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Vortex line in spin-orbit coupled atomic Fermi gases
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It has recently been shown that the spin-orbit coupling gives rise to topologically nontrivial and
thermodynamically stable gapless superfluid phases when the pseudospin populations of an atomic Fermi gas
are imbalanced, with the possibility of featuring Majorana zero-energy quasiparticles. In this paper, we consider
a Rashba-type spin-orbit coupling, and use the Bogoliubov-de Gennes formalism to analyze a single vortex line
along a finite cylinder with a periodic boundary condition. We show that the signatures for the appearance of core-
and edge-bound states can be directly found in the density of single-particle states and particle-current density.
In particular, we find that the pseudospin components counterflow near the edge of the cylinder, the strength of
which increases with increasing spin-orbit coupling.
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I. INTRODUCTION

Following the recent experimental success with artificial
gauge fields and spin-orbit coupled atomic Bose gases [1,2],
there has been increasing theoretical interest in studying
spin-orbit coupled atomic Fermi gases with balanced or
imbalanced populations, at zero or finite temperatures, in
two or three dimensions, etc. [3–16]. The main motivation
behind these works is that the spin-orbit coupled atomic
Fermi gases are ideal systems for studying topologically
nontrivial superfluid phases [3,7–9], with the possibility of
featuring Majorana zero-energy bound states for which the
associated quasiparticle operators are self-Hermitian. This
means that a zero-energy Majorana quasiparticle is its own
antiquasiparticle. Although these quasiparticles are predicted
to appear in low-dimensional strongly correlated systems in
various fields of physics, including the fractional quantum
Hall systems [17], chiral two-dimensional superconductors
[18,19], chiral two-dimensional p-wave superfluids [20,21],
three-dimensional topological insulator-superconductor het-
erostructures [22], one-dimensional nanowires [23,24], spin-
orbit coupled semiconductor-superconductor heterostructures
[25,26], etc., it has proven to be very difficult to realize them
in these systems. Given that the cold-atom systems offer
unprecedented control in comparison to condensed-matter
ones, there is a good chance of creating and observing
Majorana quasiparticles with atomic systems in the near
future.

The first step in searching for the Majorana quasiparticles
with spin-orbit coupled Fermi gases is to understand the phase
diagram of these systems, which has recently been worked out
within the mean-field approximation [3,7–9]. For instance,
the ground-state phase diagram of a Rashba-type spin-orbit
coupling at unitarity, i.e., when the two-body scattering length
as between pseudospin components in vacuum diverges, is
illustrated in Fig. 1. There are three phases in the phase
diagram [7–9]. While the normal (N) phase is characterized by
a vanishing superfluid order parameter, the uniform superfluid
and nonuniform superfluid, e.g., phase separation (PS), are
distinguished by their thermodynamic stability when the
order parameter is nonzero. Furthermore, in addition to
the topologically trivial gapped superfluid (SF) phase, the

gapless superfluid (GSF) phase can be distinguished by the
momentum-space topology of its excitations. Depending on
the number of zero-quasiparticle excitation energy regions
in momentum space, there are two topologically distinct
gapless phases. For the Rashba-type spin-orbit coupling shown
here, while GSF(II) has four zero-energy points, GSF(I) has
only two.

The phase diagram illustrates that the spin-orbit coupling
counteracts the population imbalance, and that this com-
petition tends to stabilize the GSF phase against PS. The
anisotropic nature of the spin-orbit coupling (in momentum
space) is also found to stabilize exotic superfluid phases.
For instance, in sharp contrast to the α = 0 case where only
the gapless superfluid phase supports population imbalance,
both the gapless and gapped superfluid phases are found to
support population imbalance. Although Rashba-type spin-
orbit coupling is considered in Fig. 1, the topological structure
shown here is quite robust against the effects of anisotropic
spin-orbit couplings [7].

Since Majorana quasiparticles appear in the presence of
topological defects, e.g., vortices, domain walls, boundaries
between bulk phases, etc., one of the exciting experimental
directions with spin-orbit coupled Fermi gases may be to create
and observe a Majorana zero-energy quasiparticle bound to
a vortex. For this purpose, in this paper, we consider a
Rashba-type spin-orbit coupling, and use the Bogoliubov-de
Gennes (BdG) formalism to analyze a single vortex line along
a finite cylinder with a periodic boundary condition. We
find signatures for the appearance of core- and edge-bound
states in various observables, most notable of which is the
counterflow of pseudospin particle-current densities near the
edge of the cylinder. The rest of the paper is organized as
follows. First, we generalize the BdG formalism to spin-orbit
coupled Fermi gases in Sec. II, and then derive the self-
consistency equations for a single vortex line in Sec. III. We
present the numerical solutions in Sec. IV, where we discuss
the effects of spin-orbit coupling on the superfluid order
parameter, particle density, energy spectrum, bound-state wave
functions, single-particle density of states, and probability-
current density. Our conclusions are briefly summarized in
Sec. V.
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FIG. 1. (Color online) The mean-field ground-state phase dia-
gram of a Rashba-type spin-orbit coupled Fermi gas is shown as a
function of the population-imbalance parameter P = (N↑ − N↓)/N
and the strength of the spin-orbit coupling α at unitarity, i.e., when
|as | → ∞. Here, N, SF, GSF, and PS correspond to normal phase,
topologically trivial gapped superfluid, topologically nontrivial gap-
less superfluid, and phase separation, respectively. (Adapted from
Ref. [7].)

II. BOGOLIUBOV-DE GENNES FORMALISM

The results mentioned above are obtained by solving the
self-consistent BdG equations, suitably generalized to spin-
orbit coupled Fermi gases. Before presenting our numerical
results, let us first present the theoretical framework of this
formalism.

A. Hamiltonian

In this paper, we use the mean-field Hamiltonian density (in
units of h̄ = kB = 1), H (r) = ∑

σ,σ ′ ψ†
σ (r)Kσσ ′(r)ψσ ′(r) +

�(r)ψ†
↑(r)ψ†

↓(r) + �∗(r)ψ↓(r)ψ↑(r), describing two-
component Fermi gases with attractive and short-range interac-
tions. Here, the operators ψ†

σ (r) and ψσ (r) create and annihilate
a pseudospin σ fermion at position r, respectively, and �(r)
is the mean-field superfluid order parameter. Furthermore, the
operator Kσσ (r) = −∇2/(2Mσ ) − μσ is the kinetic energy,
where Mσ is the mass and μσ is the chemical potential of σ

fermions, and the operator K↑↓(r) = K
†
↓↑(r) = α(py + ipx)

is the spin-orbit coupling, where α � 0 is its strength and
pj = −i∂/∂j is the momentum operator. Although we keep
the formalism quite general, we present numerical calculations
only for the mass-balanced Fermi gases with M↑ = M↓ = M .

In the presence of a spin-orbit coupling, this Hamiltonian
can be diagonalized via the generalized Bogoliubov-Valatin
transformations, ψσ (r) = ∑

n,σ ′[uσσ ′
n (r)γn,σ ′ + vσσ ′

n

∗
(r)γ †

n,σ ′],

where uσσ ′
n (r) and vσσ ′

n (r) are the amplitudes, and γ
†
n,σ and γn,σ

are the operators corresponding to the creation and annihilation
of pseudospin σ quasiparticles, respectively. The resultant
BdG equation can be written as H (r)ϕσ ′

n (r) = εσ ′
n ϕσ ′

n (r), where

H (r) =

⎡
⎢⎢⎢⎣

K↑↑(r) K↑↓(r) 0 �(r)

K↓↑(r) K↓↓(r) −�(r) 0

0 −�∗(r) −K∗
↑↑(r) −K∗

↑↓(r)

�∗(r) 0 −K∗
↓↑(r) −K∗

↓↓(r)

⎤
⎥⎥⎥⎦ (1)

is the Hamiltonian matrix given in the ϕσ ′
n (r) =

[u↑σ ′
n (r),u↓σ ′

n (r),v↑σ ′
n (r),v↓σ ′

n (r)]T basis, and εσ ′
n � 0 are the

energy eigenvalues. Since the BdG equations do not depend
on σ ′, it is sufficient to solve only for uσ

n (r) = uσσ ′
n (r),

vσ
n (r) = vσσ ′

n (r), and εn = εσ ′
n .

B. Self-consistency equations

Using the Bogoliubov-Valatin transformations, the mean-
field superfluid order parameter �(r) = g〈ψ↑(r)ψ↓(r)〉, where
g � 0 is the strength of the attractive interaction between ↑ and
↓ fermions, and 〈· · · 〉 is the thermal average, becomes �(r) =
g

∑
n[u↑

n (r)v↓
n

∗
(r)f (εn) + u

↓
n (r)v↑

n

∗
(r)f (−εn)]. Here, f (x) =

1/(ex/T + 1) is the Fermi function and T is the temperature.
As usual, we relate the interaction strength g to the two-body
scattering length as between an ↑ and a ↓ fermion in vacuum
via the relation 1/g = −MrV/(4πas) + ∑

k 1/(εk,↑ + εk,↓),
where Mr = 2M↑M↓/(M↑ + M↓) is twice the reduced mass
of an ↑ and a ↓ fermion, V is the volume of the sample,
and εk,σ = k2/(2Mσ ) is the kinetic energy. This leads to
g = 4π2as/[2Mras

√
2Mrεc − Mrπ ], where εc is the energy

cutoff used in the k-space integration (to be specified below in
Sec. IV).

To determine μσ , the order-parameter equation has to
be solved self-consistently with the number equations Nσ =∫

drnσ (r), where nσ (r) = 〈ψ†
σ (r)ψσ (r)〉 is the local density of

σ fermions. Using the Bogoliubov-Valatin transformations, we
obtain nσ (r) = ∑

n[|uσ
n (r)|2f (εn) + |vσ

n (r)|2f (−εn)]. Having
generalized the BdG formalism to spin-orbit coupled Fermi
gases, next we apply it for a single vortex line.

III. SINGLE VORTEX LINE

In particular, we consider a single vortex line positioned
along a finite cylinder of radius R and length L, and with a
periodic boundary condition in the z direction, in such a way
that the order parameter can be written as �(r) = �(r)e−iθ ,

where r and θ are the cylindrical coordinates r = (r,θ,z) [27].
Note in this coordinate system that the spin-orbit coupling
term becomes K↑↓(r) = e−iθ [∂/∂r − (i/r)∂/∂θ ], showing
that the single vortex line has rotational invariance around
the z axis, so that the solutions of the BdG equation have
a well-defined planar angular momentum m, i.e., m is a
good quantum number. In addition, the system is assumed
to have translational invariance along the z direction, i.e., pz

momentum is also a good quantum number.
Thus, for a singly-quantized vortex line consid-

ered in this paper, we may choose the normal-
ized wave functions as u

↑
n(r) = u

↑
nms(r)eimθeiksz/

√
2πL

and v
↑
n (r) = v

↑
nms(r)ei(m+2)θ eiksz/

√
2πL for the ↑ compo-

nents, and u
↓
n (r) = u

↓
nms(r)ei(m+1)θ eiksz/

√
2πL and v

↓
n (r) =

v
↓
nms(r)ei(m+1)θ eiksz/

√
2πL for the ↓ ones. Here, ks = 2πs/L

is the wave vector along the z direction with s = 0, ±1,

±2, . . .. This particular choice (which is not unique [25,26])
allows us to decouple the BdG equations into independent
subspaces of (m,s) sectors. We further project the radial wave
functions onto a set of Bessel functions normalized in a disk of
radius R [27], i.e., φj,m(r) = √

2Jm(βj,mr/R)/[RJm+1(βj,m)],
where j = 1,2,3, . . . and the argument βj,m is the j th zero of
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Jm(x). More explicitly, we have u
↑
nms(r) = ∑

j c
↑
nmsjφj,m(r)

and v
↑
nms(r) = ∑

j d
↑
nmsjφj,m+2(r) for the ↑ radial wave

functions, and u
↓
nms(r) = ∑

j c
↓
nmsjφj,m+1(r) and v

↓
nms(r) =∑

j d
↓
nmsjφj,m+1(r) for the ↓ ones, and they already satisfy

the boundary conditions uσ
nms(R) = vσ

nms(R) = 0 at the edge
of the cylinder.

Using the orthonormality condition
∫ R

0 rdrφj,m(r)φj ′,m
(r) = δjj ′ where δjj ′ is the Kronecker delta, this procedure
reduces the BdG equation given in Eq. (1) to a 4jmax × 4jmax

matrix eigenvalue problem,

∑
j ′

⎛
⎜⎜⎜⎜⎝

K
jj ′
↑,ms S

jj ′
m 0 �

jj ′
m

S
jj ′
m K

jj ′
↓,ms −�

jj ′
m+1 0

0 −�
jj ′
m+1 −K

jj ′
↑,ms S

j ′j
m+1

�
jj ′
m 0 S

j ′j
m+1 −K

jj ′
↓,ms

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c
↑
nmsj ′

c
↓
nmsj ′

d
↑
nmsj ′

d
↓
nmsj ′

⎞
⎟⎟⎟⎟⎠

= εnms

⎛
⎜⎜⎜⎜⎝

c
↑
nmsj

c
↓
nmsj

d
↑
nmsj

d
↓
nmsj

⎞
⎟⎟⎟⎟⎠ , (2)

for each (m,s) sector, if we allow 1 � j � jmax states.
Here, K

jj ′
σ,ms = [β2

j,m/(2MσR2) + k2
s /(2Mσ ) − μσ ]δjj ′ are

the kinetic energy terms, S
jj ′
m = α

∫ R

0 rdrφj,m(r)[∂/∂r +
(m + 1)/r]φj ′,m+1(r) are the spin-orbit coupling terms

leading to S
jj ′
m = αCj ′m

∫ R

0 rdrφj,m(r)Jm(βj ′,m+1r/R)

where Cj ′m = √
2βj ′,m+1/[R2Jm+2(βj ′,m+1)], and �

jj ′
m =∫ R

0 rdr�(r)φj,m(r)φj ′,m+1(r) are the pairing terms. The same
procedure also reduces the order-parameter equation to

�(r) = g

2πL

∑
nmsjj ′

[c↓
nmsj d

↑
nmsj ′φj,m+1(r)φj ′,m+2(r)f (εnms)

+ c
↑
nmsj d

↓
nmsj ′φj,m(r)φj ′,m+1(r)f (−εnms)], (3)

and the local-density equations to

n↑(r) = 1

2πL

∑
nmsjj ′

[c↑
nmsj c

↑
nmsj ′φj,m(r)φj ′,m(r)f (εnms)

+ d
↑
nmsj d

↑
nmsj ′φj,m+1(r)φj ′,m+2(r)f (−εnms)], (4)

n↓(r) = 1

2πL

∑
nmsjj ′

[c↓
nmsj c

↓
nmsj ′φj,m+1(r)φj ′,m+1(r)f (εnms)

+ d
↓
nmsj d

↓
nmsj ′φj,m+1(r)φj ′,m+1(r)f (−εnms)]. (5)

We recall that the sums are only over the quasiparticle
states with εnms � 0. Using the orthonormality condition,
we also obtain the total number of σ fermions as Nσ =∑

nmsj [(cσ
nmsj )2f (εnms) + (dσ

nmsj )2f (−εnms)]. We emphasize
that these mean-field equations can be used for all values of as

and α at low T , but they provide only a qualitative description
of the system outside of the weak-coupling regime, i.e., in the
BCS-BEC crossover. In this paper, we set the temperature to
zero, and consider a strongly interacting Fermi gas at unitarity,
i.e., |as | → ∞, as a function of α.

IV. NUMERICAL RESULTS

In our numerical calculations, we set a large energy
cutoff εc = 10εF , and numerically solve the self-consistency
Eqs. (2)–(5) at T = 0. Here, εF = k2

F /(2M) is a characteristic
Fermi-energy scale where kF is the Fermi momentum corre-
sponding to the bulk value of the total density of fermions,
i.e., n↑(r) + n↓(r) = k3

F /(3π2) at the bulk. We also choose
R = 25/kF as the radius and L = 10/kF as the length of
the cylinder, and jmax = 50 and |m|max = 75 as the maximum
quantum numbers. Note that |s|max = L

√
Mεc/2/π , in order

to be consistent with the energy cutoff. Since the presence
of a single vortex line cannot significantly affect the bulk
parameters, we first solve μσ and �0 self-consistently for
a vortex-free thermodynamic system, and then use these
solutions as an input for our vortex-line calculation, where
�0 corresponds to the bulk value of �(r). Here, we assume
�(r) is real without losing generality.

A. Order parameter and density of fermions

In Fig. 2(a), we show typical order-parameter profiles
�(r) for α = 0.5kF /M and α = kF /M when P = 0.5, i.e.,
it rapidly increases from zero around the vortex core, saturates
to its bulk value �0 around kF r � 5, and then rapidly decreases
to zero near the edge of the cylinder [27]. Here, the population-
imbalance parameter P = [n↑(r) − n↓(r)]/[n↑(r) + n↓(r)] is
defined at the bulk. We see that �(r) increases with increasing
α, e.g., its bulk value increases from 0.50εF to 0.66εF , and
that the effect of spin-orbit coupling is similar to the effect
of increased interaction strength. This is due to the increased
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FIG. 2. (Color online) The order parameter �(r) (in units of
εF ) and density nσ (r) [in units of k3

F /(3π 2)] profiles are shown
as a function of radial distance r (in units of 1/kF ). Here, we set
1/(kF as) = 0 and P = 0.5, and vary α.
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density of states with increasing α, and it is consistent with the
previous results on thermodynamic systems [3–16].

In Fig. 2(b), we show the corresponding density profiles
nσ (r) for the same parameters. When α = 0, it is well known
for the fermion superfluids that the density is depleted near
the vortex core compared to its bulk value [27], and that
the depletion increases with increasing interaction strength
toward the molecular BEC side. This is because the energy
separation between the vortex core-bound states increases with
increasing �0, which makes them less occupied. In fact, for a
population-balanced Fermi gas, the density depletes fully and
becomes zero at the vortex core in the molecular BEC limit,
consistent with the theory of weakly interacting atomic Bose
gases. However, for population-imbalanced Fermi gases, the
vortex core may still be filled with excess fermions toward
this limit [28]. When α 
= 0, in Fig. 2(b), we again see that the
effect of spin-orbit coupling is similar to the effect of increased
interaction strength, i.e., density depletion also increases for
both σ components with increasing α. To further understand
the density depletions, next we analyze the spectrum of energy
eigenvalues.

B. Energy spectrum

In Fig. 3, the spectra of energy eigenvalues εnms are
shown as a function of planar angular momentum m for
the s = 0 sector. The spectrum rapidly becomes symmetric
around m = 0 with increasing s, since the vortex core and
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FIG. 3. (Color online) The energy spectrum εnms (in units of εF )
is shown as a function of planar angular momentum m when s =
0. Here, we set 1/(kF as) = 0 and α = 0.5kF /M , and vary P . In
(a) we choose P = 0.2 corresponding to a topologically trivial gapped
bulk SF phase, and in (b) we choose P = 0.5 corresponding to a
topologically nontrivial gapless bulk GSF phase. The linear branch
in (b) corresponds to the edge-bound states.

edge states disappear when |s| ∼ 1. Here, we choose α

and P such that Fig. 3(a) corresponds to a topologically
trivial gapped bulk SF phase, and Fig. 3(b) corresponds to
a topologically nontrivial gapless bulk GSF phase (see the
thermodynamic phase diagram given in Fig. 1). First of all,
we note that the excitation spectra shown in these figures
have the necessary symmetry, εnms = −εn,−(m+2),s , which
follows from the particle-hole symmetry of the Hamiltonian.
In addition, a second branch of continuum spectra appears in
both cases and on both positive and negative energy regions
when |εnms | � 1.2εF . This is similar to what happens in a
thermodynamic system, for which the excitation spectrum
has two quasiparticle and two quasihole branches when
α 
= 0 [7,9].

When α = 0, the positive- and negative-energy spectra are
connected by a single branch of discrete Andreev-like bound
states [27,29]. While the visible discreteness of the continuum
spectrum is a finite-size effect and the spectrum becomes
continuous only in the thermodynamic limit (kF R → ∞), the
discreteness of the bound states is insensitive to the system
size since these states are strongly localized around the vortex
core. The lowest-energy quasiparticle excitation requires a
minigap of the order �2

0/(2εF ) � �0. When α 
= 0, the energy
spectrum of the SF phase shown in Fig. 3(a) is very similar to
the usual population-balanced s-wave superfluids, for which
the bulk energy spectrum is also gapped. There are only a few
discrete core-bound states appearing within the bulk energy
gap in Fig. 3(a), since the bulk order parameter �0 � 0.7εF

is quite large for P = 0.2, leading also to a large minigap.
However, the bulk order parameter decreases to �0 � 0.5εF

when P = 0.5, leading to a smaller minigap in comparison to
the P = 0.2 case, and hence a larger number of core-bound
states, as can be clearly seen in Fig. 3(b).

In contrast, we see a major difference in the energy spectrum
of the GSF phase, as shown in Fig. 3(b). In addition to the
branch of discrete core-bound states that is also present in
the SF phase, there is a second branch of bound states which
are strongly localized around the edge of the cylinder. These
states result from Andreev scattering at the rigid walls of the
cylinder, and their spectrum is linear in energy within the
continuum gap [30]. We find that the lowest positive-energy
and highest negative-energy bound states have m = −1 and
s = 0, and their energies are ε0 ≈ 4.33 × 10−4εF and ε0′ ≈
−4.33 × 10−4εF , respectively. This is not a coincidence, since
we know that the energy spectrum has εnms = −εn,−(m+2),s

symmetry; and given that the spectrum is expected to have
a twofold degenerate zero-energy bound state, i.e., a pair
of Majorana quasiparticles, in the thermodynamic limit, they
must occur at m = −1. However, hybridization between the
core- and edge-bound states (see below) lifts this degeneracy
in a finite system, and the zero-energy bound states split in
energy, as we find here.

In Fig. 4, the radial wave functions uσ
nms(r) and vσ

nms(r)
of the lowest positive-energy bound state with energy ε0 are
shown as a function of radial distance r , for the parameters
considered in Fig. 3(b). [Due to particle-hole symmetry, the
radial wave functions for the highest negative-energy bound
state with energy ε0′ can simply be obtained by changing
uσ

nms(r) → vσ
nms(r), and vice versa.] We note that while

the wave functions have uσ
nms(r) = −vσ

nms(r) symmetry near
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FIG. 4. (Color online) The radial wave functions uσ
nms(r) and

vσ
nms(r) (in units of 1/kF ) are shown as a function of radial distance

r (in units of 1/kF ) for the lowest positive-energy bound state. For
the parameters considered in Fig. 3(b), ε0 ≈ 4.33 × 10−4εF , and it
occurs at m = −1 and s = 0.

the vortex core, they have uσ
nms(r) = vσ

nms(r) symmetry near
the edge. These are consistent with the symmetries of Majorana
quasiparticles [26], for which the associated quasiparticle
operators are self-Hermitian, i.e., a Majorana quasiparti-
cle is its own antiquasiparticle. This is clearly seen from
the Bogoliubov-Valatin quasiparticle creation operator γ

†
n =∫

dr
∑

σ [uσ
n (r)ψ†

σ (r) + vσ
n (r)ψσ (r)] evaluated at m = −1 and

s = 0. Since the Majorana quasiparticles always come in pairs,
they appear simultaneously but away from each other in real
space. In our single vortex line, while one of them is mostly
localized at the vortex core, the other one is mostly localized
at the edge, with some degree of hybridization between them
due to finite-size effects. The hybridization is clearly seen in
the wave functions shown in Fig. 4. We note that due to this
coupling between the Majorana core- and edge-bound states,
their twofold εnms = 0 degeneracy is lifted, causing a small
level splitting, as discussed above. Increasing the separation
between Majorana core- and edge-bound states, i.e., when
kF R → ∞, weakens the hybridization such that both bound
states eventually become degenerate in energy with εnms = 0.
When this happens, the core quasiparticle is well localized
around the vortex core with uσ

nms(r) = −vσ
nms(r) symmetry,

and the edge quasiparticle is well localized around the edge
with uσ

nms(r) = vσ
nms(r) symmetry, without any hybridization

between the two.
So far, we have established a major difference between the

energy spectra of SF and GSF phases, which is mainly due
to the appearance of edge-bound and Majorana zero-energy
bound states, and this difference leaves its signatures in various
observables, as discussed next.

C. Single-particle density of states

For instance, the local single-particle density of
σ states Dσ (r,ω) = ∑

n[|uσ
n (r)|2δ(ω − εn) + |vσ

n (r)|2δ(ω +
εn)], where δ(x) is the delta function, as well as the integrated
single-particle density of σ states Dσ (ω) = ∫

drDσ (r,ω),
provide direct evidence for the existence of edge-bound
and Majorana zero-energy bound states, as shown below. In

0

 350

 700

 1050

 1400

-1.6 -0.8 0  0.8  1.6

D
σ(

ω
)

ω

(a)

↑
↓

0

 350

 700

 1050

 1400

-1.6 -0.8 0  0.8  1.6

D
σ(

ω
)

ω

(a)

↑
↓

0

 425

 850

 1275

 1700

-1.6 -0.8 0  0.8  1.6
D

σ(
ω

)
ω

(b)

↑
↓

0

 425

 850

 1275

 1700

-1.6 -0.8 0  0.8  1.6
D

σ(
ω

)
ω

(b)

↑
↓

FIG. 5. (Color online) The integrated density of σ states Dσ (ω)
(in units of 1/εF ) are shown as a function of energy ω (in units of
εF ), for the parameters considered in Fig. 3.

particular, for a vortex line, and after using the orthonormality
conditions for the Bessel functions, Dσ (ω) reduces to

Dσ (ω) =
∑
nmsj

[(
cσ
nmsj

)2
δ(ω − εnms) + (

dσ
nmsj

)2
δ(ω + εnms)

]
.

(6)

We use a small spectral broadening (0.01εF ) to regularize the
δ functions in our numerical calculations.

In Fig. 5, the integrated density of σ states Dσ (ω) are shown
as a function of energy ω, for the parameters considered in
Fig. 3. We see that while the density of states vanishes around
ω = 0 in the SF phase, due to the presence of a gap in the
energy spectrum, it is finite in the GSF phase with very small
peaks around ω = 0. These peaks are due to the presence of
discrete core and edge states within the continuum gap in
energy, and they are most clearly seen in the majority (↑)
component. We also note that the appearance of a second
continuum branch in the excitation spectrum increases the
density of states considerably when |εnms | � 1.2εF . Next, we
analyze the local probability-current density of σ fermions,
which also shows signatures for the edge-bound and Majorana
zero-energy bound states.

D. Probability-current density

Similar to the usual α = 0 treatment, the quantum me-
chanical probability-current operator for σ fermions can be
identified from the continuity equation. While the presence of
a spin-orbit coupling leads to additional terms in the total
particle current operator, these terms do not contribute to
the current since the expectation value 〈ψ†

↑(r)ψ↓(r)〉= 0.
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FIG. 6. (Color online) The probability-current density of σ

fermions (in units of M/k3
F ) are shown as a function of radial distance

r (in units of 1/kF ), for the parameters considered in Fig. 2.

Therefore, using the Bogoliubov-Valatin transformations,
the local current density Jσ (r) = [1/(2Mσi)]〈ψ†

σ (r)∇ψσ (r) −
H.c.〉 circulating around a single vortex line be-
comes Jσ (r) = [1/(2Mσ i)]

∑
n[uσ

n
∗(r)∇uσ

n (r)f (εn) + vσ
n

∗(r)
∇vσ

n (r)f (−εn) − H.c.], where H.c. is the Hermitian con-
jugate. Since Jσ (r) circulates along the θ̂ direction, i.e.,
Jσ (r) = Jσ (r)θ̂ , we find

J↑(r) = 1

2πM↑r

∑
nms

⎧⎪⎨
⎪⎩m

⎡
⎣∑

j

c
↑
nmsjφj,m(r)

⎤
⎦

2

f (εnms)

− (m + 2)

⎡
⎣∑

j

d
↑
nmsjφj,m+2(r)

⎤
⎦

2

f (−εnms)

⎫⎪⎬
⎪⎭ , (7)

J↓(r) = 1

2πM↓r

∑
nms

⎧⎪⎨
⎪⎩(m + 1)

⎡
⎣∑

j

c
↓
nmsjφj,m+1(r)

⎤
⎦

2

f (εnms)

− (m + 1)

⎡
⎣∑

j

d
↓
nmsjφj,m+1(r)

⎤
⎦

2

f (−εnms)

⎫⎪⎬
⎪⎭ , (8)

for the strengths of the particle-current densities.
In Fig. 6, the probability-current density of σ fermions are

shown as a function of radial distance r , for the parameters
considered in Fig. 2. When α = 0, the core-bound states have
a negative (diamagnetic) and the continuum states have a
positive (paramagnetic) contribution to Jσ (r). This leads to

a nonmonotonic Jσ (r), which first increases as ∝ r and then
decreases as ∝ 1/r [27]. The latter behavior is due to the
saturation of the superfluid density for long distances away
from the vortex core. Therefore, a maximum peak current
occurs at some distance away from the vortex core. When
α 
= 0, the major difference is at the edge. The ↑ and ↓ currents
flow in opposite directions, and their magnitude increases with
increasing α. Such a counterflow of mass currents occurs even
for the SF phase (not shown). Since the sums in Eqs. (7)
and (8) are over states with εnms � 0, counterflowing edge
currents result from the asymmetry of the energy spectrum
around m = 0, due to the presence of edge states.

V. CONCLUSIONS

To conclude, we considered a Rashba-type spin-orbit
coupled Fermi gas, and used the BdG formalism to analyze
a single vortex line along a finite cylinder with a periodic
boundary condition. When the populations of the pseudospin
components are sufficiently imbalanced, depending on the
strength of the spin-orbit coupling, we showed that core-
and edge-bound states, as well as Majorana zero-energy
quasiparticles, appear in the energy spectrum. These states
leave signatures in the density of single-particle states and
particle-current density, and particularly, we found that the
pseudospin components counterflow near the edge of the
cylinder, the strength of which increases with increasing
spin-orbit coupling.

While preparing this work, we became aware of a closely
related work [31] where the vortex core and edge states
are analyzed for a trapped two-dimensional Fermi gas. For
the most part, our work is consistent with their findings.
However, in contrast to our finite-cylinder setup where the
system is either in an SF or GSF phase, depending on the
parameter regime, both SF and GSF phases may also coexist
in a trap in different regions. The possibility of such a
phase coexistence again leads to Andreev scattering at the
SF-GSF phase boundary, giving rise to an additional branch
of edge-bound states.
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