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Superfluid phases of ultracold Fermi gases on a checkerboard superlattice
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We analyze the ground-state phase diagram of two-component Fermi gases loaded into a two-dimensional
checkerboard superlattice, i.e., a double-well optical lattice, potential within the BCS mean-field theory. We show
that, by coupling the two s-wave sublattice superfluid order parameters, a checkerboard potential gives rise to
an effectively two-band model with three (two intraband and an interband) nonlocal order parameters. We study
the evolution of these order parameters as a function of particle filling, interaction strength, and checkerboard
potential and find that the system always prefers the 0-phase solutions, i.e., where the phase difference between

sublattice order parameters is 0, but never the 77 -phase one. In addition, we find that the ground state of the system
undergoes a superfluid-normal quantum phase transition at half fillings beyond a critical checkerboard potential
C, the threshold of which is precisely determined by the magnitude of the order parameter at C = 0, and that the
normal state rapidly turns into a checkerboard insulator as C increases.

DOI: 10.1103/PhysRevA.88.053606

I. INTRODUCTION

Optical superlattices [1-4] have been of interest to the
cold-atom community for a long time now, and they have
received more interest in the past few years since they may
allow for the study of topological phases of matter in the
cold-atom context [5—-8]. One way to realize a checkerboard
superoptical lattice is to superimpose two independent optical
standing waves differing in period by a factor of two, e.g., /2
and A, and tunable intensities and relative phases. In particular,
a double-well optical lattice can be produced by arranging the
shorter-wavelength (A/2) lattice potential in such a way to
split each potential well of the longer-wavelength (1) lattice
into two. In addition, the energy difference between the wells
of the resultant double-well potential can also be controlled by
tuning the relative phase of the optical potentials [1-4].

In spite of serious challenges in producing fermion su-
perfluids in earlier optical lattice experiments [9—13], there
is some recent experimental evidence for superfluid, metallic,
and insulating phases [14—16] (see also the recent review [17]).
Motivated by these experiments. in this paper, we investigate
the ground-state phases of two-component Fermi gases loaded
into a two-dimensional checkerboard superlattice. For this
purpose, we study a Fermi-Hubbard-type lattice model which
includes, in addition to the usual nearest-neighbor hopping
and onsite (attractive) interaction, an onsite energy difference
between sublattice sites, i.e., a staggered checkerboard poten-
tial. We note that the the phase diagram of the Bose-Hubbard
versions of such a model have recently been studied for the
hard-core [18] and soft-core [19] bosons.

Our main findings, within the single-band tight-binding
BCS mean-field theory, are as follows. First, we show that
the s-wave sublattice order parameters, which are momentum
independent in the original Hamiltonian, are coupled by the
presence of a checkerboard potential, and this gives rise to a
two-band model with three (two intraband and an interband)
nonlocal (momentum-dependent higher partial waves) order
parameters in the basis where the single-particle Hamiltonian
is diagonal. We study the evolution of these order parameters
as a function of particle filling, interaction strength, and
checkerboard potential, and found that the system always
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prefers the O-phase solutions, i.e., where the phase difference
between sublattice order parameters is 0, but never the 7 -phase
one. In addition, we show that the ground state of the system
undergoes a superfluid-normal quantum phase transition at
half fillings beyond a critical checkerboard potential C, the
threshold of which is precisely determined by the magnitude
of the order parameter at C = 0, and that the normal state
rapidly turns into a checkerboard insulator as C increases.

The rest of the paper is organized as follows. We introduce
the single- and many-body Hamiltonians in Sec. II and derive
the quasiparticle-hole excitation spectra of the system as
well as the complete set of self-consistency (superfluid order
parameters and number) equations. We solve the resultant
equations in Sec. IIl and give a detailed analysis of the obtained
results mentioned above. A brief summary of our main findings
is given in Sec. IV.

II. HAMILTONIAN

It is well established that Hubbard-type discrete lattice
models can be used to capture the physics of cold atoms
loaded into optical lattice potentials [20-25]. For example,
much of the theoretical predictions based on the simplest
Bose-Hubbard model [26] have been successfully verified with
ultracold Bose gases loaded into optical lattices. The prime
examples are the realizations of superfluid and Mott insulator
phases as well as the transition between the two [20-25].
Motivated by this success, here we study a Fermi-Hubbard-
type lattice model to analyze the physics of ultracold Fermi
gases loaded into a checkerboard superlattice potential, as
described next.

A. Single-particle problem

Let us first discuss the single-particle problem on a
two-dimensional checkerboard superlattice which consists
of two interpenetrating square sublattices as illustrated in
Fig. 1. Within the tight-binding approximation, the hopping
Hamiltonian for such a lattice can be written as Hy =
= icajcho lia.jp.oCloy Cipo» Where fa, B} = (A, B) labels the
sublattices and o = (1, |) labels the two components of the
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FIG. 1. (Color online) The checkerboard superlattice consisting
of interpenetrating A and B square sublattices is sketched. Here,
a is the lattice spacing, and (ex = aX,ey = ay) and (d; = e, — ey,
d; = e, +ey) are the primitive unit vectors used to construct the
single-particle problem.

Fermi gas, ti4 jp.o is the tunneling (hopping) amplitude of

o fermions between lattice sites i« and jB, and cjaa (Ciao)
operator creates (annihilates) a o fermion at lattice site ic.
In this paper, we limit ourselves to the simplest model where
tia,jB,c = 1o 1s nonzero for all nearest-neighbor lattice sites
but O otherwise. However, we also allow the possibility of
alternating hopping elements with a checkerboard pattern
where £ may take two values. In particular, let us assume #,,
(t2») corresponds to the hopping amplitude from the sublattice
A to the sublattice B in the positive (negative) x and y
directions. We note that the next-nearest-neighbor hoppings
are suppressed by an order of magnitude compared to 74, in a
typical atomic setting [17].

The eigenvalues of such real-space hopping Hamiltoni-
ans can be obtained by taking advantage of the discrete
translational symmetry and transforming them to the Fourier
(momentum) space. Therefore, we assume a single-band de-
scription and introduce ¢igo = (1/8/Ma) Y-y c187 Choao ekaTi
where M4 = M = M /2 is the number of sublattice sites, ky
is the momentum, 1BZ is the corresponding first Brillouin
zone, and r; is the position of the lattice site i. Using this
transformation, we rewrite the Hamiltonian in momentum
space as Hyp = ) ., (ek,,cl]:mck]g(T + H.c.), where

€ko = —2(t1o + t2o) cos(kid /2) cos(kad /2)
ity — ) cos(kid/2) sin(kad/2) (1)

is in general a complex number. Here, k; =k - d;/d corre-
sponds to the projections of the momentum vector along the d;
directions (see Fig. 1), where d = V2a, cltow (ckao) Operator
creates (annihilates) a o fermion with momentumk = (k,,k,)
on « sublattice, and H.c. is the Hermitian conjugate. Thus,
the single-particle dispersion relations are &gy, = r|€ks|,
where r = (+,—) labels the two bands. Note that, since the
translational symmetry is doubled in real space, the original
k space is halved but the number of bands is doubled in
such a way that this dispersion recovers the usual result,
ie., egs = —2t5[cos(kya) + cos(kya)], in the absence of a
sublattice structure when t, = thy = t,.
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In addition to the hopping part, we include an on-
site  checkerboard lattice potential, i.e., an alternating
energy offset between sublattices, which is given by
Hyp=-C) icoo )/aC,-TM,Cma, where C > 0 is its strength
and y, =41 (—1) for « = A (B). This term lowers
(raises) the onsite energy of the A (B) sublattice sites by
C. Using the Fourier transformation described above, we
rewrite the total Hamiltonian He = Hy + H,, in K space and

diagonalize it, leading to Hc =) . ekwblmbkw, where

Skoa = Yay/ l€ko |? + C? are the quasiparticle-hole dispersion

relations in the presence of a checkerboard potential and bim
(bkao ) Operator is the new quasiparticle creation (annihilation)
operator in the transformed basis. Note that filling the system
halfway (a pair of 1 and | particles per two lattice sites)
yields a band insulator phase as long as C # 0, and that ey«
reduces to e, when C = 0 as expected. We note that the ckq»
and bk, oOperators are related via a Bogoliubov transforma-
tion cxae = Ukoabkac + UkoBbkBs aNd Ckpo = Ukoabkas +
Vko BbkBs, Where Uk, and vg,, are the components of the
eigenvector that corresponds to the eigenvalue eg,,. The
eigenvectors are orthonormal in such a way that ugso /Vkee =
€xo /(C + ekoo). Having discussed the single-particle Hamil-
tonian, next we move on to the many-particle problem.

B. Many-particle problem

For the many-particle problem, the effects of local
(onsite) and attractive interparticle density-density interac-
tions can be taken into account within the BCS mean-
field approximation, which is known to work well for
weak interactions at all temperatures and even for mod-
erate interactions at 7 =0 [27-29]. For this purpose, we
introduce sublattice-dependent superfluid order parameters
A4 and Ap with s-wave symmetry, as defined by A, =
—(2g/M) ) ;o (Cia)Ciar) inTeal or —(2g/M) Y (€ ko | Ckat)
in k space, where g > 0 is the strength of the interaction
and (---) is a thermal average. Therefore, the interaction
contribution to the k-space Hamiltonian can be written as [30]
Hyp = (M/8) 3, 18al?/2 4 Y1 (AjckayCkay +Hee.). We
also introduce a spin-dependent chemical potential (., term to
the Hamiltonian, i.e., H, = — Ziam Mgcjwciw in real or

= koo u{,clmckw in k space, which allows us to fix the
number of ¢ fermions independently of each other.

Thus, the total many-body mean-field Hamiltonian
H = Hy+ He, + Hyp + H, for the checkerboard super-
lattice can be compactly written in k space as H =

(M/8) X, 18al?/2 =25, 1y + X, WDk, where | =

(clt n WCIT: B C—kB|:C—kA 1) denotes the fermionic operators
collectively, and the Hamiltonian matrix Dy is

2 C €kt 0 AA
P P !
0 AE ny — C —€_k|
A% 0 —€*, M+ C

In this paper, we consider equal hoppings for 1 and |
fermions, i.e., tpy =ty = t;, leading to €xy = eikL = ¢k. The
quasiparticle-hole excitation spectra Ey; of the interacting
system are given by the eigenvalues of this Hamiltonian matrix,
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and they can be compactly expressed as

Eksz—h+ﬂs\/sﬁ 'Al _ & DJ&, 3)

X = 4elP(Aal + 1457 - 2|AAAB|cos ®) + 165>
+(Aal” = 1AM — 1A +81C), )

where s = (1,2,3,4) with 8y = 8, = —83 = —B4 = 1 labels
the eigenvalues, h = (uy — p)/2 is the difference, u =
(t4 +py)/2 is the average chemical potential, &g =
Vl0ek|? + C%, and ® = ¢4 — ¢p is the phase difference. Here,
we assume A, = |A,|e%. Note that the particle-hole sym-
metry of the Hamiltonian implies simultaneous transformation
of A — B and u — —pu. Note also that, after setting Ay =
Ap = Apinthe C = 0 limit, this expression recovers the usual
result Ey, = —h + ,BS\/(IEkI — )% + |Ap|?, which is doubly
degenerate since the original k space is halved.

Using the quasiparticle-hole excitation spectra, we obtain
the corresponding mean-field thermodynamic potential €2 for
the total Hamiltonian H as

Z Al + TZln [—1 “"‘“h(ﬁj%)}
—EZﬂSEkS -2y (5)
ks k

where we set the Boltzmann constant kg to unity. Following
the usual procedure, we find the lowest-energy state of the
system by minimizing 2 with respect to the amplitudes
|Ay| and phase difference @, leading to a set of (three)
nonlinearly coupled equations. In addition, we may set the
totaln = n4 + n and imbalance p = n4 — n number fillings
using the thermodynamic identities n = —(1/M)02 /9 and
p=—(1/M)0Q2/0h,where0 < n, < 1.This procedure leads
to a set of (five) self-consistency equations that need to be
solved simultaneously, and four of those can be explicitly

written as
A 1 0 Eyg E
[A 4l _ LS 9B (B ©)
g 2M - 0| A4l 2T
A 1 0 Exg Exs
1Asl _ 1 5 tanh [ =< ), )
g 2M - 0| Ag| 2T
1 aEks Ek.Y
n=— 1+ tanh , (8)
2M 4 I 2T
1 8Ek.v Eks
= — —— tanh . 9
P=om & o (2T) 2

Some of these partial derivatives are long and not par-
ticularly illuminating, and therefore none of them are
shown. Similar to the expressions above, the remain-
ing (fifth) phase-difference equation can be written as
0= ZkS(BEkS/BCD)tanh[Eks/(ZT)], and since 90X/0d =
8lex|’|A4Ap|sin®, we immediately conclude that & is
either 0 or w. However, our numerical results suggest
that the m-phase solution is never realized for the par-
ticular model Hamiltonian that we consider in this paper.
Note that these k-space summations over the 1BZ can be
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converted into the k-space integrations via Y, f (ki k) =
(M) 7, [T, f(x/d,y/d)dxdy.

Before attacking this problem via numerical means, we
would like to gain some physical insight. For this purpose,
we rewrite the mean-field Hamiltonian H,,; in the basis of
bxao and by g, operators, i.e., the one where the single-particle
checkerboard Hamiltonian is diagonal. Up to a constant
term, the resultant four terms can be compactly written
as Zkaﬁ(Fkaﬂb,kwbkm + H.c.), where the coefficients are
given by Fkaﬂ = A:u—kiaukTﬁ + A;}U—kukaﬂ‘}- It is easy to
show that the intraband coefficients Fyq4 vanishwhen C — 0
as one may expect. This immediately reveals that H,,r has the
form of a two-band model Hamiltonian as long as C # 0.
Note that the coefficients Fxaa,Fxpp, and Fyxap correspond,
respectively, to the k-dependent A intraband, B intraband, and
AB interband superfluid order parameters, and all of them
are spin singlet with even parity, i.e., Fxyp = F_gqop, as one
may expect. Therefore, the starting s-wave sublattice order
parameters A 4 and A g, which are k independent in the original
Hamiltonian, are coupled by C # 0, and this gives rise to three
nonlocal (k-dependent higher partial waves) order parameters
in the transformed basis. Having derived the self-consistency
equations, next we are ready to present main findings of this
work mentioned above in the introduction.

III. NUMERICAL RESULTS

In this section, we present our numerical results that are
obtained by solving Eqs. (6)—(9) for a self-consistent set
of |Ayl, |Ag| and p as a function of given n, g, and C
values. Here, we consider only the ground states of population-
balanced Fermi gases and set 7 = O and & = 0 [31]. Motivated
by the success of earlier theoretical works on the BCS-BEC
crossover problem [27-29], we emphasize that the given set of
four mean-field equations (that are suitably generalized here to
the checkerboard superlattice model) is expected to describe
the qualitative physics well for weak interactions at all T,
and even for moderate and strong interactions at 7 = 0, as
long as the single-band tight-binding approximation remains
valid [33]. In order to isolate the effects of a nonzero C from
that of checkerboard hopping, let us first analyze the uniform
hopping t; = t, = ¢ case.

A. Uniform hopping: t, =, = ¢

In Fig. 2, we set g = 5¢ and show |A4| and |Ag| as a
function of n for a set of C values. When C = 0, |A 4| = |Ap]|
is symmetric around half filling (n = 1 or u = 0), which is
a consequence of the particle-hole symmetry of the parent
Hamiltonian, and its maximum value at half filling is a con-
sequence of the lattice density of states effect. As mentioned
in Sec. II, when C # 0, the particle-hole symmetry implies
simultaneous transformation of A — B and u — —u (or
n — 2 — n). This is clearly illustrated in all of our numerical
results, and therefore, it is sufficient to restrict our discussion
only to low (particle) fillings 0 < n < 1. We note that while
C # 0 increases |A 4| for low fillings as a function of C, it
decreases |Apg|. This is because since C > 0 lowers (raises)
the onsite energy of the A (B) sublattice, the local chemical
potential of the A (B) sublattice is also lowered (raised) by C.
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FIG. 2. (Color online) The superfluid order parameters |A4| in
panels (a) and |Ag| in (b) (both in units of hopping #) are shown as a
function of total number filling n for a set of checkerboard potentials C
when the interaction strength is g = 5¢. The particle-hole symmetry
implies simultaneous transformation of A — B and u — —u (or
n—2—n).

Therefore, the A (B) sublattice is effectively becoming more
strongly (weakly) interacting as a function of C. This effect
is clearly seen in Fig. 3(a), where we plot |A4| and |Ag| as
a function of C for a set of n values. In the C > ¢ limit,
we expect |As| = g/n(l —n) and |[Ag| =0for0 < n < 1,
which is in perfect agreement with our numerical results.

In addition to these findings, we find that at precisely
the half filling the system undergoes a superfluid-normal
quantum phase transition beyond a critical C, as illustrated
in Fig. 3(a). Note that the normal phase at half filling
corresponds to a band insulator as discussed in Sec. II A. To
gain intuitive understanding of this transition, we analyze the
quasiparticle-hole excitation spectra of the interacting system
at n = 1 and therefore set 4 = 0 and |A4| = |Ag| = |A] in
Egs. (3) and (4). This gives X = 0 and a doubly degenerate
Exs = BsV|ex|? + | A%, whose form is the same as the C = 0
spectra if we identify |[A¢|?> = |A|> + C?. Here, we recall that
the quasiparticle-hole dispersion relation of the noninteracting
(g = 0) system is simply given by ex, = YoV |€x|> + C? (see
Sec. IT A). Therefore, these results suggest that the system
does not favor superfluidity and the normal state with |[A| = 0
becomes the ground state when C > |Ay|, where |Ag] is
the C = 0 value. Our numerical results shown in Fig. 3(b)
are consistent with this analysis, where the the critical C
values exactly coincide with |A| along the phase transition
boundary. Given that |Ag| = (g/2 — 4t>/g)/n(2 — n) in the

FIG. 3. (Color online) (a) The order parameters |A | and |Ag|
(in units of hopping ¢) are shown as a function of the checkerboard
potential C (in units of ¢) for a set of total number fillings n when
g = 5t.(b) The superfluid-normal phase transition boundary is shown
as a function of the interaction strength g and C at half filling (n = 1).
Note that C = |Ay| coincides with the transition boundary, where
|Ap| is the magnitude of the order parameter at C = 0. The normal
state rapidly turns into a checkerboard insulator as C /¢ — oo, which
is not shown in the figure but discussed in Sec. Il A. See Sec. III B
for the blue (gray) dotted line.

strong-coupling (g >> ) limit, by setting n = 1, we obtain
C = g/2 —4t?/g as the asymptotic limit of the boundary,
and this is in perfect agreement with our numerical results.
When the critical C — g/2 > ¢, we find that the A (B)
sublattice has ny — 2 (np — 0) so that it corresponds to
a sublattice band insulator (fully empty sublattice band),
forming a checkerboard insulator. This intuitive result can
also be obtained by noting thatny —ng = —(2/M)0Q2/0C =
> (0 Exs/3C) tanh[(Ex, /(2T)], which reduces to ng —
ng = 4/M)Y, C/¥C? +|A* + |e|? at half-filling at zero
temperature. Therefore, the ground state of the half-filled
system first changes from a superfluid to normal when C =
|Ao|, at which point |A| vanishes, and then the normal state
rapidly turns into a checkerboard insulator as C/t — oo. For
instance, ny — np becomes 1.9,1.95,1.99, and 1.999 when
C/t is approximately set t0 4.9,7.4,17, and 55, respectively, in
the normal state. Since these numbers are independent of g /1,
the phase transition is almost (up to 1% deviation) directly from
the superfluid to a checkerboard insulator when g/t = 34.
We note in passing that while having a nonzero C leads to
a staggered pattern not only in the sublattice order parameters,
i.e., |Aa| # |Ap|, but also in the sublattice number fillings,
i.e.,n4 # np, we avoid calling the ground states of the system
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a supersolid (when |A4| # |Ap| and n4 # np) or a charge-
density-wave insulator (when |A4| = |Ag| =0and ny # np
is an integer number). This is because since C # 0 breaks the
translational invariance of the lattice, directly causing such an
alternating order parameter and filling patterns, we believe it
is important to distinguish our superfluid and checkerboard
insulator phases from the true supersolid and charge-density-
wave insulator ones, for both of which the translational
invariance is broken spontaneously due, for instance, to the
presence of nearest-neighbor interactions.

B. Checkerboard hopping: #; # £,

Before we present our concluding remarks, here we discuss
the possibility of having alternating hopping amplitudes.
Equation (1) indicates that the effects of small deviations from
the uniform hopping, i.e., when |t; — 1| < t; + 1, can be
taken into account (to a very good approximation) via changing
the normalization factor ¢ that is used in the previous section to
(t1 + 12)/2. However, in the asymptotic #, — 0 limit, Eq. (1)
gives |ex| = 2¢1| cos(k1d/2)|, and one may expect major
quantitative differences. For instance, the superfluid-normal
phase transition boundary 2C/t; of a half-filled system is
shown in Fig. 3(b) as a function of 2g/#; (dotted line), and it is
clearly shown that the phase boundary deviates substantially
from that of the uniform hopping case. We again note that
the normal state rapidly turns into a checkerboard insulator
as C/t; — oo, for which ny — ng becomes 1.9, 1.95, 1.99,
and 1.999 when C/t; is approximately set to 4.2, 6.1, 14,
and 45, respectively, in the normal state. Having discussed the
numerical results, next we briefly summarize the main findings
of this paper.

IV. CONCLUSIONS

To summarize, here we studied the ground-state phases
of Fermi gases loaded into a two-dimensional checkerboard
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superlattice potential, i.e., a double-well optical lattice, con-
sisting of two interpenetrating square sublattices A and B. We
described this system with a Fermi-Hubbard-type lattice model
which includes, in addition to the usual nearest-neighbor
hopping ¢ and onsite (attractive) density-density interaction
g, a sublattice-dependent local (onsite) energy C. Within
the single-band tight-binding BCS mean-field theory, we
reached the following conclusions for such a Hamiltonian.
First, we showed that the s-wave sublattice order parameters
Ay = |A4le? and Ap = |Agle’®®, which are k independent
in the original Hamiltonian, are coupled by the presence of a
checkerboard potential C # 0, and this gives rise to a two-band
model with three (two intraband and an interband) nonlocal
(k-dependent higher partial waves) order parameters in the
basis where the single-particle Hamiltonian is diagonal. We
studied the evolution of these order parameters as a function
of particle filling, interaction strength, and checkerboard
potential, and found that the system always prefers the O-phase
(¢4 = ¢p) solutions but never the w-phase (¢4 = ¢p + 1)
one. In addition, we found at precisely half fillings that the
ground state of the system undergoes a superfluid-normal
quantum phase transition beyond a critical C, the threshold
of which is precisely determined by the magnitude of the
order parameter at C = 0, and that the normal state rapidly
turns into a checkerboard insulator as C increases. One may
extend this work in many ways, and motivated by the ongoing
experiments [34-38], we are especially interested in studying
the effects of artificial gauge fields on the ground-state phases
of the system, e.g., the Zeeman field [31] and the so-called
optical flux lattices.
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