 and �−α 	= 0, so that the ground state is a mixture of
α-MI and (−α)-SF, where (− ↑) ≡↓, and vice versa.

In the self-consistency given by Eqs. (3)–(7), the set of
variational parameters {fl↑l↓} is determined by minimizing the
ground-state energy of the system. For this purpose, we solve
the Schrödinger equation, i.e., 〈ψ |H |ψ〉 = i�〈ψ |∂|ψ〉/∂τ ,
where we set f j

l↑l↓ (τ ) = f
j

l↑l↓e
−iE0τ/�, with E0 the local ground-

state energy of the system and τ the time. Using Eq. (2), and
after some algebra, we obtain

E0f
j

l↑l↓

= f
j

l↑l↓

{
U↑↓l↑l↓ +

∑
α

[
Uαα

2
lα(lα − 1) − μαlα

]}

−
∑
α,kj

[
�kα

(
T

jk

↑α

√
l↑f

j

l↑−1,l↓ + T
jk

↓α

√
l↓f

j

l↑,l↓−1

)

+ �∗
kα

(
T

jk∗
↑α

√
l↑ + 1f

j

l↑+1,l↓ + T
jk∗
↓α

√
l↓ + 1f

j

l↑,l↓+1

)]
+ ihy

[√
l↑(l↓ + 1)f j

l↑−1,l↓+1 − √
(l↑ + 1)l↓f

j

l↑+1,l↓−1

]
,

(8)

where kj sums over the nearest neighbors k of site j . We
note that all of the tunneling and SOC terms vanish in the
MI phase when �α = 0, and, therefore, recently proposed
magnetic (spin-textured) MI phases [36–40] are not accessible
within our Gutzwiller ansatz. However, the method may still
give a quantitatively accurate description of the MI-SF phase-
transition boundary as well as the nonuniform-SF phases
near this boundary. To understand the competition between
the interaction, tunneling, SOC, and Zeeman field, and the
resultant MI and SF phases, let us first discuss the classical
limit and analyze the ground-state phase diagram of the system
in the atomic limit.

C. Atomic limit: MI phases

Setting t = γx = γy = 0 in the Hamiltonian decouples all
of the lattice sites from each other, and, therefore, it is sufficient
to consider a single site to understand the resultant MI phases.
First of all, in contrast with the hy = 0 case where Nα is con-
served for both α bosons, only the total number N = N↑ + N↓
of bosons is a good quantum number when hy 	= 0. Thus, the
MI lobes must be labeled accordingly. Using Gutzwiller-like
local ground states |ψN 〉 = ∑

l↑l↓�l↑+l↓=N fl↑l↓ |l↑,l↓〉, which
can be shown to be exact for a given total particle sector
N , we can easily obtain the exact local ground-state energy
EN = 〈ψN |H |ψN 〉 of the system by minimizing EN with
respect to fl↑l↓ .

For instance, E0 = 0 in the trivial case when N = 0, and
its corresponding eigenstate is the vacuum state |0,0〉 with
f00 = 1. There are two energy eigenvalues when N = 1, and
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E1 can be written as

E1 = �
†

1

(−μ↑ ihy

−ihy −μ↓

)
�1, (9)

where �1 = (f10f01)T . Likewise, there are three energy
eigenvalues when N = 2, and E2 can be written as

E2 = �
†

2

⎛
⎝−2μ + U↑↓ −i

√
2hy i

√
2hy

i
√

2hy −2μ↑ + U↑↑ 0
−i

√
2hy 0 −2μ↓ + U↓↓

⎞
⎠�2,

(10)

where �2 = (f11f20f02)T . All of the energy eigenvalues
and their corresponding eigenstates can be easily obtained
by diagonalizing such matrices for any given N , and E0

corresponds to the minimal eigenvalue.

FIG. 1. The atomic-limit (t = γx = γy = 0) phase diagrams are
shown as functions of (a) μ and hz for hy = 0, and (b) μ and hy

for hz = 0 (solid line) and hz = 0.1U (dashed line). The MI lobes
are labeled by (a) (N↑,N↓) and (b) N = N↑ + N↓. While we set
U↑↓ = 0.3U in these figures, they are schematically correct as long
as 0 < U↑↓ < U = U↑↑ = U↓↓.

In Fig. 1, we present the atomic-limit phase diagrams as
functions of μ and hz for hy = 0 [Fig. 1(a)], and μ and hy for
hz = 0 and hz = 0.1U [Fig. 1(b)]. The MI lobes are naturally
labeled by (N↑,N↓) in Fig. 1(a) and N in Fig. 1(b) as explained
above. While we set U↑↓ = 0.3U in these figures, they are
schematically correct as long as 0 < U↑↓ < U = U↑↑ = U↓↓.
When hy = 0, Fig. 1(a) shows that the size of the N = 1
lobe grows as hz increases toward (U − U↑↓)/2 and its size
remains essentially unchanged for hz > (U − U↑↓)/2. This
is in contrast with the N = 2 MI lobe, the size of which
shrinks as hz increases toward (U − U↑↓)/2, followed by
an increase between (U − U↑↓)/2 < hz < U − U↑↓, and then
its size remains essentially unchanged for hz > U − U↑↓.
Similarly, when hz = 0, Fig. 1(b) shows that hy has a similar
effect on the sizes of the MI lobes. Having established the
theoretical formalism, next we present the details of our
numerical calculations.

III. NUMERICAL RESULTS

First of all, we need to solve Eq. (8) self-consistently
with Eqs. (6) and (7) for the eigenstates of the lowest-energy
eigenvalue. This can be achieved via the iterative method of
relaxation as follows: (i) first, start with an input set of {�jα},
(ii) next, construct the Hamiltonian matrix given in Eq. (8),
(iii) then, use the lowest-energy eigenstates in Eqs. (6) and (7)
and generate a new set of {�jα}, and (iv) finally, repeat these
steps until the input and output sets of {�jα} lie within a
confidence level. Once the iterative method converges, we use
Eqs. (3)–(5) to calculate the local average number of bosons
and their polarizations.

As we emphasized in Sec. II B, while the Gutzwiller
ansatz does not tell anything about the possibility of having
magnetic spin textures inside the MI lobes, it may still give a
quantitatively accurate description of the competition between
the interaction, tunneling, SOC, and Zeeman field. In this
section, we solve Eqs. (3)–(8) self-consistently near the MI-SF
phase-transition boundary of the first two (N = 1 and 2)
insulating lobes, and analyze how their sizes change with
the strength and symmetry of the SOC and Zeeman field.
For this purpose, we set the cutoff of lα in the sums to
lmax = 4, which is sufficient near the N = 1 and N = 2 MI
lobes, and the intraparticle and interparticle interactions to
U↑↑ = U↓↓ = U and U↑↓ = 0.3U , respectively. In addition,
we choose equal magnitudes for the Rashba and ERD SOCs
such that γE = √

2γR . It turns out that Eqs. (3)–(8) allow for
many multiple solutions and, therefore, we use of the order of
104 random initial sets of {�jα}, and then eventually keep the
one which has the lowest ground-state energy.

A. SOC-induced nonuniform-SF phase

In order to characterize the possible SF phases, we first
solve the self-consistency equations on finite M × L lattices
with periodic boundary conditions, but without any assumption
on the symmetry of �jα . By letting {M,L} = {3,4,5, . . . ,20}
and using numerous combinations of SOC and Zeeman fields,
we find that while the magnitudes of �jα are uniform across
the entire lattice, their phases may vary from site to site due to
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SOC, such that

�jα = �αeiθjα , (11)

where �α = |�jα| for all j . This result is in agreement with
an earlier study [42], and it shows that the SF phase can be
nonuniform depending on the model parameters. Moreover,
assuming Eq. (11) holds, we solve the self-consistency
equations on very large lattices, and find that the phase θjα

jumps uniformly from one site to the next in x and/or y direc-
tions, and also that the amount of jump is the same for both ↑
and ↓ components. In other words, the equal-phase-jump con-
figuration between nearest-neighbor sites is energetically more
favorable than the repeating patterns of multiple phase jumps.
Thus, our numerical calculations suggest that the phases θjα ,
in their minimum-energy configuration, obey the following
pattern:

θjα = θ0α + jxθx + jyθy, (12)

where (jx,jy) are (x,y) coordinates of the site j with respect
to our reference site 0. In this paper, we set θ0↑ = 0 without
losing generality, and determine the rest of the phases, i.e.,
θ0↓, θx , and θy , with respect to it. It also turns out that θy = 0
for ERDx and θx = 0 for ERDy SOC, and |θx | and |θy | are not
necessarily equal for Rashba SOC when hy 	= 0.

Before we move on to the numerical analysis of the
nonuniform-SF phases, we emphasize that θ0↓ may not be a
gauge-independent quantity due to the mean-field definition
of the SF order parameters. For illustration purposes, let
us consider a lattice model with Rashba or ERD SOC (the
latter can be either parallel or perpendicular to the in-plane
Zeeman field) and write down its SF order parameters using
the two coordinate systems shown in Fig. 2. The Hamiltonian
of the system in Fig. 2(b) can be transformed to that of the
system in Fig. 2(a) via the following canonical transformation:
b̂j↑ = âj↑ and b̂j↓ = iâj↓ for all j . Letting |ψ (a)〉 and |ψ (b)〉
be the ground states of Figs. 2(a) and 2(b), respectively, and
expanding |ψ (a)〉 in the occupation number basis |l↑,l↓〉a of
a bosons and |ψ (b)〉 in |l↑,l↓〉b of b bosons show that the
expansion coefficients are equal for the corresponding terms.
Therefore, using Eq. (7), the order parameter �

(a)
0↓ of the refer-

ence site in Fig. 2(a), �(a)
0↓ = 〈ψ (a)|a0↓|ψ (a)〉 = 〈ψ (b)|b0↓|ψ (b)〉,

is related to the order parameter of the same site in
Fig. 2(b) by �

(b)
0↓ = 〈ψ (b)|a0↓|ψ (b)〉 = −i〈ψ (b)|b0↓|ψ (b)〉 =

FIG. 2. The phase θ0↓ of the order parameter �0↓ of the reference
site 0 may depend on the choice of coordinate system and is not a
gauge-independent quantity within the mean-field theory. This can be
seen by comparing the order parameters using the coordinate systems
shown in (a) and (b) as discussed in the text.

−i�
(a)
0↓. This shows that θ0↓ depends on the coordinate system

and may not be a gauge-independent quantity. However,
relative phases of all of the neighboring sites, i.e., θjα − θ0α

for all j , are not affected by the above transformation, and,
hence, they are gauge independent.

Equations (11) and (12) suggest that our numerical results
(to be discussed below) for the phases θ0↓, θx , and θy can
be analytically understood by simply looking at the local
ground-state energy E0 = 〈ψj |H |ψj 〉 of the system at any
particular site j . Note that the local Gutzwiller ground state
of site j , |ψj 〉 = ∑

l↑l↓ f
j

l↑l↓ |l↑,l↓〉j , can be determined by
solving Eq. (8) for the minimum-energy configuration. Similar
to the SF order parameters shown in Eq. (11), our numerical
calculations also suggest that the magnitudes of f

j

l↑l↓ are
uniform across the entire lattice, such that

f
j

l↑l↓ = f l↑l↓e
iφ

j

l↑ l↓ , (13)

where f l↑l↓ = |f j

l↑l↓ | for all j . In addition, we find that while the
interaction terms compete with the the rest of the (tunneling,
SOC, and in-plane Zeeman) terms in the Hamiltonian for the
magnitudes f l↑l↓ , the phases φ

j

l↑l↓ are solely determined by
the interplay between tunneling, SOC, and in-plane Zeeman
field, in such a way as to minimize the energy E0 for a given
set of magnitudes f l↑l↓ . Using Eqs. (11)–(13), and after some
algebra, E0 = 〈ψ0|H |ψ0〉 of the reference site 0 can be written
as

E0 = −4t
(
�

2
↑ + �

2
↓
)
(cos θx + cos θy)

− 8�↑�↓(γy cos θ0↓ sin θy − γx sin θ0↓ sin θx)

+
∑
l↑l↓

f
2
l↑l↓

{
U↑↓l↑l↓ +

∑
α

[
Uαα

2
lα(lα − 1) − μαlα

]}

− 2hyIm
∑
l↑l↓

f 0∗
l↑l↓f

0
l↑−1,l↓+1

√
l↑(l↓ + 1). (14)

Using Eq. (5), the last term can also be written as −hyP0y .
Much of our analytical understanding of the numerical calcu-
lations is based on the analysis of this expression in various
limits, and we refer to it quite frequently in the remaining parts
of the paper.

For example, in the simpler case of non-SF phases when
�α = 0, since the tunneling and SOC terms disappear from
Eq. (14), the set of phases {φj

l↑l↓} is determined only by hy . For

a given set of {f l↑l↓}, the contribution of the in-plane Zeeman
field to E0 is minimum when the relative angles satisfy the
condition φ0

l↑−1,l↓+1 − φ0
l↑l↓ = π/2 for all l↑ and l↓ as long as

hy 	= 0.
This condition still holds in the SF phase as long as

hy 	= 0 and there is no SOC. To prove this, let us set
γx = γy = 0 in Eq. (14), in which case the contribution

of the tunneling term −4t(�
2
↑ + �

2
↓)(cos θx + cos θy) to E0

is minimized when �↑ and �↓ are maximum and θx =
θy = 0, recovering the usual case where the SF phase
is uniform across the entire lattice. Using Eq. (6), we
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FIG. 3. (Color online) Ground-state phase diagrams with out-of-plane hz Zeeman fields. The MI-SF phase-transition boundaries are shown
as functions of μ and t for the first two MI lobes, i.e., N = 1 and 2, where we consider (a)–(c) Rashba SOC and (d)–(f) ERD SOC. Here, we
set hy = 0, U↑↑ = U↓↓ = U , and U↑↓ = 0.3U in all figures. In addition, the black solid lines are guides to the eye, which are obtained from
Eq. (15) (see the text for details).

have �0↑ = ∑
l↑l↓ f l↑l↓f l↑+1,l↓e

i(φ0
l↑+1,l↓−φ0

l↑ l↓ )√
l↑ + 1, which

is chosen to be a real number in this paper, but �0↓ =∑
l↑l↓ f l↑l↓f l↑,l↓+1e

i(φ0
l↑ ,l↓+1−φ0

l↑ l↓ )√
l↓ + 1 is a complex number

in general. Therefore, for a given set of {f l↑l↓}, the order
parameters are maximized when φ0

l↑+1,l↓ − φ0
l↑l↓ = const and

φ0
l↑,l↓+1 − φ0

l↑l↓ = const for all l↑ and l↓. Recall that since
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we already set θ0↑ = 0 in this paper, φ0
l↑+1,l↓ − φ0

l↑l↓ = 0
maximizes the order parameters. It is important to note that
a set of phases can simultaneously satisfy both this condition
and the condition φ0

l↑−1,l↓+1 − φ0
l↑l↓ = π/2 that minimizes the

in-plane Zeeman term, and combining these two conditions
reveals that φ0

l↑,l↓+1 − φ0
l↑l↓ = π/2 for all l↑ and l↓. This, in

turn, implies that θ0↓ = π/2, which is in agreement with our
numerical results.

For completeness, here we find it is useful to comment on
the effects of an in-plane hx Zeeman field. If such a field is
considered in Eq. (1), its contribution to E0 can be explicitly
written as −2hxRe

∑
l↑l↓ f 0∗

l↑l↓f
0
l↑−1,l↓+1

√
l↑(l↓ + 1), which is

nothing but −hxP0x . Assuming hy = 0, and using similar
arguments as above, we find θ0↓ = 0 in this case, which is
again in agreement with our numerical results. Note that this
analysis is also consistent with our previous discussion about
the relation between the order parameters �

(b)
0↓ = −i�

(a)
0↓ that

are defined using the coordinate systems shown in Fig. 2.
Next, we are ready to analyze the effects of the strength and
symmetry of the SOC and Zeeman field on the nonuniform-SF
phase and resultant phase diagrams.

B. MI-SF phase transitions: Out-of-plane Zeeman field

We set hy = 0 in this section, and study Rashba and
ERD SOCs with an out-of-plane Zeeman field. We recall
that the SF phases in this work are distinguished from the
MI ones by their finite �↑ and/or �↓ order parameters,
and, therefore, single-particle and/or single-hole excitations
are always gapped inside the MI lobes. However, since our
definition of the SF order parameters does not discriminate the
possibility of exotic multiparticle and/or multihole excitations
that may be gapless, our single-particle and/or single-hole MI
lobes may still have some sort of hidden (exotic) SF orders.
The fate of such exotic SF phases is beyond the scope of this
work, and they deserve a separate analysis of their own (see
also Sec. IV).

In Figs. 3(a) and 3(d), we show the hz = 0 ground-state
phase diagrams as functions of μ and t for Rashba and ERD
SOCs, respectively. Since U↑↑ = U↓↓ and μ↑ = μ↓ in these
figures, the order parameters must also be equal, �↑ = �↓,
and, therefore, both α components simultaneously undergo
MI-SF transition across the phase-transition boundary. In
particular, the N = 2 MI lobe is characterized by N↑ = N↓ =
1 and all of its elementary excitations are gapped. However,
the N = 1 lobe is proposed to have an exotic counterflow-SF
order of particle-hole pairs as discussed in the literature when
there is no SOC [24,25,29,31]. These figures clearly show that
the sizes of the MI lobes shrink as a function of increasing
SOC strength in both Rashba and ERD cases, which is a result
of increased mobility of the particles due to SOC tunneling.
Note in Figs. 3(a) and 3(d) that the N = 1 MI lobe shrinks
so much that it lives right on the μ axis for sufficiently strong
SOC, and the system becomes a SF even in the t/U → 0 limit.

In Fig. 3 (and also the ones below), the black solid lines are
guides to the eye and represent the MI-SF phase-transition
boundary between the (N↑,N↓) MI lobes and uniform-SF
phase when there is no SOC and in-plane Zeeman field.
Setting γx = γy = 0 and hy = 0 in Eq. (1), the mean-field

MI-SF phase-transition boundary can easily be obtained
within the decoupling approximation, leading to the analytical
expression [30]

μp,h
α = Uαα(Nα − 1/2) + U↑↓N−α − 2t

±
√

U 2
αα/4 − Uαα(4Nα + 2)t + 4t2, (15)

where α ≡ (↑ , ↓) labels the transition from α-MI to α-SF,
and (p,h) together with ± signs correspond to the particle and
hole branches, respectively. Here, (− ↑) ≡↓, and vice versa.
Note that when U↑↓ = 0, Eq. (15) reduces to two independent
copies of the usual mean-field result for the single-component
model. We use μh

↑ for the transition from (1,0) MI to ↑ -SF by
removing one ↑ boson, μ

p

↓ for the transition from (1,0) MI to
↓-SF by adding one ↓ boson, μh

↓ for the transition from (1,1)
MI to ↓-SF by removing one ↓ boson, μ

p

↑ for the transition
from (1,1) MI to ↑-SF by adding one ↑ boson, etc. However,
this expression is not applicable to the N = 1 MI lobe when
there is no SOC and Zeeman field, and this is clearly seen in
Figs. 3(a) and 3(d).

In Figs. 3(b) and 3(e), a relatively small hz = 0.01U is
added to the parameters of Figs. 3(a) and 3(d), breaking the
degeneracy between ↑ and ↓ bosons. Although this leads to
a slight shift in μ↑ and μ↓, it has dramatic consequences on
the ground-state phase diagrams. First of all, unlike the hz = 0
case, the ↑ and ↓ bosons do not simultaneously become SF,
unless the spin-mixing SOC strength is sufficiently strong and
makes up for the chemical-potential asymmetry caused by
hz 	= 0. For instance, near the particle (hole) branch of the
N = 1 MI lobe, it is the ↓ (↑) component which first becomes
a ↓-SF (↑-SF) as a function of increasing t . Second, unlike
the hz = 0 case, the N = 1 MI lobe becomes a (1,0) MI, and,
therefore, its SF transition boundary gradually converges to
that given by Eq. (15) for small t/U values. Third, unlike
the hz = 0 case, we find regions of first-order MI-SF phase
transitions near the tip of the N = 1 lobe, and this explains
why the boundary given by our numerical calculations and
Eq. (15) has an increasing mismatch for large t/U values.

When hz is increased to hz = 0.1U , as shown in Figs. 3(c)
and 3(f), the first-order transition regions shrink near to the
very tip of the N = 1 MI lobe, and, therefore, Eq. (15) provides
better matches with our numerical results. We also note that
while the size of the N = 1 MI lobe grows with increasing
hz, the size of the N = 2 MI lobe shrinks. We find that such
trends are independent of SOC strength, and, therefore, they
are in good qualitative agreement with what is expected from
Eq. (15). Furthermore, since these trends are also strongly
correlated with the sizes of the MI lobes in the atomic limit,
Fig. 1 provides a rough intuition about how the sizes of the MI
lobes change as a function of hz.

In addition, we see in Fig. 3 that ERD SOC shrinks the
sizes of MI lobes a little bit more than Rashba SOC, and
this small difference may be understood from Eq. (14) as
follows. For a given set of {f l↑l↓}, contribution of the tunneling

term to E0 is minimized when �↑ and �↓ are maximum, and
this can best be achieved if φ0

l↑+1,l↓ − φ0
l↑l↓ = const = θ0↑ and

φ0
l↑,l↓+1 − φ0

l↑l↓ = const = θ0↓ for all l↑ and l↓. Recall that the
former phase is set to 0 in this paper [see the discussion below
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Eq. (12)]. Minimizing the contribution of Rashba SOC terms
to E0, we find fourfold degenerate solutions:

(i) (ii) (iii) (iv)

θ0↓ = π/4 3π/4 −3π/4 −π/4
θx ∈ [−π/2,0) [−π/2,0) (0,π/2] (0,π/2]
θy ∈ (0,π/2] [−π/2,0) [−π/2,0) (0,π/2]

where the semiopen intervals are due to nonzero SOC. On
the other hand, since the ERD SOC breaks the rotational
symmetry, we set θx = θE and θy = 0 for ERDx , and θy = θE

and θx = 0 for ERDy SOC. Minimizing the contribution of the
ERDx SOC term to E0, we find twofold degenerate solutions:
(i) θE ∈ (0,π/2] together with θ0↓ = π/2, and (ii) θE ∈
[−π/2,0) together with θ0↓ = −π/2. Similarly, minimizing
the contribution of the ERDy SOC term to E0, we again find
twofold degenerate solutions: (i) θE ∈ (0,π/2] together with
θ0↓ = 0, and (ii) θE ∈ [−π/2,0) together with θ0↓ = π . Based
on this analysis, the tunneling and SOC contributions to E0 can

be written as −8t(�
2
↑ + �

2
↓) cos θR − 8�↑�↓γR

√
2 sin θR

for the Rashba SOC where |θx | = |θy | = θR ∈ (0,π/2], and

−4t(�
2
↑ + �

2
↓)(1 + cos θE) − 8�↑�↓γE sin |θE| for the ERD

SOC. Setting γE = √
2γR as in our numerical calculations,

these expressions show that the contribution of ERD SOC to
E0 is always smaller than that of Rashba SOC, which, in turn,
implies that the ERD SOC gives way to a SF phase for smaller
t values.

Before we move on to the next section, we remark that by
minimizing these contributions with respect to θR and θE , we

obtain tan θR =
√

2γR�↑�↓
t(�

2
↑+�

2
↓)

for the Rashba SOC and tan |θE| =
2γE�↑�↓
t(�

2
↑+�

2
↓)

for the ERD SOC, respectively. In the simplest case

when hz = 0, setting �↑ = �↓ leads to tan θR = γR/(t
√

2) for
the Rashba SOC and tan |θE| = γE/t for the ERD SOC, which
are in good agreement with our numerical results. In particular,
we checked that tan |θE| = 2 tan θR is satisfied in Figs. 3(a) and
3(d) for any given μ and t as long as both ground states are SF.
Next, we are ready to analyze the ground-state phase diagrams
in the presence of a general Zeeman field.

C. MI-SF phase transitions: General Zeeman field

So far, we argued that when hy = 0, while the MI-SF
phase-transition boundaries are essentially identical for ERDx

and ERDy SOCs (since they are related through a spin-rotation
symmetry), their nonuniform-SF phases may be character-
ized by gauge-dependent order parameters. However, hy 	= 0
breaks the symmetry between ERDx and ERDy SOCs, and,
therefore, it is expected that hy 	= 0 has dramatic consequences
on the ground-state phase diagrams.

In Figs. 4–6, we show the hy 	= 0 phase diagrams as
functions of μ and t for ERDx , ERDy , and Rashba SOCs,
respectively. To understand the differences and similarities
between these diagrams, first of all, we recall that when hy = 0
and hz 	= 0, the symmetry between ↑ and ↓ bosons is broken
and, therefore, they do not simultaneously become SF, unless
the SOC strength is sufficiently strong. In a somewhat similar

fashion, we find that increasing hy from 0 eventually causes the
simultaneous transition of ↑ and ↓ bosons to SF, even with a
relatively small hy = 0.01U for our chosen model parameters.
This is because both the SOC and in-plane Zeeman field do not
conserve spin, and they couple ↑ and ↓ bosons. However, the
effects of on-site spin mixing due to hy are much stronger than
that of the off-site spin mixing due to SOC. In addition, we note
in all Figs. 4–6 that the sizes of the MI lobes shrink as a function
of increasing SOC strength, which is a result of increased
mobility of α particles, as mentioned in the previous section.
However, the relative sizes of the MI lobes vary significantly
depending on the symmetry of the SOC, and these differences
can be understood from Eq. (14) as follows.

In Sec. III A, we argued that when there is no SOC,
θ0↓ = π/2 as long as hy 	= 0. Next, we show that an ERDx

SOC is not in competition with hy for the value of θ0↓, and this
relation still holds. As noted in the previous section, θy = 0
for ERDx SOC, and we find that θ0↓ = π/2 together with
θx ∈ [−π/2,0) minimize the contribution of the ERDx SOC
to E0. Note that this condition is not in conflict with the
tunneling term since cos(x) is an even function. Minimizing
the combined contributions of the tunneling and ERDx SOC,

−4t(�
2
↑ + �

2
↓)(cos θx + 1) + 8�↑�↓γx sin θx, with respect

to θx , we obtain tan θx = − 2γx�↑�↓
t(�

2
↑+�

2
↓)

, which is similar to the

expression we find in Sec. III B. In the simplest case when
hz = 0, setting �↑ = �↓ leads to tan θx = −γx/t . Thus, in the
case of ERDx SOC, hy 	= 0 clearly lifts the twofold degeneracy
of θ0↓ = ±π/2 solutions discussed in Sec. III B.

On the other hand, ERDy SOC is in competition with
hy for the value of θ0↓, which can be easily inferred by
looking at the two extreme limits. When hy � γy → 0, we
already show in Sec. III A that θ0↓ = π/2. However, when
γy � hy → 0, we show in Sec. III B that the ground state
is twofold degenerate: both θ0↓ = 0 and π minimize E0.
Thus, θ0↓ clearly depends on the ratio of γy and hy , and
we may write θ0↓ = π/2 ± η, where η is determined by
γy/hy . Setting θx = 0 for the ERDy SOC, and minimizing
the combined contribution of tunneling and ERDy SOC terms,

−4t(�
2
↑ + �

2
↓)(1 + cos θy) − 8�↑�↓γy cos θ0↓ sin |θy |, with

respect to θy , we obtain tan |θy | = 2γy cos θ0↓�↑�↓
t(�

2
↑+�

2
↓)

. In the sim-

plest case when hz = 0, setting �↑ = �↓ leads to tan |θy | =
γy cos θ0↓/t . In sharp contrast to the ERDx SOC phase
diagrams where a relatively small hy = 0.01U has sizable
effects on the MI lobes as shown in Figs. 4(a)–4(c), it has a
negligible effect on the ERDy SOC diagrams that are shown in
Figs. 5(a)–5(c). However, when the Zeeman field is sufficiently
strong such as hy = 0.1U , we see in Fig. 5 that ERDy SOC
has negligible effects.

These findings may explain why the effects of hy 	= 0 on
the ground-state phase diagrams of Rashba SOC are stronger
(weaker) than those of ERDy (ERDx) SOC. This is because
while the hy term competes with the γy component of the
Rashba SOC for the value of θ0↓, it does not compete with the
γx component. Therefore, hy 	= 0 has an intermediate effect on
the phase diagrams of the Rashba SOC. Similar to the ERDy

SOC, it should not be surprising that the Rashba SOC is also
competing with the hy term for the value of θ0↓, which can
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FIG. 4. (Color online) Ground-state phase diagrams with ERDx SOCs (γx = γE,γy = 0) and general Zeeman fields. The rest of the
parameters are specified in Fig. 3.

again be easily inferred by looking at the two extreme limits.
When hy � γR → 0, we already show in Sec. III A that θ0↓ =
π/2. However, when γR � hy → 0, we show in Sec. III B
that the ground state is fourfold degenerate: both θ0↓ = ±π/4
and ±3π/4 minimize E0. Thus, θ0↓ clearly depends on the
ratio of γR and hy , and we may write θ0↓ = π/2 ± η, where
η ∈ (0,π/4) is determined by γR/hy . This discussion shows
that hy 	= 0 reduces the fourfold degeneracy of θ0↓ to twofold.
In addition, we also note that hy 	= 0 breaks the rotational xy

symmetry and, therefore, |θx | and |θy | are not necessarily equal
to each other. This completes our analysis of in-plane Zeeman
field on the ground-state phase diagrams, and we are ready to

conclude the paper with a brief summary of our results and an
outlook.

IV. SUMMARY AND OUTLOOK

To conclude, here we considered a square lattice in two
dimensions and studied the effects of both the strength and
symmetry of SOC and Zeeman field on the ground-state phases
and phase diagram of the two-component Bose-Hubbard
model. In particular, based on a variational Gutzwiller ansatz,
we analyzed the competition between the interaction, tunnel-
ing, Rashba and ERD SOCs, and out-of- and in-plane Zeeman
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FIG. 5. (Color online) Ground-state phase diagrams with ERDy SOCs (γx = 0,γy = γE) and general Zeeman fields. The rest of the
parameters are specified in Fig. 3.

fields on the MI-SF phase-transition boundary and the nature of
the SF phase nearby. It is already established in the literature
that this method is equivalent to the mean-field decoupling
theory, at least in the absence of a SOC, and, therefore, it
is expected to give a qualitatively accurate description of the
MI and SF phases. In addition to the phase diagrams, one of
our main results is as follows: Gutzwiller calculations showed
that while the magnitudes of the order parameters are uniform
across the entire lattice, their phases may vary from site to
site due to SOC, and, therefore, the SF phase is a nonuniform
one. We gave a complete account and intuitive understanding
of this SOC-induced nonuniform-SF phase and its resultant

phase patterns by supporting our numerical calculations with
fully analytical insights.

One may extend this work in many directions. For instance,
as we emphasized in the main text, recently proposed exotic
magnetic phases exhibiting spin textures in the form of
spin spirals and vortex and Skyrmion crystals inside the
MI lobes [36–40] are not accessible within a variational
Gutzwiller ansatz. However, there is no a priori reason why
the method cannot be used to investigate the spin-textured
nonuniform-SF phases. Since spin-textured SF phases have
only been discussed in the literature for a weakly interacting
Bose gas, such studies are especially of interest near the MI-SF
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FIG. 6. (Color online) Ground-state phase diagrams with Rashba SOCs (γx = γy = γR) and general Zeeman fields. The rest of the
parameters are specified in Fig. 3.

phase-transition boundary and the strongly interacting regime.
In addition, SF phases in this work are characterized by the
order parameter �jα = 〈âjα〉, and, therefore, single-particle
and/or single-hole excitations are always gapped inside our
MI lobes. However, this definition of the SF phase does not
discriminate the possibility of exotic multiparticle and/or
multihole excitations that may be gapless; our MI lobes may
still have some sort of hidden SF orders. For instance, in the
absence of SOC and Zeeman field, it is already known that
a counterflow-SF phase of particle-hole pairs [24,25,29,31]
characterized by the order parameter �j ≡ 〈âj↑â

†
j↓〉 and a

paired SF phase of two particles or two holes [25,28–31]

characterized by the order parameter �j ≡ 〈âj↑âj↓〉 are
possible when U↑↓ > 0 and U↑↓ < 0, respectively [31]. The
effects of SOC and/or Zeeman field on the fates of such exotic
SF phases is uncharted territory.
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Postdoctoral Fellowship Program, and M.I. is supported by
the Marie Curie IRG Grant No. FP7-PEOPLE-IRG-2010-
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[46] T. Grass, B. Juliá-Dı́az, M. Burrello, and M. Lewenstein, J. Phys.

B: At. Mol. Opt. Phys. 46, 134006 (2013).
[47] H. Sakaguchi and Ben Li, Phys. Rev. A 87, 015602 (2013).
[48] C. Wu, I. Mondragon-Shem, and X.-F. Zhou, Chin. Phys. Lett.

28, 097102 (2011).

043603-12

http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140538
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140538
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140538
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140538
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1103/PhysRevA.87.053619
http://dx.doi.org/10.1103/PhysRevA.87.053619
http://dx.doi.org/10.1103/PhysRevA.87.053619
http://dx.doi.org/10.1103/PhysRevA.87.053619
http://dx.doi.org/10.1103/PhysRevLett.111.095301
http://dx.doi.org/10.1103/PhysRevLett.111.095301
http://dx.doi.org/10.1103/PhysRevLett.111.095301
http://dx.doi.org/10.1103/PhysRevLett.111.095301
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1209/0295-5075/22/4/004
http://dx.doi.org/10.1209/0295-5075/22/4/004
http://dx.doi.org/10.1209/0295-5075/22/4/004
http://dx.doi.org/10.1209/0295-5075/22/4/004
http://dx.doi.org/10.1103/PhysRevA.63.053601
http://dx.doi.org/10.1103/PhysRevA.63.053601
http://dx.doi.org/10.1103/PhysRevA.63.053601
http://dx.doi.org/10.1103/PhysRevA.63.053601
http://dx.doi.org/10.1103/PhysRevB.53.2691
http://dx.doi.org/10.1103/PhysRevB.53.2691
http://dx.doi.org/10.1103/PhysRevB.53.2691
http://dx.doi.org/10.1103/PhysRevB.53.2691
http://dx.doi.org/10.1103/PhysRevA.79.053631
http://dx.doi.org/10.1103/PhysRevA.79.053631
http://dx.doi.org/10.1103/PhysRevA.79.053631
http://dx.doi.org/10.1103/PhysRevA.79.053631
http://arxiv.org/abs/arXiv:1307.5430
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1103/PhysRevLett.92.050402
http://dx.doi.org/10.1103/PhysRevLett.92.050402
http://dx.doi.org/10.1103/PhysRevLett.92.050402
http://dx.doi.org/10.1103/PhysRevLett.92.050402
http://dx.doi.org/10.1103/PhysRevB.72.184507
http://dx.doi.org/10.1103/PhysRevB.72.184507
http://dx.doi.org/10.1103/PhysRevB.72.184507
http://dx.doi.org/10.1103/PhysRevB.72.184507
http://dx.doi.org/10.1103/PhysRevA.75.053613
http://dx.doi.org/10.1103/PhysRevA.75.053613
http://dx.doi.org/10.1103/PhysRevA.75.053613
http://dx.doi.org/10.1103/PhysRevA.75.053613
http://dx.doi.org/10.1103/PhysRevA.80.023619
http://dx.doi.org/10.1103/PhysRevA.80.023619
http://dx.doi.org/10.1103/PhysRevA.80.023619
http://dx.doi.org/10.1103/PhysRevA.80.023619
http://dx.doi.org/10.1103/PhysRevA.82.033630
http://dx.doi.org/10.1103/PhysRevA.82.033630
http://dx.doi.org/10.1103/PhysRevA.82.033630
http://dx.doi.org/10.1103/PhysRevA.82.033630
http://arxiv.org/abs/arXiv:1210.1370
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevLett.100.140401
http://dx.doi.org/10.1103/PhysRevLett.100.140401
http://dx.doi.org/10.1103/PhysRevLett.100.140401
http://dx.doi.org/10.1103/PhysRevLett.100.140401
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.105.045303
http://dx.doi.org/10.1103/PhysRevLett.105.045303
http://dx.doi.org/10.1103/PhysRevLett.105.045303
http://dx.doi.org/10.1103/PhysRevLett.105.045303
http://dx.doi.org/10.1103/PhysRevLett.109.085302
http://dx.doi.org/10.1103/PhysRevLett.109.085302
http://dx.doi.org/10.1103/PhysRevLett.109.085302
http://dx.doi.org/10.1103/PhysRevLett.109.085302
http://dx.doi.org/10.1103/PhysRevLett.109.085303
http://dx.doi.org/10.1103/PhysRevLett.109.085303
http://dx.doi.org/10.1103/PhysRevLett.109.085303
http://dx.doi.org/10.1103/PhysRevLett.109.085303
http://dx.doi.org/10.1103/PhysRevA.85.061605
http://dx.doi.org/10.1103/PhysRevA.85.061605
http://dx.doi.org/10.1103/PhysRevA.85.061605
http://dx.doi.org/10.1103/PhysRevA.85.061605
http://dx.doi.org/10.1088/0953-4075/46/13/134001
http://dx.doi.org/10.1088/0953-4075/46/13/134001
http://dx.doi.org/10.1088/0953-4075/46/13/134001
http://dx.doi.org/10.1088/0953-4075/46/13/134001
http://dx.doi.org/10.1103/PhysRevA.88.013612
http://dx.doi.org/10.1103/PhysRevA.88.013612
http://dx.doi.org/10.1103/PhysRevA.88.013612
http://dx.doi.org/10.1103/PhysRevA.88.013612
http://arxiv.org/abs/arXiv:1308.6710
http://dx.doi.org/10.1103/PhysRevB.86.155101
http://dx.doi.org/10.1103/PhysRevB.86.155101
http://dx.doi.org/10.1103/PhysRevB.86.155101
http://dx.doi.org/10.1103/PhysRevB.86.155101
http://dx.doi.org/10.1103/PhysRevA.88.063619
http://dx.doi.org/10.1103/PhysRevA.88.063619
http://dx.doi.org/10.1103/PhysRevA.88.063619
http://dx.doi.org/10.1103/PhysRevA.88.063619
http://dx.doi.org/10.1103/PhysRevA.84.053632
http://dx.doi.org/10.1103/PhysRevA.84.053632
http://dx.doi.org/10.1103/PhysRevA.84.053632
http://dx.doi.org/10.1103/PhysRevA.84.053632
http://dx.doi.org/10.1103/PhysRevLett.110.115301
http://dx.doi.org/10.1103/PhysRevLett.110.115301
http://dx.doi.org/10.1103/PhysRevLett.110.115301
http://dx.doi.org/10.1103/PhysRevLett.110.115301
http://dx.doi.org/10.1103/PhysRevA.88.053631
http://dx.doi.org/10.1103/PhysRevA.88.053631
http://dx.doi.org/10.1103/PhysRevA.88.053631
http://dx.doi.org/10.1103/PhysRevA.88.053631
http://dx.doi.org/10.1088/0953-4075/46/13/134006
http://dx.doi.org/10.1088/0953-4075/46/13/134006
http://dx.doi.org/10.1088/0953-4075/46/13/134006
http://dx.doi.org/10.1088/0953-4075/46/13/134006
http://dx.doi.org/10.1103/PhysRevA.87.015602
http://dx.doi.org/10.1103/PhysRevA.87.015602
http://dx.doi.org/10.1103/PhysRevA.87.015602
http://dx.doi.org/10.1103/PhysRevA.87.015602
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1088/0256-307X/28/9/097102



