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Trapped Fermi gases with Rashba spin-orbit coupling in two dimensions
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Here we consider both balanced and imbalanced Fermi gases throughout the BCS-BEC evolution, and we study
the effects of spin-orbit coupling (SOC) on the spontaneously induced countercirculating mass currents and the
associated intrinsic angular momentum via the Bogoliubov—de Gennes (BdG) formalism. In particular, we find
that even a small SOC destabilizes Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) type spatially modulated superfluid
phases and phase-separated states against the polarized superfluid phase. We also show that the continuum of the
quasiparticle and quasihole excitation spectrum can be connected by zero, one, or two discrete branches of inter-
face modes, depending on the number of interfaces between a topologically trivial phase and a nontrivial phase.
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Introduction. The coupling between a quantum particle’s
intrinsic angular momentum (spin) and its center-of-mass
(orbital) motion has important consequences in a variety of
modern condensed-matter problems, ranging from quantum
spin Hall systems to topological insulators and topological
superconductors [1,2]. This interaction is referred to as the
spin-orbit coupling (SOC), and it arises from coupling of the
electron’s spin to the local magnetic field that is induced in
the electron’s reference frame due to the time-varying electric
field produced by the charged background. Since both the
strength and symmetry of the SOC are mainly determined
by the electronic structure of the crystal in condensed-matter
systems, it is more desirable to engineer SOC in alternative
systems that allow more control over its parameters. Given the
recent experimental advances in simulating artificial gauge
fields with neutral quantum gases [3—6], it is arguable that
the prime candidate for engineering SOCs in a controllable
many-body setting seems to be the atomic ones. For instance,
this has recently been achieved first with bosonic [3,4] and
then fermonic [5,6] atomic gases by coupling the momentum
of atoms to their spin via a pair of laser beams. While the
symmetry of all of the experimentally engineered SOCs is so
far an equal combination of Rashba and Dresselhaus terms,
theoretical proposals for creating unequal combinations are
also underway.

Since the realization of spin-orbit-coupled Bose-Einstein
condensates (BECs) [3], there has been growing theoretical
interest in studying spin-orbit-coupled Fermi gases, even prior
to their very recent realization [5,6]. For population-balanced
uniform systems, it has been shown that the BCS-BEC
evolution is a crossover, and this evolution can be driven
either by increasing the interparticle interaction strength for
a fixed SOC or by increasing the SOC for a fixed interaction
strength (no matter how small the latter is) [7—12]. On the other
hand, for imbalanced systems, the BCS-BEC evolution is not
a crossover, and quantum phase transitions are found between
thermodynamically stable and topologically distinct gapped
and gapless superfluid phases. These phases are distinguished
in momentum space by their numbers of zero-energy points,
rings, or surfaces (depending on the type of SOC) in their
excitation spectrum [13-19].

In direct application to atomic systems, the thermodynamic
phase diagrams obtained in these works can be used to extract
information about the trapped Fermi gases, at least within
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the semiclassical local-density approximation [20-23]. While
this approximation works better when the number of fermions
is large, as the finite-size effects become negligible, a fully
quantum-mechanical method, e.g., BdG formalism, is better
suited for studying finite-size effects, which is the goal of this
work. Here we consider Rashba SOC in two dimensions due to
its numerical simplicity and hope that some of our qualitative
conclusions hold in three dimensions as well. However, given
the recent realization of two-dimensional Fermi gases [24,25],
itmay also be possible to engineer SOC in reduced dimensions.
Our main focus is on the SOC-induced countercirculating mass
currents, where we systematically analyze their dependence
on the SOC, binding energy, and population imbalance. We
note that induced currents have recently been discussed for
the lattice model [26], and while the Hamiltonian used and
the BAG formalism developed in this work are completely
different, our results are in qualitative agreement with each
other when there is an overlap.

BdG formalism. We use the Hamiltonian density (in
units of A=kg =1), Hx) =Y, VI(@®) Koo ()P0 (r) +
A@YT @)Y (X) + A*(O)Y, (Y4 (), where the operators
1/f§(r) and v, (r) create and annihilate a pseudospin o
fermion at position r, respectively, and A(r) is the mean-field
superfluid order parameter. The diagonal operator K,,(r) =
—V?2/(2M) — u, + V(r) includes both the kinetic energy and
the harmonic trapping potential V (r) = Mw?r?/2, where M
is the mass and u, is the chemical potential of o fermions,
and w is the trapping frequency. The off-diagonal operator
Ky (r)= KIT(r) = a(py +ip,) is the Rashba SOC, where
a > 0 is its strength and p; = —id/dj is the momentum
operator. In the polar coordinate system (r,0), this term
becomes K4 (r) = e[3/dr — id/(rd0)], which makes the
Rashba SOC numerically much easier to simulate in two
dimensions due to its rotational invariance.

This Hamiltonian can be diagonalized via a generalized
Bogoliubov-Valatin transformation, and the resultant BAG
equation is H(r)e,(r) = &,¢,(r), where

K¢T(I‘) KN(I') 0 A(l’)
. K\M(I‘) Kii(r) —A(l‘) 0
Ho=1, —A) —K5,(m) —Ki® 1)
A*(r) 0 —K;@ —Ki,@
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is the Hamiltonian matrix given in the ¢,(r) =
(14, (1), (1), 04, (1), vw(r)]T basis and ¢, > 0O are the energy
eigenvalues. The order parameter A(r) = g(y(r)y (),
where g >0 1is the strength of the interparticle at-
traction and (---) is the thermal average, becomes
Am)=g)_, [ur,(0)v],(r) f(—&y) +uy ()3, (r) f(e,)]. Here,
f(x)=1/(e*'T +1) is the Fermi function and T is the
temperature. We relate g to the energy &, < 0 of the two-body
bound state between an 1 and a | fermion in vacuum via
1/g =Y 1/(2ex — €p), where & = kz/(ZM) is the kinetic
energy. This leads to g = 47 /[M In(1 + 2¢./|ep|)], where &,
is the energy cutoff used in the k-space integration (g, is
specified below). A(r) needs to be solved self-consistently
with the number equations N, = f drn,(r), where n,(r) =
Wi ) = 3 [ugu®F f(e)) + (050 (1)1 f (—,)] is the
local density of o fermions. Thus, the order parameter and
number equations form a closed set, determining A(r) and
for any given ¢, o, and T.

We emphasize that these mean-field equations can be used
to investigate the low-temperature properties of the system
for all values of ¢, and «, but they provide only a qualitative
description of the system outside of the weak-coupling regime,
i.e.,in the BCS-BEC evolution. Once the quasiparticle energies
and the corresponding wave functions are obtained, it is a
straightforward task to calculate other observables of interest.
For instance, the quantum-mechanical probability-current
operator for o fermions can be identified from the continuity
equation. While the presence of a SOC leads to additional
terms in the total particle-current operator, these terms do not

contribute to the current since (WI(r)w 1(0) = 0. Therefore,

the local current density J,(r) = [1/Q2Mi)|{¥] (r)V i, (r)
— H.c.) circulating around the center of the trapping poten-
tial becomes J,(r) = [1/2Mi)])_ [ul, (X)Vus,(r)f(e,) +
v, (Vs (r) f(—e,) — H.c.], where H.c. is the Hermitian
conjugate. We note that the intrinsic angular momentum
associated with this spontaneous flow is along the Z direction,
and its density is given by £,(r) = MrJ,(r).

Numerical results. In our calculations, we set a large energy
cutoff e, > ep and solve the self-consistency equations for
different P = (Ny — N})/N values. Here, ef = k%/(ZM) =
Mw?r/2 is a characteristic Fermi-energy scale, where rp
is the Thomas-Fermi radius and kg is the Fermi momentum
corresponding to the total density of fermions at r =0
when g =0, ie., n4(0) +n,(0) = k%/(Zn). We also relate
e, and ep to the occupation of harmonic oscillator levels
as & = w(N. 4+ 1) and e = w(Nfg + 1), respectively, where
N. > Np. This leads to a total of N = (Nr + 1)(Nr + 2)
fermions, and therefore, sr ~ wv/'N when N F> 1. In ad-
dition, in order to be consistent with the energy cutoff, we
choose nmax = (N — |m|)/2 as the maximum radial quantum
number for a given m and my,x = N, as the maximum angular
quantum number. In particular, here we choose Ny = 25 and
&, = Tep, which correspond to a total of N = 702 fermions
and N, = 181. We checked that these values are sufficiently
high for the parameter regime of our interest since our results
agree well (within a few percent) with those obtained within
the local-density approximation.

Population-balanced Fermi gases. In Fig. 1, we set P =0
and |ep| = 0.2ep, and show A(r) and n,(r) for a number
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FIG. 1. (Color online) Balanced (P = 0) Fermi gas, where A(r)
is in units of & and n, (r) is in units of k%/(27).

of « values. First of all, since SOC increases the low-
energy density of states, which is similar to what happens
in thermodynamic systems [9,10], increasing o monotonically
increases n,(r) near r = 0, and as a result, the Fermi gas
shrinks. For instance, when « is increased from O to kp/M,
the central n,(r) increases by 25%, going from k% /(4m) to
approximately Sk% /(167). However, the corresponding A(r)
has a nonmonotonic dependence on «. We find that the central
A(r) decreases slightly until a critical value of @ &~ 0.5k /M is
reached, beyond which A(r) increases with increasing «. The
increase in A(r) is again mainly a consequence of increased
density of states.

As we discuss below, the presence of a Rashba SOC
spontaneously induces countercirculating mass currents. This
is clearly seen in Fig. 2(a), where the 1 and | fermions are
rotating around the center of the trap in opposite directions
but with equal speed due to the time-reversal symmetry
of the parent Hamiltonian. We note that the directions of
circulating currents are determined by the chirality of the
SOC, and the 1 and | currents would reverse directions if
K4 (r) = a(py, —ipy) is used. We see that J (r) = —J;4(r)
has a nonmonotonic dependence on r: it gradually increases
from zero as a function of r, making a peak at an intermediate
distance near the edge of the system, beyond which it rapidly
decreases to zero. The peak value of J,(r) increases with
increasing « since a nonzero « is what causes countercurrents
to circulate to begin with. In addition, since increasing o
shrinks the Fermi gas, the radial location of the peak moves
inwards towards the trap center. Associated with this particle
flow, we also find that the total angular momentum per particle
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FIG. 2. (Color online) J,(r) is shown in units of k3F /M for the
data of Figs. 1 and 3.
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FIG. 3. (Color online) Imbalanced (P = 0.5) Fermi gas, where
A(r) is in units of &5 and 1, (r) is in units of k% /(27).

L,/N, = —L4/N; monotonically increases from zero and
is bounded by 0.5 when o > kp/M [27]. The origin of
spontaneously induced countercirculating mass currents can
be understood via a direct correspondence with the p, +
ip, superfluids and superconductors [26]. In these p-wave
systems, the mass current is associated with the chirality
of Cooper pairs [28], and this is easily seen by noting
that the chiral p-wave order parameter Ak o (X £iJ) -k,
where k is the relative momentum of a Cooper pair, is
an eigenfunction of the orbital angular momentum with
eigenvalue 7. This explains our findings since it can be shown
that the order parameter of Fermi gases with Rashba SOC
and s-wave contact interactions has chiral p-wave symmetry
[9]. However, unlike the chiral p-wave systems which break
time-reversal symmetry and belong to the topological class of
integer quantum Hall systems, spin-orbit-coupled Fermi gases
preserve time-reversal symmetry just like quantum spin Hall
systems, and therefore, they exhibit spontaneously induced
countercirculating 1 and | mass currents.

Population-imbalanced Fermi gases. In Fig. 3, we set
P =0.5 and |g,| = 0.2¢r and show A(r) and n,(r) for a
number of o values. When o = 0, we see that ny(r) = n(r)
for r < 0.25rf, ny(r) > n (r) # 0 for 0.25rp Sr S 0.8rp,
and n4(r) > n,(r) = 0 for r 2 0.8r5. Therefore, the central
region corresponds to an unpolarized superfluid, and the excess
spin-polarized 1 fermions are expelled towards the edge of the
system; i.e., paired 1 and | fermions and unpaired normal 1
fermions are phase separated, with a coexistence region (i.e.,
a polarized superfluid) in between.

For small o # 0, we see that the polarized-superfluid region
rapidly expands towards the central region, and the system
mostly consists of a polarized superfluid near r = 0 which
is phase separated from spin-polarized normal 1 fermions
residing near the edge. For larger « values, the spin-polarized
1 gas gives way to the polarized superfluid, and the entire
system eventually becomes a polarized superfluid beyond a
critical . This happens around « 2 0.5kr/M when P = 0.5
and |&,| = 0.2¢r. We note in passing that these findings are
consistent with the recent works on thermodynamic phase
diagrams [14—19], where the phase-separated state was shown
to become gradually unstable against the polarized superfluid
phase as « increases from zero.

In addition, these recent works on thermodynamic systems
showed that, unlike the o = 0 limit where the unpolarized
superfluid phase is gapped and polarized superfluid phase
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is gapless, o # 0 allows the possibility of having a gapped
polarized superfluid phase up to a critical polarization, de-
pending on the particular value of o [14—19]. Therefore, when
o # 0, in contrast to the topologically trivial unpolarized and
low-polarized superfluid phases, the polarized superfluid phase
with sufficiently high polarization becomes topologically
nontrivial and has gapless excitations. Note that in a trapped
system the topologically nontrivial locally high-polarized
superfluid phase is sandwiched between topologically trivial
phases (locally unpolarized or low-polarized superfluid and
spin-polarized normal) for small «.

The corresponding A(r) are shown in Fig. 3 (a). When
o = 0, we see that A(r) oscillates with multiple sign changes,
which is reminiscent of Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) type spatially modulated superfluid phases. Similar
to the P = O case, for small & # 0, the central A(r) decreases
slightly until a critical value of o ~ 0.7kr/M is reached,
beyond which A(r) increases with increasing «. More im-
portantly, the spatial modulations of A(r) rapidly disappear
with increasing «, and A(r) first becomes finite and then
gradually increases near the edge of the system. This again
indicates that the polarized superfluid phase expands towards
the edge of the system as « gets larger. For larger « values, A(r)
gradually increases everywhere, and it eventually becomes
nearly flat for a substantial region of the system, except for
a small region around the edge. These findings suggest that
FFLO-type modulated phases, which are known to play a
minor role in the thermodynamic phase diagrams when o = 0,
become negligible for sufficiently large . Therefore, our work
provides supporting evidence that the recent thermodynamic
phase diagrams [14-19], where FFLO-type phases were
entirely neglected, are qualitatively accurate at least within
the mean-field approximation.

Since population imbalance breaks the time-reversal sym-
metry when P # 0, the 1 and | fermions again rotate
(mostly) in opposite directions with unequal speeds, as seen
in Fig. 2(b). Similar to the P = 0 case, we again see that
[J4(r)| = J,(r) has a nonmonotonic dependence on r, and
their peak values increase with increasing «. We also find that
|L4+|/Ny > L /N, increases from zero nonmonotonically,
and they are bounded by 0.5 when o > kg /M [27].

Inner- and outer-interface modes. In Fig. 4, we show &,,,, as
afunction of m for imbalanced Fermi gases. First of all, we note
that the spectrum satisfies &,,, = —&€_,,—1,,, Which follows

FIG. 4. (Color online) ¢,,, is shown in units of e for || = 0.2¢f
and P = 0.5, where « is 0.4kr/M in (a) and 1.0k /M in (b).
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from the particle-hole symmetry of the parent Hamiltonian.
When P = 0 and o = 0, it is well known that the quasiparticle
and quasihole spectrum are separated with an energy gap
around m ~ 0. When P =0 and o # 0, it is expected that
the spectrum splits in two in m space, creating two identical
energy gaps located at finite m values. Their locations are
approximately symmetric around m = 0. For low P # 0 the
spectrum is similar.

When P # 0 is sufficiently high and o is small, we
show in Fig. 4(a) that the continuum of quasiparticle and
quasihole spectrum is connected by two discrete branches,
i.e., inner- and outer-interface modes [23]. This indicates
that there must be two phase boundaries (interfaces)
between a topologically nontrivial superfluid phase and
a trivial one. In our case, while the inner mode occurs
at the interface between the locally unpolarized or
low-polarized superfluid phase existing near r =0 and
the locally high-polarized superfluid phase existing at some
intermediate region, the outer mode occurs at the interface
between the locally high-polarized superfluid phase and
locally spin-polarized normal phase existing near the edge
of the system. However, the energy separation between the
inner-interface modes becomes larger with increasing o, which
causes this branch to move completely into the continuum
beyond a critical « value. Therefore, for large «, the continuum
of the quasiparticle and quasihole spectrum is connected by a
single branch of outer-interface modes. This is clearly seen in
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Fig. 4(b), and it is a direct consequence of the disappearance
of the inner phase boundary, which approximately happens
when « 2 0.5kr/M, as discussed above.

Conclusions. To conclude, one of our main findings is
that even a small SOC destabilizes FFLO-type superfluid
phases against the polarized superfluid phase. This suggests
that FFLO-type phases, which are known to play a minor
role in the thermodynamic phase diagrams when « =0,
become negligible for sufficiently large «. Therefore, we
provided supporting evidence that the recent thermodynamic
phase diagrams [14-19], where FFLO-type phases were
entirely neglected, are qualitatively accurate at least within
the mean-field approximation. We also found that the phase-
separated state rapidly becomes unstable against polarized
superfluid phase as o increases from zero, which is in
good agreement with recent works on thermodynamic phase
diagrams. In addition, depending on the values of P and «,
we showed for imbalanced Fermi gases that the continuum
of the quasiparticle and quasihole excitation spectrum can be
connected by zero, one, or two discrete branches of interface
modes, the number of which is determined by the number of
interfaces between a topologically trivial phase and a nontrivial
phase.
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