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We consider p-wave pairing of single hyperfine state and s-wave pairing of two hyperfine states ultracold
atomic gases trapped in quasi-two-dimensional optical lattices. First, we analyze superfluid properties of
p-wave and s-wave symmetries in the strictly weak coupling BCS regime where we discuss the order param-
eter, chemical potential, critical temperature, atomic compressibility, and superfluid density as a function of
filling factor for tetragonal and orthorhombic optical lattices. Second, we analyze superfluid properties of
p-wave and s-wave superfluids in the evolution from the BCS to Bose-Einstein condensation regimes at low
temperatures (7= 0), where we discuss the changes in the quasiparticle excitation spectrum, chemical poten-
tial, atomic compressibility, Cooper pair size, and momentum distribution as a function of filling factor and
interaction strength for tetragonal and orthorhombic optical lattices.
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I. INTRODUCTION

Tunable optical lattices have been extensively used to
study phase transitions in bosonic atomic gases,"? since they
allow the controlled manipulation of the particle density n,
and of the ratio between the particle transfer energy ¢, and
the interparticle interaction strength V.>* This kind of control
is not fully present in standard fermionic condensed matter
systems, and has hindered the development of experiments
that could probe systematically the effects of strong correla-
tions as a function of n and ¢#/V. However, fermionic atomic
gases like ®Li and “°K have been succesfully trapped, and
their normal state and superfluid properties are beginning to
be studied.’ Because of the greater tunability of experimen-
tal parameters, superfluid phases may be more easily acces-
sible in the experiments involving ultracold atomic gases.
For instance, single hyperfine state (SHS) ultracold atomic
systems are ideal candidates for the observation of triplet
superfluid phases and for testing theoretical models that were
proposed earlier. Thus, it is only natural to propose that op-
tical lattices could be used to study the normal state and
superfluid properties of ultracold fermionic systems as a
function of n, ¢/V, and lattice symmetry. These systems are
of broad interest not only for the atomic physics community
but also for the nuclear, condensed matter and more gener-
ally for the many-body physics communities, where models
for superfluidity have been investigated in various contexts.

The interaction between induced dipole moments of at-
oms and the electric field of laser beams is used to trap
atoms, particularly alkali atoms, in optical lattices. Alkali
atoms have only one electron (S=1/2) out of closed shells.
This electron is in a zero orbital angular momentum (L=0)
channel, and its total angular momentum J=L+S gives J
=1/2. The nuclear angular momentum / and electron angular
momentum J are combined in a hyperfine state with total
angular momentum F=I+]J which gives F=I/+1/2 for alka-
lis. Furthermore, the electron and nuclear spins are coupled
by the hyperfine interaction that splits the atomic levels in
the absense of magnetic field H;«I-J. A weak magnetic
field causes Zeeman splitting of the hyperfine levels |F,m)

1098-0121/2005/72(22)/224513(18)/$23.00

224513-1

PACS number(s): 74.25.Bt, 74.25.Dw, 03.75.Ss, 03.75.Hh

with different my, which can be made to correspond to pseu-
dospin labels. Trapping one,''~1¢ two,!”-?" three,?! and four?
hyperfine states were considered by several authors. How-
ever, it is also known that trapping more hyperfine states
increases the number of channels through which the gas can
decay. Therefore, trapping one or two hyperfine states of
ultracold fermionic gases is experimentally more plausible.

For paired identical fermions, the Pauli exclusion prin-
ciple requires the total pair wave function to be antisymmet-
ric. The total orbital angular momentum should be odd for
pseudospin symmetric pairs and even for pseudospin anti-
symmetric ones. Therefore in the case of trapping two hyper-
fine states (THS), s-wave scattering of atoms between fermi-
ons from different hyperfine states is dominant. Thus, one
expects that the superfluid ground state of such two-
component Fermi gases to be s-wave and pseudospin singlet.
Presently there is experimental evidence that YK (Refs. 23
and 24) and °Li (Refs. 25-29) can form weakly and tightly
bound atom pairs, when the magnetic field is swept through
a s-wave Feshbach resonance.

However, the properties of SHS ultracold fermions and
their possible superfluid behavior are beginning to be
investigated.3*3* These systems are probably the next fron-
tier for experiments with ultracold atoms. When identical
fermionic atoms are trapped in a single hyperfine state, the
interaction between them is strongly influenced by the Pauli
exclusion principle, which prohibits s-wave scattering of at-
oms in identical pseudospin states. As a result, in SHS de-
generate Fermi gases, two fermions can interact with each
other at best via p-wave scattering. Thus, one expects that
the superfluid ground state of such SHS Fermi gases to be
p-wave and pseudospin triplet.

In the p-wave channel, if the atom-atom interactions are
effectively attractive then the onset for the formation of Coo-
per pairs in three dimensions occurs at a temperature'%-16

.~ egexp[—m/2(kpay)*] in the BCS regime, where € is
the Fermi energy and a,. is the p-wave scattering length.
Unfortunately, this temperature is too low to be observed
experimentally. However, in the presence of Feshbach
resonances, %3 p-wave interactions can be enhanced, and
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the critical temperature for superfluidity is expected to in-
crease to experimentally accessible values. On the other
hand, we show that the pseudospin triplet (p-wave) weak
coupling limit in optical lattices (like in the singlet case®)
may be sufficient to produce a superfluid critical temperature
that is accessible experimentally. Furthermore, several inter-
esting superfluid properties can be investigated in p-wave
systems as the system is tuned from the BCS to the Bose-
Einstein condensation (BEC) regimes.!*'® In this paper, we
address superfluid properties of ultracold fermionic atoms in
optical lattices for both SHS p-wave and THS s-wave states
as a function of atom filling factor, interaction strength, tem-
perature, and lattice symmetry.

The rest of the paper is organized as follows. In Sec. II,
we discuss the effective action method and the saddle point
approximation for a lattice Hamiltonian with attractive inter-
actions in the p-wave and s-wave channels. We also derive
the order parameter, critical temperature, and number equa-
tions in the saddle point approximation and discuss pseudo-
spin triplet states in the d-vector formalism in this section. In
Sec. III, we analyze superfluid properties of SHS p-wave and
THS s-wave symmetries in the strictly weak coupling BCS
regime. There, we discuss the order parameter, chemical po-
tential, critical temperature, atomic compressibility, and su-
perfluid density as a function of filling factor for tetragonal
and orthorhombic optical lattices. In Sec. IV, we analyze
superfluid properties of SHS p-wave and s-wave superfluids
in the evolution from BCS to BEC regime at low tempera-
tures (T=0). There, we discuss changes in quasiparticle ex-
citation spectrum, chemical potential, atomic compressibility,
Cooper pair size, and momentum distribution as a function
of filling factor and interaction strength for tetragonal and
orthorhombic optical lattices. Finally, a summary of our con-
clusions is given in Sec. V.

II. LATTICE HAMILTONIAN

In this manuscript, we consider quasi-two-dimensional
optical lattices with a periodic trapping potential of the form
U(r)==,U, cos*(kix;), with Uy >min{U,,,U,,}, which
strongly suppresses tunneling along the z direction. This is a
nonessential assumption, which just simplifies the calcula-
tions, but still describes an experimentally relevant situation.
Here x,=x,y, or z labels the spatial coordinates, k;=2m/\; is
the wavelength, and U, ; is the potential well depth along
direction X;, respectively. The parameters U, are propor-
tional to the laser intensity along each direction, and it is
typically several times the one photon recoil energy Ey such
that tunneling is small and the tight-binding approximation
can be used.

Thus, in the presence of magnetic field h, we consider the
following quasi-two-dimensional lattice Hamiltonian (al-
ready in momentum space) for a SHS p-wave Fermi gas

1
H=2 &K)ayay; + 5 > V(Kb birg. (1)
k kk'.q

where the pseudospin T labels the trapped hyperfine state
represented by the creation operator alT(T, and blt,q
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=a; +q,2ﬁafk +qr2.1- Furthermore, &(k)=e(k)— & describes the
tight-binding  dispersion  &(k)=~t,cos(k,a,)—t,cos(k,a,)
—t.cos(k,a,), with g=p+gugh—Vy. Here, t; is a tranfer en-
ergy along the ith direction, u is the chemical potential,
gmph is a Zeeman energy, Vy is a possible Hartree energy
shift. We also assume that min{z,,7,}>1,, and that V(k k') is
the pseudospin triplet pairing interaction between fermions.

In the nearest neighbor approximation, the lattice interac-
tion in the single hyperfine state case has only a p-wave
(triplet) component, which is given by

Vy(kk')==2 2 Vysin(ka)sin(k;a;), (2)

=X,y

where V;>0 is the effective interaction strength and a; is
the corresponding lattice length along the ith direction. No-
tice that Eq. (2) has the necessary symmetry under the Parity
operation, where either k— —k or similarly k" — -k’ leads to
-V, (k,k’). Furthermore, the interaction V,(k,k’) is invari-
ant under the transformation (k,k’)— (-k,—Kk’). This is a
necessary condition for a SHS p-wave interaction since the
interaction characterizes a triplet channel, and it has to reflect
the Pauli principle. This interaction can be written in a sepa-
rable form as

V,(kk') =I"(k)VI'(k'), (3)

where the interaction strength matrix has elements V;;
=-2V,,;6; and the symmetry vector is I'T(k)
=[sin(k,a,),sin(k,a,)]. Notice that, the interaction V,(k,k")
is not separable as a product of scalar functions of k and k’
in the usual sense, but it is separable in terms of vector
functions.

In addition, we compare SHS p-wave superfluids with
THS s-wave superfluids. In the nearest neighbor approxima-
tion, the lattice interaction term in the THS case leads to
singlet pairing channels s, extended-s and d-wave terms, and
a separate triplet pairing THS p-wave channel. However, the
s-wave channel is expected to dominate in the absence of
any exotic mechanism as it corresponds to the case of mini-
mal free energy. The Hamiltonian for a THS s-wave Fermi
gas is given by

1
H= E g(k)alia‘aka + E Vsbli,qbk’,qa (4)
k,o k,k',o’,q

where the pseudospins o=(T, | ) label the trapped hyperfine
states represented by the creation operator aj,, and b;q
= A} q.0% krqn.o Here, Vi==|V; | is the attractive s-wave
Interaction.

In the following section, we describe the effective action
method for the SHS p-wave Hamiltonian in Eq. (1) and we
discuss its saddle point order parameter and number equa-
tions, as well as the critical temperature. This method can be
applied to the s-wave Hamiltonian in Eq. (4), and similar
equations can be derived for s-wave case, but we do not
repeat this derivation here.
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A. Effective action formalism

In the imaginary-time functional integration formalism®
(B=1/T and units i=kgz=1), the partition function can be
written as

Z=fD[aT,a]e_S (5)

with an action given by
B
S= f dT[E al, (7)(0)ayy (1) + H(7) |. ©)
0 k

The Hamiltonian given in Eq. (1) can be rewritten in the
form

H(7) = 2, &K)aj (Day (1) + 2 BI,(T%B(,(T) (7)
k q

with By(7)=2I"(k)by 4(7). We then introduce Nambu spinor
1,0"’(p)=(a;T,a_pT), where we use p=(k,w,) to denote both
momentum and fermionic Matsubara frequency wy=(2¢
+1)7/B and use a Hubbard-Stratonovich transformation to
decouple fermionic and bosonic degrees of freedoms. Per-
forming the integration over the fermionic part (D[4, ])
leads to

- B B,
Seir= B2 P (V' D(g) + 2 {Eg(k)@,pr - Tr lnEG H,
q pp'
(8)
where we use g=(q,v,) with bosonic Matsubara frequency

vy=2{m/B and define the bosonic vector field ®(p—p’).
Here,

G'l= CD*(q)F(]%p,)a'_ + F’k(p -;p’ )QD(— q)o
+ [iW{(TO - g(k)o-fj]ﬁp,p' (9)

is the inverse Nambu propagator and o,=(0%05)/2 and o;
is the Pauli spin matrix. The bosonic vector field

D(g) = A98,,0 + Alg) (10)

has 7independent and 7-dependent parts where Ag;
=(A3,X,A3’y) and A'(q)=[A,(q),A,(g)], respectively.

Performing an expansion in S, to quadratic order in the
vector A, we obtain

1 _ _
SGauss=SO+ EE AT(Q)F_I(Q)A(Q)v (11)
q

where S is the saddle point action, the four-component vec-
tor A¥(g) is such that Af(¢)=[AT(q),A(-¢)] and F~'(g) is
the inverse fluctuation propagator. The fluctuation term in the
action leads to a correction to the thermodynamic potential,
which can be written as Qguue=Q0+ Qg With Qg
=B'Z,In det[F~'(¢)/2]. In weak coupling for all tempera-
tures and for all couplings at low temperatures, it can be
shown that*® Gaussian corrections S, to the Gaussian ac-
tion Sg,us are small in the quasi-two-dimensional case, and
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therefore, we consider only the saddle point action

B

So=BAV A+, [gg(k) —Tr 1n5(;51} . (12)
P

where the inverse Nambu propagator becomes
G,' = iwoy— K)oy + AT K)o+ TT(k)Ago,. (13)

Notice that this will not be the case close to the critical
temperatures 7, for intermediate and strong interactions,
since the inclusion of fluctuation corrections change the
number equation considerably and are necessary to produce
correct behavior.>’

B. Saddle point equations

The saddle point condition &S,/ 5A;=0 leads to a matrix
equation for the order parameter

Ag=MA,, (14)

where matrix M has the following matrix elements:

M. = E Voyisin(kiai) Sin(k]a]) tanhBE(k) . (15)
k E(k)
Here, we introduce the quasiparticle energy
E(k) =[£(k) + |[AMK)[]" (16)

and the scalar order parameter
A(k) =T (K)A,, (17)

which is naturally separable in temperature 7 and momentum
k. The critical temperature, T, =max{T ,, T}, is determined
from the condition det M=1 in Eq. (14), and can be written
as

)
0=T1] (1 VoS Smg((l]i;ai)tanhi(;) ) (18)
i=x,y k c,i

Both the order parameter and critical temperature equa-
tions have to be solved simultaneously with the number
equation N=—dQ)/du where  is the full thermodynamic
potential. This leads to two contributions to the number
equation N=Ng,us=No+Npue Here, No=—0Qq/dp is the
saddle point number equation, where ((=S,/f is the saddle
point thermodynamic potential, and Ny, =—0Q ./ It is the
fluctuation contribution. In the low temperature limit (T
~() for any coupling, or in the weak coupling limit for any
temperature (T<T,) the fluctuation contribution

dldet F~'(¢)] 1
> I det F'(q)

Niyer == (19)

q

is small and negligible compared to the saddle point value
No.>7 Thus, the number equation becomes N~ N,, given by

N= E n(k), (20)
k

where n(Kk) is the momentum distribution defined by
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n(k)=l 1—@ h'BE(k) . (21)
2 E(k) 2
For comparison, we discuss next the s-wave case. Using
the s-wave Hamiltonian in Eq. (4), we follow a similar pro-
cedure and derive the order parameter, critical temperature,
and number equations in the saddle point approximation. The
order parameter equation is given by

A0 s ﬁE(k)
Ay, =V, ——tanh———
0= V02 3 pg

where E(k)=+&(k)+|A|* is the quasiparticle energy spec-

trum. The critical temperature is determined when A, =0,
which leads to

; (22)

=> Vos h@ (23)

k 26(k)

Both order parameter and critical temperature equations have
to be solved simultaneously with the number equation

N=> n(k), (24)
ko

where the momentum distribution n(k) is defined in Eq. (21).

C. Spin triplet (SHS p-wave) states

In general, the pseudospin triplet order parameter can be
written in the standard form3®

—d(K) + id,(Kk)
ds(k)

ds(K)

dy(k) + idy(K) ) @5)

O(k) = (
where d(k) is an odd vector function of kK. In our SHS
p-wave interaction Oy (k)=A(k), therefore, d;(k)=0 and
d,(K)=—id,(k) which leads to d(k)=d,(k)(1,i,0). Within
the irreducible representations of the D4,(D,;,) group in the
tetragonal (orthorhombic) lattices,?® our exotic SHS p-wave
state corresponds to the 3Eu(n) representation with a d-vector
given by

d(k) = f(k)(1,i,0), (26)

where f(k)=AX+BY, and X and Y are sin(ka,) and
sin(k,a,), respectively. Notice that this state also breaks time-
reversal symmetry, as expected from a fully spin-polarized
state.

In the tetragonal lattice, the stable solution for our model
corresponds to the case A=B+# 0, and thus to the *E,(d) rep-
resentation, where spin-orbit symmetry is preserved, but both
spin and orbit symmetries are independently broken. In the
orthorhombic lattice, the stable solutions correspond to either
A#0, B=0, or A=0, B#0, thus leading to the 3Eu(b) rep-
resentation. Notice that, depending on the lattice anisotropy,
there are three distinct solutions to the order parameter equa-
tion Eq. (14) in relation to Eq. (26). The first solution (case
1) occurs when Ay, # 0 and A, =0, which corresponds to a
d vector with A#0 and B=0. Similarly, a second solution
(case 2) occurs when Ay =0 and A, # 0, and it corresponds
to a d vector with A=0 and B#0). The third and final solu-

PHYSICAL REVIEW B 72, 224513 (2005)

tion (case 3) occurs when A=A, # 0, which corresponds
to a d vector with A=B#0. In a tetragonal lattice both di-
rections are degenerate (case 3), but even small anisotropies
in the optical lattice spacings, transfer energies (z,,1,), or
optical lattice potentials (U ,,U,,) lifts the degeneracy and
throws the system into either case 1 or 2.

III. SUPERFLUID PROPERTIES IN THE WEAK
COUPLING BCS REGIME

Our main interest is in tetragonal (square) lattices, how-
ever, we also want to investigate the effects of small
anisotropies in optical lattice lengths. For this purpose we
investigate five different cases that may be encountered ex-
perimentally.

Case (I) corresponds to lattice spacings a,=a, to transfer
integrals 7,=t,, and to interaction strengths VOx_VO ,- Case
(Im) corresponds to a,=ay, t,#t,, and V=V, ,. Case (III)
corresponds to a,=a,, t, # ty, and Vo # Vo, Case (IV) cor-
responds to a,#ay, t,#t,, and V, ,=V;,. Case (V) corre-
sponds to a,# ay, t #1t,, and V, . #V, . Notice that cases
(IT) and (IV) are equivalent except for a unit cell volume
normalization. The same is true for cases (III) and (V). Case
(I) is effectively a tetragonal lattice, while cases (II) through
(V) are effectively orthorhombic lattices. Notice that even
though the optical lattice spacings a,=a, in cases (II) and
(M), these cases correspond effectively to “orthorhombic”
lattices because the transfer energies 7, and 7, are different.

Experimentally it may be easier to use only one type of
laser with specified wavelength, and thus generate a lattice
with a,=a,, and change the focus width in one direction (say
along X) while keeping the width in the other direction fixed
(say along ¥). The change in focus width along the X direc-
tion will modify the transfer integral ¢, by either reducing it
or enlarging it with respect to ¢,. This type of experiment can
cover cases (I), (IT), and (IIT). A second type of experiment (a
bit harder) could use two types of lasers with different wave-
lengths and produce a lattice with a, # a,. Further control of
the focal widths can produce the s1tuat10ns encountered in
cases (IV) and (V).

We concentrate here on cases (I), (I), and (III), where we
set a,=a,=a. For case (I) we choose t,=t,=t, and V,,
=Vy,=V,. For case (I) we choose t,=(1+a)t, t,=t, and
Vo.x=Vo,y=Vy. For case (IIl) we choose ¢,=(1+a)t, t,=1, and
Vo.=(1+a)Vy, V,=V,. Here we take V,=0.6E, with E,
=2t¢. In these cases, the transfer energies and the parameters
« can be determined by using exponentially decaying on-site
Wannier functions and the WKB approximation. When the
lattice spacings a,=a,=a are the same but the optical lattice
potentials Uy > Uy ,=Uj are slightly different, the transfer
integral #,/t is proportional to exp[—m(Uy—Uy) /Uy Eg],
in the limit of U, ,—U,<U,,. Here, Ey is the one photon
recoil energy, while U, and Uy, are defined with respect to
E,, which is the energy of the lowest reference state of the
trapping potential. In the following sections, we discuss two
possibilities where U, ,—U;=0.05E% corresponding to «
~0.1 and U, ,—U,=0.2Ey corresponding to a=0.6 for U,
~2.5Ep.
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For cases (IV) and (V) we set a,=a(1-6) and a,=a, with
0< 8<1, respectively. For case (IV) we choose 7,=(1+ a)t,
ty=t, and V,,=V, =V, For case (V) we choose t,=(1
+a)t, t,=t, and Vj ,=(1+a)V,, V,,=V,. In these cases, the
parameter « can also be determined by using exponentially
decaying on-site Wannier functions and the WKB approxi-
mation. When the optical lattice potentials Uy ,= U, ,= U, are
the same but the lattice spacings a,<a,=a are different, the
transfer integral ¢,/¢ is proportional to exp(=27wS\VUy/ER),
for small é. In the following sections, we discuss two possi-
bilities where 6=0.01 corresponding to a=0.1 and 6§=0.05
corresponding to a=0.6 for Uy=2.5E. As we increase (de-
crease) the ratio &, both interactions and tunneling rate in-
crease (decrease) in X direction.

Notice that a different choice of on-site Wannier functions
does not change our general conclusions, the only qualitative
difference is that ¢, and V), are different functions of .

A. Density of fermionic states

The critical temperature and superfluid properties of
Fermi systems depend highly on the order parameter sym-
metry, as can be seen by rewriting Eq. (18) as

e—ii

tanh

tx+t 2T .
1=11 v, f de———="D, (¢, (27)
: 2e—f) "

=X,y —t,—t (8 - )

where we define an effective density of states (EDOS)

D, (&)= X de - s(l)I[V2sin(ka) . (28)
k

Here v2sin(k;a;) is the symmetry factor related to the SHS
p-wave order parameter. We transformed discrete summa-
tions over Kk space to continuous integrations to obtain

f
D,.(e) = f ‘i’}t‘j[zﬁ-[s-tcos(kya)]z]“z, (29)

where the integration region is restricted by |[[&
—t cos(kya)]/t,|<1 in the first Brillouin zone (1BZ). Plots of
EDOS are shown in Figs. 1(a) and 1(b) for three cases: «
=0 (hollow squares), a=0.1 (solid squares), and a=0.6
(line).

In Fig. 1(a), we plot EDOS which is smooth and maximal
at half-filling in square lattices (@=0). For the SHS p-wave
symmetry discussed, VD, (&) plays the role of a dimen-
sionless coupling parameter which controls the critical tem-
perature. This is simply because it is much easier to form
Cooper pairs with a small attractive interaction (and lower
the free energy of the Fermi system) when the density of
single fermion states is high. Additionally, EDOS decreases
and finally vanishes at the band edges where a small ratio of
T./Tr was predicted from continuum models. However, this
is not the case around half-filling, and we expect weak inter-
actions to be sufficient for the observation of superfluidity.

In contrast, the symmetry factor is 1 in the s-wave case
and EDOS becomes
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FIG. 1. Plots of EDOS versus reduced energy ¢,=¢/E, for SHS
p-wave symmetry when (a) =0 (hollow square), and (b) @=0.1
(solid square) and a=0.6 (line). In addition plots of DOS for
s-wave symmetry when (c) a=0 (hollow square), and (d) @=0.1
(solid square) and a=0.6 (line) are shown.

D(e) =X de - k)], (30)
k

which is identical to the density of single fermion states
(DOS) of normal fermions. A similar calculation yields

f
D(e) = f ?ﬂ%a[ti —[e-t cos(k),a)]z]_llz, (31)

i

where the integration region is again restricted by |[e
—tcos(kya)]/tx| <1 in the 1BZ. Plots of DOS are shown in
Figs. 1(c) and 1(d) for three cases: =0 (hollow square), «
=0.1 (solid square), and a=0.6 (line).

For instance, notice that in the tetragonal case of a two-
dimensional lattice, the DOS at half-filling is very large and
tends to infinity logarithmically [Fig. 1(c)]. However, away
from half-filling the DOS decreases rapidly to a constant at
the minimum and maximum band edges. This constant DOS
for very low or very high filling factors is equivalent to the
DOS of the continuous (homogeneous) systems since at the
bottom or at the top of the band, the single fermion disper-
sion energy can be approximated by a parabola in momen-
tum space. Furthermore, for s-wave superfluids, V(D(¢) is
the dimensionless coupling parameter which controls the
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value of critical temperature T,. This important quantity (7
is discussed next.

B. Critical temperature

Plots of reduced critical temperature 7,=7./E as a func-
tion of the number of atoms per unit cell (N,) are shown in
Fig. 2 for SHS p-wave and s-wave superfluids in cases (I),
(IN), and (ITI). Here, T, is the critical temperature calculated
from Eq. (18) or (27) and Ey=2¢ is the half-filling Fermi
energy for the square lattice with respect to the bottom of the
band.

The square lattice case (I) is shown in Figs. 2(a) and 2(c)
(hollow squares) for SHS p-wave and s-wave superfluids,
respectively. Notice that 7, is maximal at half-filling, and
that it has a value 0.01, which is much higher than the theo-
retically predicted 7, from a continuum model, and compa-
rable to  experimentally  attainable  temperatures
T/Tp=0.04% This implies that the superfluid regime of
SHS fermion gases may be observed experimentally in a
lattice, even in the limit of weak interactions (BCS regime).
The observability of a superfluid transition in SHS p-wave
Fermi systems is clearly enhanced when the system is driven
through a Feshbach resonance (in a lattice or in the con-
tinuum), as 7. is expected to increase further in this case,
however our calculations indicate that the weak interaction
(BCS) limit may be sufficient in the lattice case. This possi-
bility for Fermi gases in optical lattices has a parallel in the
experimental observation of superfluid-insulator transitions
in weakly interacting Bose systems in optical lattices.?

In case (II), while we keep interaction strengths V
=Vy,,=V, the same, we vary only the transfer energy along £
direction 7,=(1+a)t. This case is shown in Figs. 2(a) and
2(c) for SHS p-wave and s-wave superfluids, respectively.
Here, solid squares (line) correspond to a=0.1(a=0.6).

For SHS p-wave superfluids, an infinitesimally small an-
isotropy in the transfer energy ratio ¢,/¢, causes a disconti-
nous jump in EDOS at half-filling because of the symmetry
factor enhancement, however 7, at half-filling is the same as
in case (I), because the discontinuity at EDOS is limited to a
single point. As the anisotropy ratio increases (@=0.1), the
discontinuous point in EDOS at half-filling expands into a
region where EDOS is higher than in case (I). Thus over a
narrow range around half-filling, T. is larger than in case (I),
but varies smoothly as a function of « or N... Further increase
of a reduces EDOS near half-filling pushing 7. down. This
behavior is characteristic of the SHS p-wave state through its
symmetry factors. In contrast, for s-wave superfluids shown
in Fig. 2(c), T. decreases for fixed N, around half-filling with
increasing anisotropy (at least for 0 < a<0.6). Furthermore,
T, develops two maxima which are symmetric around half-
filling. This behavior in 7. is also related to the DOS of the
normal fermions which is shown in Fig. 1. Notice here that
when there is an anisotropy in the transfer energy, 7, near
half-filling corresponding to a SHS p-wave pairing is consid-
erably higher than the 7, of a s-wave pairing for the same
parameters of interest (assuming that V, =V, ,=V,).

In case (III), we vary both the interaction strength V,
=(1+a)V, and the transfer energy 7,=(1+a)r along the &
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direction. This case is shown in Figs. 2(b) and 2(d) for SHS
p-wave and s-wave superfluids, respectively. In these figures
it is assumed that V=V, ,=V;,. In case (III), both SHS
p-wave and s-wave superfluids have critical temperatures
that are much larger than in case (II), because of the increase
in Vg, in addition to the density of states effect, discussed
above. Notice again that 7. near half-filling corresponding to
a SHS p-wave pairing is also considerably higher than T for
a s-wave pairing for the same interaction parameters.

In this section, we established that the critical tempera-
tures for SHS p-wave superfluids in optical lattices can be
comparable or larger to the critical temperatures of s-wave
superfluids, depending on the lattice anisotropy and interac-
tion strength. Thus, we expect that SHS p-wave superfluids
may be experimentally attainable. In the next sections, we
discuss some experimentally relevant observables which
could be used to identify the superfluid phase of our exotic
SHS p-wave state.

C. Order parameter and chemical potential

In this section, we discuss the low-temperature behavior
of the order parameter A(k)=A sin(k,a,)+Asin(k,a,) de-
fined in Eq. (14) for the SHS p-wave state. In case (I) Ag,
=4, #0, while in cases (I) and (II) A, #0 and A, ,=0.
Here, we also discuss for comparison the singlet s-wave case
where A(k)=A,,, with Ay #0 for cases (I), (I) and (III).
The reduced amplitudes of the SHS p-wave order parameter
A=A, /E, versus N, are shown in Figs. 3(a) and 3(b). In
addition, we plot s-wave A, =Aq /E, in Figs. 3(c) and 3(d)
for cases (I), (I), and (IIT). Notice that the qualitative behav-
ior of A, as a function of N, is very different from that of the
chemical potential u,=u/E,, which is discussed next.

Plots of the low-temperature wu, versus N, are shown in
Fig. 4 for SHS p-wave and s-wave superfluids, respectively.
Here, we present only the corresponding chemical potentials
for cases (I) (hollow squares) and (II) (solid squares), where
a=0 and a=0.1, respectively. Chemical potentials for case
(I) are very similar to those of case (II). Notice that & is
always within the limits of the energy dispersion of the op-
tical lattice, —f,—r<< u<<t,+t, which characterizes the weak
coupling (BCS) limit.

Although the chemical potentials of SHS p-wave and the
singlet s-wave cases look similar at first glance, they are not.
The major qualitative differences between the chemical po-
tentials of the SHS p-wave and the singlet s-wave cases are
more clearly seen in the derivative dit/JN,. The appropriate
thermodynamic quantity that is related to this derivative is
the atomic compressibility to be discussed next.

D. Atomic compressibility

The isothermal atomic compressibility at finite tempera-
tures is defined by «(T)=—(dV/dP)ry/V where V is the
volume and P is the pressure of the gas. This can be rewrit-

ten as
1 [5Q 1 [ dN,
KT(T)=——2(T2> =—2( ~> : (32)
N\ dp T,V N\ du T,V

The partial derivative dN./du is
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FIG. 2. Plots of reduced critical temperature 7,=T,./E, versus
filling factor N, for SHS p-wave symmetry are shown for cases (a)
(I) and (IT) and (b) (I) and (II). In addition, plots for s-wave sym-
metry is shown for cases (c) (I) and (IT), and (d) (I) and (TIT). Plots
for @=0, 0.1, and 0.6 are shown with hollow squares, solid squares
and line, respectively.
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FIG. 3. Plots of zero temperature reduced order parameter am-
plitude A,=A,,/E, versus filling factor N, for SHS p-wave sym-
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plots for s-wave symmetry A=A /E, is shown for cases (c) (I)
and (II), and (d) (I) and (III). Plots for =0, 0.1, and 0.6 are shown
with hollow squares, solid squares and line, respectively.
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N 5 A hBE(k)+EY(k)w (33)

= an 5
om & 2EXk) 2 " E*(K)

where Y(k)=(8/4)sech’[ BE(k)/2] is the Yoshida function.

Plots of the reduced isothermal atomic compressibility
x,=k(T)/ ky are shown in Fig. 5 for both SHS p-wave and
s-wave superfluids for cases (I) and (II). For case (III), «, is
both qualitatively and quantitatively similar to case (II), and
it is not shown here. The normalization constant x; is the
SHS p-wave isothermal compressibility evaluated at 7=0
and half-filling.

In case (I), «, has a peak at half-filling and low tempera-
tures, and a hump at 7, for SHS p-wave superfluids. Notice
the strong temperature dependence of «, near half-filling. In
the s-wave case there is only a hump both at 7, and at low
temperatures, and a very weak temperature dependence for
all filling factors shown. In case (II), «, has the additional
feature that the central peak (hump) splits into two due to
degeneracy lifting, for the SHS p-wave case. Notice again
the drastic difference between the values of «, for N,
~(0.45 and N.=0.55 for T=0 and T=T,. However, in the
s-wave case the original hump also splits into two, but there
is very weak temperature dependence of «,.

To understand the peaks of «, at T=0, and its humps at
T=T, limits for the SHS p-wave case, we indicate that
JN,/ 3 [see Eq. (33)] has two contributions, where the first
term dominates at 7=0, and only the second term survives at
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T=T.,. Therefore, the first term is responsible for the peaks,
and the second term is responsible for the humps.

The peaks at T=0, can be understood by noting that the
first contribution to x(T) in Eq. (33) can be written as

2 5 n(k)[1 = n(k)]
klT=0)= 52 = o

: (34)
Nk

where n(Kk) is the momentum distribution and defined in
Eq. (21). Therefore, the peaks are due to nonvanishing
n(k)[1-n(Kk)] in regions of k space where E(K) vanishes and
n(k) is rapidly changing.

In case (I), the integrand n(k)[1-n(k)]/E(k) has four
k-space points (0,+7), and (x7,0) in the first Brillouin
zone (1BZ) where it diverges only when the chemical poten-
tial @=0(N,=0.5). Similarly in case (II), the integrand
diverges at two k-space points (+,0) in the 1BZ when i
=1,—1=~0.021(N.=0.55). Furthermore, the integrand di-
verges at two Kk-space points (0,+7) when g=-t +t=~
—-0.021(N,=~0.45). For other values of & (other filling fac-
tors), the integrand is well-behaved and does not produce
additional peaks in k,.

In contrast, the compressibility peaks at 7=0 do not exist
for s-wave superfluids [see Figs. 5(c) and 5(d)], where the
quasiparticle excitation spectrum E(k) is always gapped.
Generally speaking, we expect compressibility peaks for
nodal superfluids or superconductors, where quasiparticle en-
ergy spectrum vanishes in regions of k space.

At T=T,., k(T) is dominated by the second term of the
integrand [see Eq. (33)]

1 k
k{(T=T,) = 2TN2% sechz%(). (35)

Therefore, the humps are not related to the order parameter
[since at T=T,, A(k)=0], but are due to the peaks appearing
in the single fermion (normal) DOS [see Figs. 1(c) and 1(d)].
This is simply because «(T=T,) can be written in terms of
DOS [see Eq. (30)] for both SHS p-wave and s-wave sym-
metries. Notice that while DOS have only one peak at half-
filling in case (I) (leading to one hump in «,), DOS has two
peaks in cases (I) and (IIT) (leading to two humps in «,).
Thus, at 7=T, the humps correspond to a Van Hove
phenomenon,*! but the atomic compressibility is smooth.
Furthermore, we expect humps at T=T, for all pairing sym-
metries, since these humps are related only to normal state
properties but not to the symmetry of the pairing interaction.

Theoretically, the calculation of isothermal atomic com-
pressibility «(T) is easier than the isentropic atomic com-
pressibility «4(T). However, performing measurements of
kg(T) may be simpler in cold Fermi gases, since the gas
expansion upon release from the trap is expected to be nearly
isentropic. Fortunately, «¢(7) is related to x(T) via the ther-
modynamic relation

Cy(T)
Cp(T)

ws(T) = (), (36)

where k(T)> k4(T) since specific heat capacitites Cp(T)
> Cy(T). Furthermore, at low temperatures (7= 0) the ratio
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FIG. 5. Plots of reduced compressibility «,.=x(T)/ky versus
filling factor N, for SHS p-wave symmetry in cases (a) (I) and (b)
(I1). In addition, plots for s-wave symmetry are shown in cases (c)
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respectively.
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Cp(T)/CT)=1v is a constant, and therefore, ky(T=0)
o« k(T=0). Thus, we expect qualitatively similar behavior
in both the isentropic and isothermal compressibilities at low
temperatures (7=0), where appearence of such peaks could
be used as a signature of SHS p-wave superfluidity.

The measurement of the atomic compressibility could
also be performed via an analysis of particle density fluctua-
tions. As it is well know from thermodynamics*? the isother-
mal atomic compressibility is connected to density fluctua-
tions via the relation

(n)*T
\%

where (n) and (V) are average density of atoms and volume
of the condensate, respectively. From the measurement of
density fluctuations the isothermal compressibility can be ex-
tracted at any temperature 7.

Furthermore, the spin susceptibility tensor component
X5,(T) can be written as a spin-spin response function to a
magnetic field h=h% applied along an arbitrary 7
direction.*® In the case of SHS p-wave superfluids

#Q 0N,

TR 8 :U~B£~ (38)

(n?) —(n)* = (), (37

X7]7](T) ==

Therefore, for the SHS p-wave case, x,,,(T) is directly re-
lated to the isothermal atomic compressibility and is given
by [N?/(gug)*]x(T). Thus, we expect similar effects in the
magnetic spin susceptibility as in the case of isothermal
atomic compressibility discussed above. In cold atoms, the
measurement of the spin susceptibility will be most likely
achieved by using techniques similar to nuclear magnetic
resonance (NMR), where yx,,(7) can be measured via the
Knight shift.*3

Specifically, while we expect only one peak at exactly
half-filling in the tetragonal lattices at 7=0, two peaks will
appear in the orthorhombic lattices for a SHS p-wave super-
fluid. However at T=T,, these peaks disappear and turn into
humps. Notice that the filling factor dependence of x,,,(T)
will be qualitatively different from (7). This is because
while  x,,(T) is symmetric around half-filling (N,
=0.5), «7(T) is not. The relation between the particle com-
pressibility and the spin susceptibility given above is not
valid for the s-wave case. Their relationship is more compli-
cated in this case, and we do not discuss it here. Another
important property is the superfluid density to be discussed
next.

E. Superfluid density tensor

The superfluid density tensor is defined as a response
function to phase twists of the order parameter.** In the ap-
proximation used in this paper, the temperature dependence
of its components is given by

py= 502 (109700 - Y 7£007,E0)], (39)
k

where n(k) is the momentum distribution, Y(k) is the
Yoshida function defined in the previous section, and J; de-
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FIG. 6. Plots of reduced diagonal (p;"=p”; upper curves) and
off- diagonal (p”=p."; lower curves) superfluid density tensor com-
ponents p?/= plj/ p"“lx versus temperature 7/T, for SHS p-wave su-
perfluids in tetragonal lattices [case (I)]. N.=0.5, 0.45, and 0.4 are
shown with line, hollow, and solid squares.

notes the partial derivative with respect to k;. Generally
speaking, there are two components to the reduction of the
superfluid density at nonzero temperatures, one coming from
fermionic (quasiparticle excitations) and the other bosonic
(collective modes) degrees of freedom. Here, we do not dis-
cuss the bosonic contribution, except to say that at low tem-
peratures the dominant terms come from Goldstone modes
associated with the phase of the order parameter,*> which are
underdamped in our case due to subcritical Landau damping.
Furthermore, in the case of tetragonal symmetry, Goldstone
modes do not contribute to the off-diagonal component of
the superfluid density, which is the main focus of the analysis
that follows.

We discuss first p;; for SHS p-wave superfluids. Plots of

pl=p, i/ Py are shown in Fig. 6 as a function of temperature
f0r case (I), and three filling factors: N.=0.5 (line), N,
=0.45 (hollow squares), and N,.=0.4 (solid squares). The
normalization constant pyi** is the maximum value of the
off-diagonal component in a square lattice. This maximum
occurs at half-filling and 7= 0.027, in a square lattice, where
T, is the critical temperature at half-filling. It is important to
emphasize that square lattices [case (I)] have identical diag-
onal elements p,.=p,, due to tetragonal symmetry, but have
nonzero p,, component as a result of the absence of reflec-
tion symmetry in the yz plane (x——x) or the xz plane
(y— —y) for the d vector defined in Eq. (26). In cases (IT) and
(I1I), reflection symmetry is restored and p,, vanishes iden-
tically in the orthorhombic case for any temperature 7.

In the case of tetragonal symmetry [case (I)], pxy has a
peak as a function of N, but the diagonal components have a
dip of the same size at exactly half-filling. In Fig. 7, we plot
pii Py as a function of N, for three temperatures.

Furthermore, notice that at 7=0 the superfluid density
tensor is reduced to

1
pij= 2—V§ n(k)3,d;€(k), (40)

which is just the integral of the momentum distribution
weighted by the the curvature tensor of the dispersion &(k).
Thus, p,, is zero at T=0 for any filling factor. However, as T
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FIG. 7. Plots of reduced diagonal (p)"=p)”; upper curves) and
off-diagonal (p)”=p"; lower curves) superfluid density tensor com-
ponents p”= pijl pyy " versus number of atoms per unit cell N, for
SHS p-wave superfluids in tetragonal lattices [case (I)]. T}
=0.002T7,, T,=0.02T, and 75=0.17,, are shown with line, solid,
and hollow squares. Here 7, is the critical temperature at
half-filling.

increases p,, increases and reaches approximately the same
values as p,, and pyy- A further increase of T leads all tensor
components of p;; to vanish at T=T,, as expected.

In contrast, for s-wave superfluids, the off-diagonal tensor
elements (p,y,py,) are zero both in square (case (I)) and
orthorhombic lattices [cases (II) and (III)]. However, similar
to SHS p-wave superfluids, p,,=p,, in the square and p,,
# pyy in the orthorhombic lattices. We do not plot p,, and p,,
for the s-wave case, because our main interest here is the
analysis of p,, which is strictly zero in this case. We note in
passing that the main difference between the diagonal com-
ponents of s-wave and SHS p-wave superfluid densities is
their temperature dependence. In the s-wave case at low tem-
peratures, p,, and p,, deviate from their zero temperature
value only by a small exponential correction, while in the
SHS p-wave case the deviation is a power law.

Measurements of the superfluid density in cold atoms
might be performed through the rotation of the condensate in
combination with experimental techniques that are sensitive
to rotations. Through this rotational sensitivity it may be pos-
sible to extract the velocity fields and their correlations, as it
is currently possible with positional (density) sensitive
techniques.*® This experiment in cold atoms would be the
analog of the rotating bucket (or cylinder) experiments in
liquid helium.*3

In this section, we have discussed some of the experimen-
tally relevant quantities of SHS p-wave superfluids and com-
pared them with the s-wave superfluids in the weak coupling
BCS regime. Furthermore, we presented signatures of the
SHS p-wave superfluid state, which can be used to identify
superfluidity in this limit. In the next section, we study some
of these thermodynamic quantitites as a function of interac-
tion strength from weak (BCS) to strong (BEC) coupling
regimes at low filling factors, and complete our analysis with
a discussion of signatures of a possible BCS-to-BEC quan-
tum phase transition for SHS p-wave superfluids.

IV. SUPERFLUID PROPERTIES IN THE BCS-TO-BEC
EVOLUTION

At very low temperatures (7=0), the saddle point order
parameter and the number equations are approximatelly valid
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for all couplings from weak to strong coupling regimes,
where a small correction to the number equation is
negligible.’

For low filling factors 0 <N,<<0.5, the chemical potential
fi=—|fx| decreases as a function of interaction strength Vo
and crosses the bottom of the energy band (€y,=~1,~1,) at
some critical value of V. The decrease of & is associated
with the formation of bound particle pairs which are pulled
out of the two-particle continuum. Similarly, for high filling
factors 0.5<N,.<1, @=|f| increases with increasing Vj,
and crosses the top of the energy band €,,=1,+1, at some
critical value of V. The increase of & is associated with the
formation of bound hole pairs which are pulled out of the
two-hole continuum. However, exactly at half-filling N,
=0.5, @ is pinned at zero for any interaction strength due to
perfect particle-hole symmetry.

Notice that the situation in lattices is very different from
the continuum, because of particle-hole symmetry. In the
continuum the chemical potential is only pulled down below
the bottom of the band since there is no energy upper bound
for a parabolic dispersion. In the lattice case, as discussed
above, the chemical potential can move below (above) the
bottom (top) of the band for filling factors below (above)
half-filling. Notice in addition, that for optical lattices of cold
fermion atoms at high filling factors, superfluidity is associ-
ated with correlated motion of holes (atom voids), rather
than particles (atoms).

A. Phase diagram

Depending on the behavior of i, the T7=0 phase diagram
can be plotted as a function of filling factor N, and interac-
tion strength Vj . The BCS region, where || <t,+1,, corre-
sponds to the weaker interaction region for fixed density as
shown in Fig. 8. In the BCS region there is a well-defined
Fermi surface locus where &(k)=0. The BEC region, where
|&| > t,+t,, correponds to the stronger interaction region for
fixed density as shown in Fig. 8. In the BEC region there is
no Fermi surface locus, since &(k) cannot be zero.

In Fig. 8 we also compare the phase diagrams of SHS
p-wave and s-wave superfluids. In case (I) (hollow squares)
of SHS p-wave superfluids, a wide region of filling factors
around half-filling requires very strong critical V,, to reach
the BEC regime. For a small anisotropy a=0.1 (solid
squares) corresponding to case (II), this region narrows.
However, further anisotropy a=0.6 (line), this region widens
again. For s-wave superfluids, in case (I) (hollow squares),
the region around half-filling expands very little for small
anisotropy a=0.1 (solid squares) corresponding to case (II).
Further anisotropy @=0.6 (line) expands the BCS region
around half-filling, thus making it more difficult to reach the
BEC regime at fixed filling factor.

Notice in addition, that when the filling factor N.— 0 or
N.—1, a finite interaction strength is necessary to evolve
from the BCS to BEC regimes in both SHS p-wave and
s-wave superfluids. This indicates that two-particle (or two-
hole) bound states in a two-dimensional lattice require finite
energy for the symmetries discussed. This is in contrast with
the situation found in two-dimensional continuum models,
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FIG. 8. Plots of critical interaction strength V,=V, ,/E; and V,
=V /Ey versus number of atoms per unit cell N, for (a) SHS
p-wave, and (b) s-wave superfluids, respectively at 7=0. Plots for
a=0, 0.1, and 0.6 are shown with hollow squares, solid squares,
and line, respectively.

where a two-body bound state is found at arbitrarily small
attractive interaction for s-wave. However, in two-
dimensional continuum models for the SHS p-wave case, the
creation of a two-body bound state requires a finite interac-
tion strength.

Furthermore, there are two possible ways of investigating
the evolution from the BCS to BEC regimes in cold atom
experiments. The first way is by changing the interaction
strength for a fixed filling factor, while the second is by
changing filling factor for a fixed interaction strength. Prob-
ably both ways are possible in cold atom experiments, where
interaction strength and atom filling factor could be tuned
independently.

In all physical properties to be discussed in the next sec-
tions, first we fix the filling factor to N.=0.25 (quarter-
filling) and vary V, to cross the BCS-BEC boundary. But, in
addition, we fix the interaction strength to V,=6, and vary N,
to cross the BCS-BEC boundary. We present results for te-
tragonal [case (I) with @=0] and orthorhombic [case (II)
with @=0.1] lattices. Notice that cases (II) and (III) have
similar behavior, and differ only by a scale factor. Thus we
do not present case (IIT) here.

B. Quasiparticle excitation spectrum

The quasiparticle excitation spectrum of SHS p-wave and
s-wave superfluids during the BCS-to-BEC evolution are
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very different because of the symmetry of the order param-
eter. As discussed in Sec. II, the quasiparticle spectrum of
SHS p-wave superfluids is given by E(k)=+&(k)+|A(k)[?
with &(k)=e(k)—i. Since the cross-product d"(k) X d(k)
#0 is nonzero, it is expected that triplet superfluids have
additional quasiparticle excitation branches. However, for
the SHS p-wave state these branches do not enter the prob-
lem as they are pushed to extremely high energies and are
not accessible. For instance, when a THS p-wave superfluid
is formed from a pseudospin 1/2 system, there are two ac-
cessible quasiparticle branches when time reversal symmetry
is broken. Thus, in the SHS p-wave there is only one quasi-
particle energy branch.

For the SHS p-wave case, notice that E(k)=0 when both
&(k)=0 and A(k)=0. This implies that the momentum space
region of zero E(k) occurs when —t,cos(ka,)—t,cos(k,a,)
=i and A ,sin(ka,)+A, sin(kya,)=0 for chemical poten-
tials inside the BCS region (|| <t,+1,). This means that in
the BCS region the quasi-particle excitation spectrum is gap-
less. However, E(K) never vanishes for chemical potentials
inside the BEC region (|| >1,+1,), since &(k) can never be
zero. However, the order parameter A(k) can still be zero.
This implies that in the BEC region the quasiparticle excita-
tion spectrum is fully gapped. Notice that this change in
minimum excitation energy accompanies the existence or
nonexistence of the Fermi surface locus é(k)=0. Since qua-
siparticle excitations are evolving from gapless BCS to
gapped BEC regime as a function of interaction strength for
fixed filling factor, or as a function of filling factor for fixed
interaction strength, the evolution between the BCS and BEC
regimes is not smooth and a quantum phase transition oc-
curs. As we shall see in Sec. IV D, where ground state prop-
erties like the isothermal compressibility are calculated, this
quantum phase transition is characterized by the chemical
potential crossing either the bottom (f,=-t,~t,) or the top
(.=t +t,) of the energy band.

In contrast, for the s-wave case, E(k) never vanishes and
is always gapped in both the BCS and BEC regimes. This is
a major difference between SHS p-wave (or more generally
any nodal superfluids) and s-wave superfluids. In s-wave su-
perfluids quasiparticle excitations are always gapped and the
evolution from the BCS to BEC regimes is smooth, so that
no quantum phase transition occurs. This gapless to gapped
quantum phase transitions were considered in the context of
He® by Volovik,*” and later in the context of high-T,
superconductivity*®*° and atomic Fermi gases.!'"-!3

C. Chemical potential

Plots of the reduced chemical potential u,.=u/E, at low
temperatures (7=0) and quarter filling factor (N,=0.25) are
shown in Fig. 9 as a function of reduced interaction V,
=Vy/Eyand V.=V, /E, for SHS p-wave and s-wave super-
fluids, respectively. The tetragonal case (I) with =0 and
orthorhombic case (II) with a=0.1 are shown with hollow
and solid squares, respectively. In the case of SHS p-wave
superfluids, w, is a continuous function of V,, but its slope
with respect to V, has a cusp when & crosses the bottom of
the energy band; w,=—1 (a=0: hollow squares) and u,=
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FIG. 9. Plots of reduced chemical potential u,=u/E, versus
reduced interaction strength V,=V,,/E, and V,=V, /E, for (a)
SHS p-wave, and (b) s-wave superfluids, respectively at 7=0 and
N.=0.25. Plots for a=0 and 0.1 are shown with hollow and solid
squares, respectively.

—1.1 (@=0.1 :solid squares). However in the s-wave case,
both w, and the slope of w, with respect to V, are continuous
functions of V,.

Plots of the reduced chemical potential u,=u/E, at low
temperatures (7=0) and constant interaction strength (V,
=6) are shown in Fig. 10 as a function of filling factor N, for
both SHS p-wave and s-wave superfluids. Here again the
tetragonal case (I) with a=0 and orthorhombic case (II)
with a=0.1 are shown with hollow and solid squares, respec-
tively. In the case of SHS p-wave superfluids, w, is a conti-
nous function of N, but its slope with respect to N, has
a cusp when @& crosses the bottom of the energy band; u,
=-1 (a=0: hollow squares) and w,=—1.1 (a=0.1: solid
squares). In addition, w, changes curvature at wu,=0(N,
=0.5) at the same place, where the topology of the Fermi
surface locus &(k)=0 changes from particlelike to holelike.
However, in the s-wave case, both w, and the slope of w,
with respect to N, are continuous functions of N, and there
is no change of slope when the topology of Fermi surface
locus &(k)=0 changes. Thus, the slope change of w, for the
SHS p-wave case is directly related to a higher angular mo-
mentum pairing channel (€ # 0).

This difference between SHS p-wave and s-wave super-
fluids have great importance in describing the evolution from
the BCS to BEC regimes. As discussed above, the major
qualitative differences between the chemical potentials of
SHS p-wave and s-wave cases are more clearly seen in the
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FIG. 10. Plots of reduced chemical potential w,=u/E, versus
filling factor N,. for (a) SHS p-wave, and (b) s-wave superfluids at
T=0 and V,=6. Plots for a=0 and 0.1 are shown with hollow and
solid squares, respectively.

derivative du/dN,, which is directly related to the atomic
compressibility to be discussed next.

D. Atomic compressibility

Plots of the reduced isothermal atomic compressibility
k,=k(T)! Kk, at low temperatures (T=0) [see Eq. (34)] and
quarter filling factor (N.=0.25) are shown in Fig. 11 as a
function of reduced interaction strength V,=V, /E; and V,
=V, /Ey for SHS p-wave and s-wave superfluids, respec-
tively. The tetragonal case (I) with =0, and the orthorhom-
bic case (II) with @=0.1 are shown with hollow and solid
squares, respectively.

In the case of SHS p-wave superfluids, the evolution of «,
from the BCS to BEC regimes is not smooth, and a cusp
occurs at critical interaction strengths corresponding to u,
=—1 in case (I) (hollow squares) and u,=-1.1 in case (II)
(solid squares). These cusps are associated with the appear-
ance of a full gap in the quasiparticle excitation spectrum as
the evolution from the BCS to the BEC regime takes place.
In contrast, the evolution of «, is smooth for s-wave super-
fluids, since the quasiparticle spectrum is always gapped dur-
ing the BCS to BEC evolution.

Plots of N?K,:&Nc/ du, at low temperatures (T=0) and at
fixed interaction strength (V,=6) are shown in Fig. 12 as a
function of filling factor N.. for both SHS p-wave and s-wave
superfluids. The tetragonal case (I) with @=0 and orthorhom-
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FIG. 11. Plots of reduced isothermal atomic compressibility «,
=yl Ky versus reduced interaction strength V,=V, /E; and V,
=Vy.s/Eo for (a) SHS p-wave, and (b) s-wave superfluids, respec-
tively, at 7=0 and N,.=0.25. Plots for «=0 and 0.1 are shown with
hollow and solid squares, respectively.

bic case (IT) with @=0.1 are shown with hollow and solid
squares, respectively.

In the case of SHS p-wave superfluids, the evolution of
N§K,=(9Nc/ du, from the BCS to the BEC regime is not
smooth. In both cases (I) (hollow squares) and (IT) (solid
squares), cusps occur for corresponding filling factors when
m==x1 and w,==x1.1, respectively. These cusps occur again
as a result of the gapless to gapped transition in the quasi-
particle excitation spectrum discussed above. Notice that the
cusps appearing at lower filling factors are associated with
particle BCS-BEC transitions, while the cusps appearing at
higher filling factors are associated with hole BCS-BEC tran-
sitions. Furthermore, NzK, has a sharp peak at half-filling in
case (I), and two small peaks in case (IT) which are symmet-
ric around half-filling. These peaks occur inside the BCS
region of the phase diagram shown in Fig. 8, and they arise
due to the same reasons discussed in Sec. III D, where the
BCS regime is extensively analyzed. In contrast, the evolu-
tion of NfK, as a function of N, is again smooth for s-wave
superfluids during the BCS-to-BEC evolution.

In cold Fermi gases the measurement of the isothermal
compressibility «7(T) at low temperatures is very hard, be-
cause most measurements are performed when traps are
turned off and the gas expands. However, the gas expansion
process is probably close to being isentropic and kg is most
likely measurable. As discussed in Sec. Il D, for T<T,, the
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FIG. 12. Plots of NfK,:dNL./d,u,, versus filling factor N, for (a)
SHS p-wave, and (b) s-wave superfluids at 7=0 and V,=6. Plots for
a=0 and 0.1 are shown with hollow and solid squares, respectively.

isentropic compressibility and the isothermal compressibility
are essentially proportional, and their measurements can
serve as an indicator of the quantum phase transition dis-
cussed in this section. Another important quantity that re-
flects such a transition is the Cooper pair size to be dis-
cussed.

E. Average Cooper pair size

The average Cooper pair size in the saddle point approxi-
mation is given by

&= (e(K)|(= V) oK)/ p(k)| (k) (41)

where ¢(k)=A(Kk)/2E(k) plays the role of the Cooper pair
wave function. This quantity reflects the average size of a
Cooper pair and not the coherence length .., of the super-
fluid. Although these quantities are directly related in the
BCS regime, they are very different in the BEC regime.’
Here, however, we concentrate only on the analysis of &,

Plots of the reduced average Cooper pair size &= &,/ a
at low temperatures (T=0) and at quarter filling (N,=0.25)
are shown in Fig. 13. The plots are shown as a function of
reduced interaction strength V.=V, ./E, and V,=V, /E for
SHS p-wave and s-wave superfluids, respectively. The te-
tragonal case (I) with @=0, and the orthorhombic case (II)
with a@=0.1 are shown with hollow and solid squares, respec-
tively.
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FIG. 13. Plots of reduced average Cooper pair size §.=&/a
versus reduced interaction strength V.=V, ./E and V,=V,, (/E, for
(a) SHS p-wave, and (b) s-wave superfluids, respectively, at 7=0
and N,.=0.25. Plots for a=0 and 0.1 are shown with hollow and
solid squares, respectively.

In the case of SHS p-wave superfluids, the evolution of &,
from the BCS to BEC regimes is not smooth, and singular
behaviors occur at critical interaction strengths correspond-
ing to w,=—1 in case (I) (hollow squares) and w,=—1.1 in
case (IT) (solid squares). These singular behaviors are asso-
ciated with the appearance of a full gap in the quasiparticle
excitation spectrum and with pairing in a nonzero angular
momentum as the evolution from BCS to BEC takes place.

This singular behavior can be understood in terms of the
vanishing of the momentum distribution when & smaller
(larger) than the bottom (top) of the band for fixed filling
factor N.. For instance, in the case of N.=0.25 shown in Fig.
13, when j falls slightly below the bottom of the band, sud-
denly n(k) vanishes in the neighborhood of k=0 which leads
to unbound pairs of atoms with (k;=k=0; 1) and (k,=-k
=0;7), and thus a rapid increase in the average pair size &y,
for interaction strengths below or above the critical values.
Beyond the critical interaction strength, &, decreases mono-
tonically for increasing V, and converges asymptotically
(when V,—o and N,<0.5) to a finite value which is larger
but of the order of the lattice spacing a. This is a manisfes-
tation of higher angular momentum pairing and of the Pauli
exclusion principle.

In contrast, the evolution of &, is smooth for s-wave su-
perfluids, since the momentum distribution n(k) never van-
ishes at low Kk, and thus the distribution of pair sizes is well
behaved. This monotonic decrease of &, is also a reflection
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FIG. 14. Plots of reduced average Cooper pair size §.= &,/ a
versus filling factor N,. for (a) SHS p-wave, and (b) s-wave super-
fluids at 7=0 and V,=6. Plots for «=0 and 0.1 are shown with
hollow and solid squares, respectively.

of a quasiparticle spectrum that is always gapped during the
BCS-to-BEC evolution and of an order parameter for zero
angular momentum pairing. Notice that, &, is decreasing
monotonically as a function of interaction V, for N.=0.25.
The limiting pair size for large V, and fixed N, is small in
comparison to the lattice spacing a, since the Pauli principle
does not forbid atoms of opposite pseudospins to be on the
same lattice site.

Next, we discuss the behavior of ¢, as a function of filling
factor N,. Plots of &,=§,,;/a at low temperatures (7~ 0) and
at fixed interaction strength (V,, ,=6E,) are shown in Fig. 14
as a function of N, for both SHS p-wave and s-wave super-
fluids. The tetragonal case (I) with @=0 and orthorhombic
case (IT) with @=0.1 are again shown with hollow and solid
squares, respectively.

In the case of SHS p-wave superfluids, the evolution of &,
from the BCS to BEC regimes is not smooth. In both cases
(I) (hollow squares) and (IT) (solid squares), singularities oc-
cur for corresponding filling factors when w,=+1 and u,
==+1.1, respectively. These singularities occur again as a re-
sult of the gapless to gapped transition in the quasiparticle
excitation spectrum discussed above, as well as the symme-
try of the order parameter, which strongly modifies the na-
ture of the pair wave function ¢(k)=A(k)/2E(Kk). Notice that
¢, has a singularity at half-filling (BCS region) in case (I),
and two other singularities symmetric around half-filling
(BCS region) in case (II). As the interaction is further in-
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creased, the low and high filling singularities (BCS-BEC
boundaries) shift toward half-filling and merge with the half-
filling singularity in case (I) (see also phase diagram in Fig.
8). This situation is analogous to the d-wave lattice case.’*>!
As the interaction is further increased, similar behavior oc-
curs in case (II). Thus, at large interaction strengths the BCS
(BEC) region shrinks (expands), and the characteristic value
of &y 1s of the order of the lattice spacing a except when N,
is very close to half-filling, where the BCS-BEC phase
boundary is located.

In contrast, the evolution of &, as a function of N, is again
smooth for s-wave superfluids during the BCS-to-BEC evo-
lution [see Fig. 14(b)]. For instance, below half-filling &,
decreases as a function of increasing N, (increasing DOS),
while the pair wave function ¢(Kk) continues having the same
qualitative behavior at low momenta. Above half-filling,
analogous discussions hold for holes. Furthermore, §&y,; de-
creases monotonically with increasing interaction for any
filling factor N, indicating that for very large interaction
strengths &, — 0 for any N...

Thus far, we have investigated only momentum averaged
quantities, but next we discuss the momentum distribution,
which could be measured in cold Fermi gases.

F. Momentum distribution

The zero temperature momentum distribution

1 é(k)
n(k)=5{l —m} (42)

is discussed in this section in the weak coupling BCS and
strong coupling BEC regimes for both SHS p-wave and
s-wave superfluids in a lattice. We discuss here only the case
of particle superfluidity with N.=0.25. In the BCS regime,
we choose V, corresponding to u,=—0.5 for case (I) (a=0)
and w,=-0.55 for case (II) (@=0.1). Similarly in the BEC
regime, we choose V, corresponding to u,=-2 for case (I)
and u,=-2.2 for case (II).

In the case of SHS p-wave superfluids, the momentum
distribution has a major rearrangement in k space with in-
creasing interaction strength as can be seen in Fig. 15. This
rearrangement is very dramatic when & crosses the bottom of
the energy band u= .. This is a direct consequence of the
change of the quasiparticle excitation spectrum from gapless
in the BCS regime (|| < (2+ a)1) to fully gapped in the BEC
regime (|| > 2+ a)?).

For case (I), plots of n(k) (in the first Brillouin zone) for
the BCS and BEC regimes are shown in Figs. 15(a) and
15(b), respectively. Here the interaction strengths correspond
to w,=-0.5 for the BCS regime, and wu,=-2 for the BEC
regime. The boundary line between the two regimes occurs
when w,=—1. Notice that n(k) is symmetric around the lines
kya,=k.a, and kya,=—k.a, in both regimes as a reflection of
the symmetry properties of &(k) and |A(K)|.

While the line kya,=—ka, has the highest momentum dis-
tribution in the BCS regime, n(k) vanishes along k,a,=
—k.a, in the BEC regime. As the interaction strength in-
creases, two-particle states with opposite momenta are taken
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FIG. 15. (Color online) Plots of momentum distribution n(Kk)
versus k,a, and kya, for a SHS p-wave superfluid in case (I) in (a)
BCS (u,=-0.5) and (b) BEC (u,=-2) regimes. In addition plots
for case (II) in (c) BCS (u,=-0.55) and (d) BEC (u,=-2.2) re-
gimes at 7=0. Here the brighter the region, the higher the value of
momentum distribution.
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(a)

FIG. 16. (Color online) Plots of momentum distribution n(k)
versus k.a, and kya, for a s-wave superfluid in case (I) in (a) BCS
(u,==0.5) and (b) BEC (u,=-2) regimes at T=0. Here the brighter
the region, the higher the value of meomentum distribution.

out of the two-particle continuum into two-particle bound
states with zero center of mass momentum. As more of these
tightly bound states are formed the large momentum distri-
bution in the vicinity of k=0 splits into two peaks around
finite momentum values reflecting the =1 value of the an-
gular momentum associated with these p-wave tightly bound
states in the BEC regime. For instance, in the case of d-wave
(€=2) superfluids the momentum distribution in the BCS
regime is centered around k=0 and splits into four peaks
around finite momentum values reflecting the €=2 value of
the angular momentum associated with these tightly bound
states in the BEC regime.*’

For case (II), plots of n(k) for BCS and BEC regimes are
shown in Figs. 15(c) and 15(d), respectively. The figures
shown correspond to interaction strengths associated to u,
=-0.55, and u,=-2.2 in the BCS and BEC regimes, respec-
tively. The boundary line between the two regimes occurs
when u,=-1.1. Notice that n(k) is symmetric around k.a,
=0 and k,a,=0 in both regimes. While the highest values of
n(k) occur near k=0 in the BCS regime, n(k) vanishes near
k=0 and develop two maxima for the finite values of k, in
the BEC regime.

In contrast, the evolution of the momentum distribution
from the BCS to BEC regimes is smooth for s-wave super-
fluids as shown in Fig. 16 for case (I). In case (II) the results
are very similar to case (I), except for the expected aniso-
tropy and we do not present them here. Notice that for
s-wave (€£=0) superfluids, the momentum distribution in the
BCS regime is centered around k=0, and remains centered
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around k=0 even in the BEC regime. This reflects the =0
value of the angular momentum associated with s-wave
tightly bound states in the BEC regime. Here, the essential
qualitative difference in the BCS to BEC regimes is that as
the interaction gets stronger n(k) broadens due to the forma-
tion of tightly bound states.

V. CONCLUSIONS

In summary, we considered SHS p-wave pairing of single
hyperfine state and THS s-wave pairing of two hyperfine
state Fermi gases in quasi-two-dimensional optical lattices.
We focused mainly on superfluid SHS p-wave (triplet) states
that break time-reversal, spin, and orbital symmetries, but
preserve total spin-orbit symmetry.

Since the paper was divided into two parts, we present our
conclusions for each of these parts separately. In the first
part, we analyzed superfluid properties of SHS p-wave and
THS s-wave symmetries in the strictly weak coupling BCS
regime. There, we calculate the order parameter, chemical
potential, critical temperature, atomic compressibility, and
superfluid density as a function of filling factor for tetragonal
and orthorhombic optical lattices.

We found that, for SHS p-wave superfluids, the critical
temperatures in tetragonal and orthorhombic optical lattices
are considerably higher than in continuum model predic-
tions, and therefore, experimentally attainable. In particular,
we showed that a small anisotropy in the transfer energies
increases the effective density of fermionic states of a SHS
p-wave superfluid considerably around half-filling which
leads to higher critical temperatures. In contrast, a small an-
isotropy decreases the density of states around half-filling,
and therefore, the critical temperatures for a THS s-wave
superfluid. We also noticed that further anisotropy leads to a
larger decrease in critical temperatures for THS s-wave than
for SHS p-wave superfluids. Therefore, we concluded that a
small anisotropy favors SHS p-wave pairing near half-filling,
and that the critical temperatures for SHS p-wave superfluids
are comparable and even higher than the THS s-wave case
for similar interaction parameters.

For SHS p-wave superfluids, we found a peak in the iso-
thermal atomic compressibility at low temperatures, exactly
at half-filling of tetragonal lattices. This peak splits into two
smaller peaks in the orthorhombic case. These peaks reflect
the SHS p-wave structure of the order parameter at low tem-
peratures and they are related to the nodes (zeros) of the
quasiparticle energy spectrum. We also showed that the
atomic compressibility peaks decrease in size as the critical
temperature is approached from below. The peaks turn into
humps at T=T.,. In contrast, for THS s-wave superfluids, we
showed that the atomic compressibility does not show a peak
structure at low temperatures since the quasiparticle energy
spectrum is always gapped, and that the compressibility is
largely temperature independent.
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We also discussed the superfluid density tensor for SHS
p-wave and THS s-wave systems. In the SHS p-wave case,
we concluded that in orthorhombic lattices, the off-diagonal
component p,, of the superfluid density tensor vanishes iden-
tically, while the diagonal components p,, and p,, are differ-
ent. However, in tetragonal lattices, we showed that p,, # 0,
while p,,=p,,. In contrast, for THS s-wave superfluids, p,,
=0 and p,,# p,, in the orthorhombic, while p,,=0 and p,,
=py, in the tetragonal lattices. Therefore, the presence of
nonzero p,, in the square lattices is a key signature of our
exotic SHS p-wave triplet state.

In the second part of the manuscript, we analyzed super-
fluid properties of SHS p-wave and THS s-wave superfluids
in the evolution from the BCS to BEC regimes at low tem-
peratures (T=0). We discussed the changes in the quasipar-
ticle excitation spectrum, chemical potential, atomic com-
pressibility, momentum distribution, and Cooper pair size as
a function of filling factor and interaction strength for tetrag-
onal and orthorhombic optical lattices. We found major dif-
ferences between SHS p-wave and THS s-wave superfluids
in the evolution from the BCS to BEC regimes.

In the case of SHS p-wave superfluids, the quasiparticle
excitation spectrum, chemical potential, atomic compress-
ibility, Cooper pair size, and momentum distribution are not
smooth functions of filling factor or interaction strength. In
particular, the singular behavior of the atomic compressibil-
ity suggests the existence of a quantum phase transition
when the chemical potential crosses the bottom or the top of
the energy band. This transition is associated with the change
in quasiparticle excitation spectrum and the higher angular
momentum nature (€=1) of SHS p-wave superfluids, which
are gapless in the BCS regime, but fully gapped in the BEC
regime.

In contrast, for THS s-wave superfluids, the quasiparticle
excitation spectrum, chemical potential, atomic compress-
ibility, Cooper pair size, and momentum distribution are
smooth functions of filling factor or interaction strength. In
particular, the smooth behavior of the atomic compressibility
suggests only a crossover when the chemical potential
crosses the bottom or top of the energy band. This crossover
is associated with a fully gapped quasi-particle excitation
spectrum and pairing at the zero angular momentum channel
in both BCS and BEC regimes.

These major differences between THS s-wave and SHS
p-wave superfluids in an optical lattice suggest that SHS
p-wave cold atoms are much richer than THS s-wave cold
atoms, and thus these systems may provide a new experi-
mental direction in this field.
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