PHYSICAL REVIEW A 88, 013631 (2013)

Spin-orbit-coupling-induced Fulde-Ferrell-Larkin-Ovchinnikov-like Cooper pairing and
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We study the interplay between the Zeeman field and spin-orbit coupling (SOC) in harmonically trapped
Fermi gases loaded into a two-dimensional single-band tight-binding optical lattice. Using the Bogoliubov-de
Gennes theory, we find that the Zeeman field combined with a Rashba SOC gives rise to (i) Fulde-Ferrell-like
superfluidity and (ii) skyrmionlike polarization textures near the edges of the system. We also discuss the effects
of interaction, temperature, SOC anisotropy, and Zeeman field anisotropy on the superfluid ground-state and

polarization textures.
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I. INTRODUCTION

The possibility of simulating non-Abelian artificial gauge
fields with quantum Bose and Fermi gases in atomic systems
has become one of the forefront research directions in the
atomic and molecular physics community [1-9], primarily due
to its direct connection to the topological phases of matter
that have extensively been studied in the condensed-matter
community in recent years [10-13]. In particular, the exciting
possibility of the creation and observation of Majorana
bound states in topological insulators, superconductors, and
superfluids is at the heart of topological quantum computation
[14]. These quasiparticles can be created at the boundaries
(edges) of non-Abelian topological phases, and they allow
for nonlocal storage of quantum information that is protected
from local perturbations by the bulk gap. Motivated by
these theoretical proposals, spin-orbit coupled Fermi gases
have recently been created and detected near the quantum
degeneracy limit by three groups [3,4,6,7]. While the Shanxi
group in China studied the spin dynamics and momentum
distribution asymmetry in the equilibrium state as hallmarks
of the spin-orbit coupling [3,6], and the Massachusetts Institute
of Technology group used a more direct approach and analyzed
the energy-momentum dispersion spin-orbit gap and spin
composition of the quantum states [4], the NIST group has
very recently identified a Feshbach resonance via its associated
atomic loss feature [7]. Thus, assuming that sufficiently low
temperatures are experimentally attainable in the near future,
the physics of Majorana bound states can be studied in the
clean and controllable environment uniquely offered by the
atomic systems [15,16].

Following the success of these initial experiments [1-7]
(see also the recent reviews [8,9]), there has been growing
theoretical interest in studying the one-, two-, few-, and
many-body properties of spin-orbit coupled Fermi gases. For
instance, the stability and phase diagrams have been studied
for finite and thermodynamic systems as functions of the
interaction strength, spin-orbit coupling (SOC) strength, pop-
ulation imbalance, Zeeman fields, SOC anisotropy, Zeeman
field anisotropy, temperature, etc., in one, two, and three
dimensions (see, e.g., [17-25]). There also appeared some
recent works on the normal-state properties of repulsive Fermi
gases with short-range interactions in the upper branch of

1050-2947/2013/88(1)/013631(7)

013631-1

PACS number(s): 03.75.Ss, 05.30.Fk, 03.75.Hh

the spectrum [26], which share similarities with repulsive
electron gases with long-range Coulomb interactions [27].
The amount of knowledge gained in these recent works is
overwhelming, and here we briefly quote the most recent
ones that are concentrated on the possibility of creation
and observation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
[28,29] type spatially modulated nonuniform superfluid phases
under an in-plane Zeeman field [17-25]. In sharp contrast to
the out-of-plane Zeeman field, these works have shown that the
nonuniform FFLO-like phases are energetically more favored
than the uniform BCS-like phases in the case of an in-plane
Zeeman field. It is important to note that the FFLO-type phases
in spin-orbit coupled Fermi gases are stabilized mainly by the
asymmetry of the Fermi surfaces in momentum space, and this
mechanism is in contrast with that of the condensed-matter
ones, where they are stabilized by the symmetric Zeeman
mismatch in momentum space.

Since all of these results are obtained through ansatz-based
non-self-consistent momentum-space calculations [17-25],
one of our main objectives here is to investigate the stability
of FFLO-like phases by solving the Bogoliubov-de Gennes
(BdG) equations in a self-consistent fashion. For this purpose,
we study the interplay between the Zeeman field and SOC in
two-dimensional Fermi gases [30-32] loaded into a single-
band tight-binding optical lattice. Our primary finding is
that, while the ground states of spin-orbit coupled systems
may have weak Fulde-Ferrell (FF) [28] type nonuniform
superfluid characters (i.e., phase modulations) but not a Larkin-
Ovchinnikov (LO) [29] one (i.e., amplitude modulations)
under the out-of-plane Zeeman field, the FF character of
the superfluids is stronger for the Rashba SOC under an
in-plane Zeeman field. The FF-type phase oscillations are
most prominent along the direction that is perpendicular to
the Zeeman field. Therefore, our self-consistent real-space
BdG results support recent findings on the thermodynamic
continuum systems that are ansatz-based momentum-space
calculations [17-25]. We also comment on the effects of
interaction, temperature, SOC anisotropy, and Zeeman field
anisotropy on the FFLO-like pairing and ground state of the
system, and we note that since the superfluid order parameters
modulate only toward the edges of the system, where the
densities of fermions are low and the magnitudes of the
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order parameters are small, it may be difficult to detect these
modulations in atomic systems at finite temperatures.

Furthermore, our secondary finding is that any nonzero
combination of the Zeeman field and Rashba SOC induces
not only an easy-axis polarization along the direction of the
Zeeman field everywhere in the system but also a spatially
modulated (ring-shaped in magnitude) transverse polarization
near the edges. This is in sharp contrast with the trapped
systems with no SOC (and also with the thermodynamic
systems with SOC), where only an easy-axis polarization
can be induced beyond a threshold Zeeman field. We show
that the induced polarization textures are skyrmionlike [10,33]
finite-size effects, broadened by the trapping potential, and that
their microscopic origin can be traced back to the counterflow
of spontaneous spin currents in the case of Rashba SOC. The
skyrmion particles were originally proposed in the late 1950s
by the nuclear physicist T. Skyrme as a model for baryons [33],
and they were first observed in condensed-matter physics with
quantum-Hall ferromagnets as a result of the interplay between
the Zeeman field and Coulomb interactions [34,35]. Note that
similar skyrmionlike spin textures were previously predicted in
atomic physics for a rotating spinor Bose-Einstein condensate
(BEC) [36,37] and spin-orbit coupled BEC [38—40], where
skyrmions are spontaneously produced by SOC in the latter
case without rotation. We also argue that the transverse
polarization textures may be used to probe and characterize
the topological phase transitions and the associated Majorana
bound states in finite spin-orbit coupled Fermi gases, and
we comment on the effects of interaction, temperature, SOC
anisotropy, and Zeeman field anisotropy on the polarization
textures.

The rest of this paper is organized as follows. In Sec. II, first
we introduce the mean-field Hamiltonian and then derive the
self-consistency equations for the superfluid order parameter,
total number of fermions, and out-of- and in-plane spin
polarizations within the BdG framework. We numerically
solve the resultant equations and discuss the obtained results
in Sec. III. Finally, the conclusions of this paper are briefly
summarized in Sec. IV.

II. BOGOLIUBOV-DE GENNES THEORY

The results mentioned above are obtained within the self-
consistent BAG theory in real space as discussed next. First of
all, we describe the spin-orbit coupled Fermi gases loaded into
a two-dimensional single-band tight-binding optical lattice by
the grand-canonical mean-field Hamiltonian:

H= Z <—tZCl+A¢,+e,C + Ascliel; +Hc)
- Z (M+S(f

V)c iCoi + (hy —isshy )c C—oil,

(1)
where the operator c ; (co;) creates (annihilates) a pseudospm
o = {1,]}} fermion at lattice site i, the spmor C (ch,c u)

denotes the fermion operators collectively, € = {x Y} allows
only nearest-neighbor hopping with amplitude ¢, and H.c. is
the Hermitian conjugate. For a generic non-Abelian gauge
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field A = (xo,,—pBo,), where o, is the Pauli matrix and
{o, B} > 0 are independent parameters characterizing both the
strength and the symmetry of the SOC, the 1 and | fermions
gain ¢; ;3; = e '*% phase factors for hopping in the positive

X direction and ¢;45,; = ¢'# phase factors for hopping in

the positive y direction. In addition, the complex number
A; is the local mean-field superfluid order parameter (to be
specified below), u is the chemical potential, s = —s, =1,
h = (h,,hy,h;) is the Zeeman field, and V; = Vor? is the
harmonic confining potential where the distance r; of site i
is measured from the center of the lattice.

Using the Bogoliubov transformation, the mean-field
Hamiltonian given in Eq. (1) for a two-dimensional L x L
square lattice can be compactly written as a 4L x 4L
matrix-eigenvalue problem [41]:

t t

Iy Ty, 0 A Unj Uy

v '

Ty Ty -4 0 Uy U
2|0 —a —r o-m 0 B I

; t TN Unj Vi

* * *
AT 0 TR T v,

2
where u; and vy, are the components of the nth quasiparticle
wave function at site i, and &, > 0 is the corresponding energy
eigenvalue. Here, the offsite hopping and onsite energy terms
are compactly written as

T(Zr’ = _l(ra’ [(/’L + 5o h V)(Ss(,s /

+(hx - lsah_v)Bsﬂ.—xar]sij’ (3)

where §;; is the Kronecker delta. The nonvanishing nearest-
neighbor hopping elements are 7% = ¢ cosa and t’ A

LAY _ _rsina for the positive X direction and tf,f,ﬂ

—ty
%
t cos B and tlT Wl tuﬂ = it sin B for the positive y direction.

Note that the hopping in the negative directions are simply
the Hermitian conjugates and also that the angles o and 8
determine, respectively, the relative strength between the spin-
conserving particle hopping and spin-flipping SOC terms in
the X and ¥ directions.

In this paper, we consider only the onsite interactions for
which the off-diagonal couplings are A;; = A;§;; diagonal
in the site index. Therefore, Eq. (2) needs to be solved
simultaneously with A; = g(c4;cy;), where g > 0 is the
strength of the onsite interaction between 1 and | fermions,
and (---) is a thermal average. In addition, we use u to fix
the total number of fermions N = Zi n;, where 0 < n; =
3 (e} .cqi) <2 gives the local fermion filling. Once the
self-consistent solutions are obtained for the wave functions
and the energy spectrum, it is a straightforward task to
calculate any of the desired observables. For instance, we are
interested in the local polarization vector p; = (pix, Piy, Piz)
the components of which follow from the expectation values
of the Pauli spin matrices, i.e., p;, = (C[TUVCi), and are
given by p;, = ZRG(CLCu), Diy = ZIm(chi,‘), and p;, =

> S (choi). Thus, we need the following averages for our
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purposes:

(cricy) = Y [l uy, flen) + ub(0p)* f (=], (4)
(chicy) = D My uy &) + v k) f(=el. (5)
(chicaiy = D (U flen) + o5 f (=] (©)

n
where f(x) = 1/(e*/T + 1) is the Fermi-Dirac distribution
function, T is the temperature, and the Boltzmann constant kp
is set to unity. We also define the total polarization components
as P, =), piv/N, where v = {x,y,z}. Equations (2)—(6)
correspond to the generalization of the BdG equations to the
case of spin-orbit coupled Fermi gases on optical lattices.

III. NUMERICAL RESULTS

Having established the BdG formalism, next we present
our numerical solutions for the ground-state phases, which
are performed on a 4la x 4la square lattice with N = 150
fermions in total, where a is the lattice spacing. We take V) =
0.01r as the strength of the trapping potential and discuss both
the Rashba-type symmetric (¢ = ) and asymmetric (& # B)
SOC fields. Note that the experimentally more relevant equal
Rashba-Dresselhaus (ERD) SOC [1-9] can be obtained by
setting &« = 0. The effects of higher fermion numbers and
finite temperature are also briefly mentioned toward the end of
the paper.

Before we discuss the aforementioned FFLO-like pairing
and polarization textures, we make three important remarks.
First, in the absence of a SOC, i.e., when o = 8 =0, we
know that a sufficiently strong Zeeman field h (the threshold
of which depends on g) can polarize the system along the
easy-axis (h) direction. Second, in the absence of a Zeeman
field, i.e., when h = (0,0,0), we also know that the system is
trivially unpolarized no matter what the SOC is. Third, while
any combination of Zeeman field (no matter how weak the
field is) and SOC in a thermodynamic system may produce
a uniform polarization along the easy-axis direction, it does
not induce any Eglarization in the transverse direction, i.e.,
perpendicular to h. With these remarks in mind, next we show
that any nonzero Zeeman field can induce intricate polarization
textures near the edges of finite-size spin-orbit coupled Fermi
gases under various circumstances.

A. Out-of-plane Zeeman field

Let us first consider an out-of-plane Zeeman field h =
(0,0,h, # 0), which is perpendicular to our square lattice.
The magnitudes and phases of typical ground-state order
parameters are illustrated for the Rashba and ERD-like SOCs
in Figs. 1(a) and 1(b), respectively, for 4, = 0.5¢. The phases
of the order parameters clearly show the C4 and C; symmetries
of the Hamiltonian for the Rashba and ERD-like SOCs,
respectively. These figures suggest that the ERD-like SOC
has a stronger FF-type nonuniform superfluid character where
the phase of the order parameter has a much larger spatial
modulation. Note that the phases have both angular and radial
oscillations toward the edges of the system where the densities
of the fermions are low and the magnitudes of the order
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FIG. 1. (Color online) The color maps of the amplitudes (| A, |, left
column) and phases (¢;, right column) of the order parameters A; =
|A;le’® for an out-of-plane Zeeman field h = (0,0,0.5¢) at g = 3¢
and T =0, wherea = =n/4in(a),and « = /40 and = 7 /4
in (b).

parameters are small. Therefore, it may be difficult to detect
these modulations in atomic systems at finite 7. However,
since the spatial profiles of the magnitudes of the order
parameters do not have any zeros (nodes), our results do not
feature any LO-type nonuniform superfluidity. We emphasize
that these effects become weaker and weaker with decreasing
h, in such a way that all of the local phases of the order
parameters vanish as b, — 0.

The corresponding ground-state polarization textures are
illustrated in Fig. 2, where we show two-dimensional vector
maps of the transverse polarizations (—pj.,—piy) together
with color maps of the easy-axis polarizations p;,. Here, we
set g = 3¢ but emphasize that setting it to zero does not lead
to any significant change in the results. These figures again
clearly show the C4 and C, symmetries of the Hamiltonian
for the Rashba and ERD-like SOCs, respectively. First of all,
the not-so-interesting p;. is finite everywhere in the trap with
its maximum value at the center of the system in both figures,
and it gradually decreases to zero toward the edges. The case
of Rashba SOC is shown in Fig. 2(a), where we find that
pix 7 0 and p;, # 0 in general, except for the center of the
trap. In the ERD-like case when o« — 0 but 8 = /4, we see
in Fig. 2(b) that while p;,, — 0 everywhere in the system
Diy Temains mostly unchanged. Therefore, in the ERD case
when o = 0, a domain wall is formed on the x axis where
Pix = Piy = 0, and such a limiting behavior can be extracted
from Fig. 2(b). Similarly, when 8 = 0 but « # 0, a domain
wall forms on the y axis where p;, = p;, = 0 (not shown).
Thus, we conclude that a nonzero out-of-plane Zeeman field no
matter how small it is (not shown) induces spatially modulated
transverse polarizations only along those directions where
there is SOC. In most cases, the ratio of the transverse to
the easy-axis polarizations is around 5-10%. However, we
emphasize that while the total easy-axis polarizations are
P, ~ 0.3 and ~0.36 in Figs. 2(a) and 2(b), respectively, the
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FIG. 2. (Color online) Two-dimensional vector maps of the
transverse polarizations (—p;.,—p;,) for an out-of-plane Zeeman
field h = (0,0,0.5¢)at g = 3t and T = 0. Here,« = = /4 in (a),
and o« = /40 and B = 7 /4 in (b). The largest arrows correspond
approximately to 0.01, and the easy-axis polarizations p;, are
illustrated with color maps.

total transverse polarizations vanish, i.e., P, = 0 = P,, as one
may expect.

Note that the transverse polarizations change sign in
space and that their magnitudes +/ pizx + Piz‘, show ring-shaped
structures. In Fig. 2(a), in addition to the broad ring ranging
mostly between 7a < r; < 12a, there is also a narrow one with
avery weak peak around r; & 14a. Similarly, in Fig. 2(b), there
are two incomplete rings especially along the y axis, and they
both have comparable peaks around r; ~ {10.5a,14.5a}. We
also find that increasing the size of the square lattice pushes
the ring-shaped structures further away from the center, and
reducing the strength of the trapping potential intensifies them
around a narrower region near the edges, both eventually
leaving no transverse polarization near the center. In the
box-potential limit when Vy — 0, we find that while the
continuum- and edge-state contributions to the transverse
polarizations are competing with each other for low %, values
the latter contribution gets stronger with increasing h, and
eventually dominates beyond the /4, threshold for the creation
of zero-energy (Majorana) edge-bound states. These findings
suggest that the transverse polarizations observed here are
finite-size edge effects, broadened by the trapping potential,
and also that the working mechanism is similar to the one
that is responsible for the creation of edge-bound Majorana
states. We note that similar spin textures are referred to as
skyrmions in the contexts of rotating spinor BEC [36,37] and
spin-orbit coupled BEC without rotation [38—40]. In particular,
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we especially note the great similarity between Fig. 2(a)
presented here and Fig. 5(a) of Ref. [40].

To understand the microscopic origin of these textures,
next we employ the local-density approximation and analyze
the single-particle excitation spectrum of the local system.
The spectrum of the local Hamiltonian in momentum space
involves two quasihole and two quasiparticle branches that are
given by

Egy =& +hi+ s>+ 142
ﬂ\/ h2(E2, + |A:17) + &2 Isx 2 7)

where &; = —2t[cos a cos(kya) + cos B cos(k,a)] — p; is the
shifted kinetic energy and |[s|*> = 4¢?[sin® a sin?(k a) +
sin® B sin’(k,a)] is the SOC contribution. Here, the local chem-
ical potential u; = u — V; includes the trapping potential. We
immediately see that the minus branches can become gapless
at some Kk-space points, i.e., Eﬁoiqf =0, and therefore the
locations of zero-energy states are determined by the following
conditions: (i) |sk,| =0 and (ii) h; = \/Slfoi + |A;]*. While
the Rashba SOC satisfies the former condition at four points
ko = {(0,0); (0,7); (7,0); (;r,7)}, the ERD SOC satisfies it
only at two points kg = {(k,,0); (k.,7)}.

It is clear that condition ii is easier to satisfy toward the
edges of the system when |A;| — 0, and since the transverse
polarizations are found to be very similar for g = 3¢ and
g =0 we may set |A;| =0 for our purpose. When this is
the case, condition ii becomes w; = £h, &+ 2t(cos« % cos f)
for the Rashba SOC, and u; = h, — 2¢t[cos(k,a) % cos ]
for the ERD SOC, where all &+ combinations are possible
and |cos(kya)| < 1. For the parameters of Figs. 2(a) and
2(b), where u &~ —1.76t, these conditions are satisfied at two
distances r; ~ {7.5a,12.5a} and r; ~ {10.7a,14.6a}, respec-
tively, which are very close to our numerical results given
above. Thus, we conclude that the microscopic origin of the
transverse polarizations can be traced back to the changes in
the momentum-space topology of the single-particle excitation
spectrum of the local system.

In the case of Rashba SOC, we can also interpret these
textures as a direct consequence of counterflow of spon-
taneously induced spin currents [41]. This is because the
Rashba SOC gives rise to an effective momentum-dependent
in-plane magnetic field in the direction that is perpendicular to
the in-plane momentum. Since the induced spin currents are
circulating along the trap edges, i.e., the in-plane momentum
is in the azimuthal direction, the induced in-plane spin texture
is in the radial direction. The relative contribution between
the radially outward and inward helicity bands depends on the
local chemical potential u;, and this competition produces the
spatial structure of the spin textures such as the one illustrated
in Fig. 2(a). Note that the time-reversal symmetry of the spins
must be broken via, e.g., the Zeeman field in order to have a
nonzero polarization in any particular direction.

B. In-plane Zeeman field

Next, we consider an in-plane Zeeman field h = (0,h, #
0,0), which lies in the y direction parallel to our square lattice.
The magnitudes and phases of typical ground-state order
parameters are illustrated for the Rashba and ERD-like SOCs
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FIG. 3. (Color online) The color maps of the amplitudes (| A; |, left
column) and phases (¢;, right column) of the order parameters A; =
|A;]e!® for an in-plane Zeeman field h = (0,0.5¢,0) at g = 3¢ and
T =0,wherea = 8 = /4in(a),ando = 7/40and 8 = r/4in (b).

in Figs. 3(a) and 3(b), respectively, for h, = 0.5¢. In sharp
contrast to the out-of-plane Zeeman case discussed above,
this comparison clearly shows that the Rashba SOC has a
much stronger FF-type nonuniform superfluid character in the
in-plane Zeeman case, without again featuring any LO-type
order parameter node. Note again that the phases have both
angular and radial oscillations toward the edges of the system,
and the FF-type oscillations are most prominent along the x
direction, i.e., perpendicular to the direction of the Zeeman
field. We emphasize that these effects become weaker and
weaker with decreasing &, in such a way that all of the local
phases vanish as i, — 0.

The corresponding ground-state polarization textures are
illustrated in Fig. 4, where we show two-dimensional vector
maps of the transverse polarizations (p;y, p;;) together with
color maps of the easy-axis polarizations p;,. Here, we set g =
3t but setting g to zero again does not lead to any significant
change in the results. First of all, the not-so-interesting p;, is
finite everywhere in the trap with its maximum value near the
center in both figures, and it gradually decreases to zero toward
the edges. The case of Rashba SOC is shown in Fig. 4(a),
where we find that p;, # 0 and p;, # 0 in general, except
for a domain wall on the x axis where p;, = p;; = 0. In the
ERD-like SOC when o — Obut 8 # 0, we see in Fig. 4(b) that
while p;, — 0 everywhere in the system p;, remains mostly
unchanged. Therefore, similar to the Rashba case, the ERD
case also has a domain wall that is formed on the x axis where
Pix = piz = 0, and such a limiting behavior can be extracted
from Fig. 4(b). On the other hand, when 8 = 0 but o # 0,
there is not any transverse polarization in the entire system,
i.e., pix = pi; = 0for every i (not shown). Thus, we conclude
that, when a nonzero in-plane Zeeman field (no matter how
small it is) is not perpendicular to the direction of the SOC,
a spatially modulated polarization is induced in the transverse
direction. In most cases, the ratio of the transverse to the easy-
axis polarizations is around 5-15% . However, we emphasize
that while the total easy-axis polarizations are P, ~ 0.37 and
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FIG. 4. (Color online) Two-dimensional vector maps of the
transverse polarizations (p;.,p;;) for an in-plane Zeeman field
h = (0,0.5¢,0) at g = 3¢. Here, « = 8 = /4 in (a), and o = 7/40
and B = /4 in (b). The largest arrows correspond approximately to
0.014, and the easy-axis polarizations p;, are illustrated with color
maps.

~0.36 in Figs. 4(a) and 4(b), respectively, the total transverse
polarizations again vanish, i.e., P, =0 = P,.

Similar to the out-of-plane Zeeman case, we note that
the magnitudes of the transverse polarizations ~/ p7, + pl.zZ
show ring-shaped structures in both Figs. 4(a) and 4(b),
where the peaks occur, respectively, at r; &~ {10.5a,13.5a} and
~ {10.5a,14.5a} away from the center of the trap, especially
along the y axis. The microscopic origin of these structures can
again be traced back to the changes in the momentum-space
topology of the single-particle excitation spectrum.

C. Topological phase transitions

As elaborated above, although gap closings occur only
at a few k¢ points in the lowest quasiparticle and highest
quasihole bands, these gapless excitation points are sufficient
to induce intricate polarization textures in real space, at and
around the boundary between phases with locally different
momentum-space topology. We emphasize that since the
symmetry of the order parameters of the local phases have
the same s-wave symmetry across the boundary the transition
is topological. Such topological changes are known as Lifshitz-
type transition in the literature, and they are extensively
discussed in the context of nodal, e.g., p-wave, superfluids
and superconductors [10]. In thermodynamic systems, while
the primary signatures of Lifshitz transitions are seen in the
momentum distribution and single-particle spectral function,
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some thermodynamic quantities, e.g., atomic compressibility
and spin susceptibility, also show anomalies at the transition
boundary.

It is also worth noting that both spinless p, & ip, (chiral)
superfluids [10] and spin-orbit coupled Fermi gases under a
Zeeman field [15,16] can host Majorana bound states near
the edges of the system. More specifically, these bound states
can only exist at the phase boundary between a topologically
nontrivial and a trivial phase, the classification of which is
based on the value of the topological charges, i.e., Chern
numbers [10]. In contrast to the spinless chiral superfluids,
our numerical results suggest that the induced transverse
polarizations can be used as a probe to characterize the
topological phase transitions and the associated Majorana
bound states in finite spin-orbit coupled Fermi gases. This is in
accordance with a recent work on one-dimensional quantum
wires with strong Rashba and Dresselhaus SOC, where it is
shown that the Majorana polarization can be used as an order
parameter to characterize the topological transition between
the trivial system and the system exhibiting Majorana bound
modes [42].

We also remark that spin textures may also occur in p-wave
superfluids (as well as in all other systems with vector order
parameters) as topological defects, i.e., a coreless vortex may
exist as a spin texture. For instance, such textures were recently
observed in superfluid *He [43], in good agreement with
the early predictions [44,45]. Furthermore, in the condensed-
matter literature, these two-dimensional topological defects
were characterized depending on how the local spin changes
from the center of the defect to its boundary. Assuming that
the local spin p; = p;Z is perpendicular to the system at the
center of the defect, the topological object is called (a) an
Anderson-Toulouse spin texture or a baby skyrmion if the
spin continuously rotates through an angle 7 towards the
boundary and anti-aligns with respect to the center [45], or
(b) a Mermin-Ho spin texture (meron) or a half-skyrmion
if the spin continuously rotates through an angle 7 /2 and
aligns with the plane of the system [44]. Note that the
polarization textures presented in this work do not strictly
belong to these classes, and are unique to trapped Fermi gases
with SOC.

Having discussed the low-filling Fermi gases at zero
temperature, next we briefly comment on the effects of finite T
and high fillings. First, although these topological transitions
are quantum in their nature, signatures of them can still
be observed at finite 7, where the observables are smeared
out due to thermal effects. In particular, we find for the
parameters of Figs. 2 and 4 that the maximum magnitudes
of the transverse polarizations reduce, respectively, to 50 and
10% at T = 0.1t and 0.2¢. Second, due to the particle-hole
symmetry of the parent Hamiltonian around half filling, in
addition to the ring-shaped transverse polarizations induced
near the edges of the system, additional ring-shaped structures
are further induced near the center of the trap when the
center is close to a band insulator. Therefore, the transverse
polarizations show multiple ring-shaped structures in high-
filling lattice systems. Having discussed the numerical results,
next we conclude the paper with a brief summary of our main
findings.
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IV. CONCLUSIONS

In this paper, we studied the interplay between the Zee-
man field, SOC, FFLO pairing, and polarization textures in
harmonically trapped two-dimensional Fermi gases, loaded
into a single-band tight-binding optical lattice. The trapping
potential, SOC, and Zeeman field are taken self-consistently
into account via the real-space mean-field BdG theory, and
two of our main findings can be summarized as follows.

First, we showed that while the ground states of the
spin-orbit coupled systems in general have weak FF-type
nonuniform superfluid characters but not an LO one under the
out-of-plane Zeeman field, the FF character of the superfluids
is stronger for the Rashba SOC under an in-plane Zeeman
field. The FF-type phase oscillations are also most prominent
along the direction that is perpendicular to the Zeeman
field. Therefore, our self-consistent results on a finite lattice
support recent findings on the thermodynamic continuum
systems that are ansatz-based non-self-consistent momentum-
space calculations [17-25]. We also discussed the effects of
interaction, temperature, SOC anisotropy, and Zeeman field
anisotropy on the FFLO-like pairing and ground state of the
system, and we noted that since the superfluid order parameters
modulate only toward the edges it may be difficult to detect
these modulations in atomic systems at finite 7.

Second, in sharp contrast to the no-SOC case where only an
easy-axis polarization is possible beyond a threshold Zeeman
field, we showed that any nonzero combination of the Zeeman
field and Rashba SOC induces not only an easy-axis polariza-
tion everywhere in the system but also a spatially modulated
transverse one near the edges. We found that the induced polar-
ization textures are skyrmionlike finite-size effects, which are
very similar to the spin textures that were previously predicted
for rotating spinor BEC [36,37] and spin-orbit coupled BEC
without rotation [38—40]. We also argued that the transverse
polarizations can be used to probe and characterize the topo-
logical phase transitions and the associated Majorana bound
states in finite spin-orbit coupled Fermi gases, and we briefly
discussed the possibility of observing these effects in atomic
systems.

Finally, we emphasize that while all of these results are
obtained using an optical lattice model they are equally
applicable to continuum systems in the low-filling limit. We
preferred the lattice description mainly because of its easier
numerical implementation and versatility, e.g., self-consistent
inclusion of the trapping potential, and anisotropic SOC and/or
Zeeman field do not require any additional cost in numerics.
However, since the lattice model allows particle fillings up to
unity, but with a particle-hole symmetry around half filling, it
leads to richer finite-size effects compared to the continuum
model away from the low-filling limit.
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